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Abstract

Motivation: With continually improved instrumentation, Fourier transform infrared (FTIR) microspectroscopy can
now be used to capture thousands of high-resolution spectra for chemical characterization of a sample. The spatially
resolved nature of this method lends itself well to histological profiling of complex biological specimens. However,
current software can make joint analysis of multiple samples challenging and, for large datasets, computationally
infeasible.

Results: To overcome these limitations, we have developed Photizo—an open-source Python library enabling high-
throughput spectral data pre-processing, visualization and downstream analysis, including principal component
analysis, clustering, macromolecular quantification and mapping. Photizo can be used for analysis of data without a
spatial component, as well as spatially resolved data, obtained e.g. by scanning mode IR microspectroscopy and IR
imaging by focal plane array detector.

Availability and implementation: The code underlying this article is available at https://github.com/DendrouLab/
Photizo with access to example data available at https://zenodo.org/record/6417982#.Yk2O9TfMI6A.

Contact: cdendrou@well.ox.ac.uk

1 Introduction

Fourier transform infrared microspectroscopy (mFTIR) enables non-
destructive and label-free mapping of complex chemical informa-
tion. The spatially resolved nature of this method lends itself well to
the analysis of architecturally complex samples such as those of bio-
logical nature (Baker et al., 2014). The functional group specificity
of mFTIR provides insight into biological queries, capturing relevant
molecules such as lipids, proteins, nucleic acids and carbohydrates
(Bellisola and Sorio, 2012).

Continually improving instrumentation and spectral analysis
methods are increasing the applicability of vibrational spectroscopy
methods for disease characterization and diagnosis. These methods
have repeatedly been shown to partition data based on these spectral
features, distinguishing biochemical profiles of healthy control sam-
ples from pathological specimens (Heraud et al., 2010; Kneipp
et al., 2000; Martel et al., 2020). In the context of histological char-
acterization with mFTIR specifically, clustering has been leveraged
to distinguish the biochemical profile of different degrees of path-
ology within a given sample, with performance being comparable to
a trained pathologist (Wehbe et al., 2015).

Carrying out this type of analysis across multiple samples is chal-
lenging with currently available software. Commercially available
options—while rich in analysis functionality—can be computation-
ally costly to run, often limiting processing to one sample at a time.
When samples are processed and analyzed individually with long
running times for each step, this can increase errors and be less sys-
tematic, thereby potentially compromising reproducibility. Quasar,
a recently available open-source spectroscopic data analysis toolbox
extending the Orange suite, has overcome some of these challenges
(Toplak et al., 2021). However, its interactive interface comes at the
cost of the capacity for cluster computing—a necessity for analysis
of large multi-sample datasets in a timely fashion.

With multi-modal analysis approaches gaining prominence in
the life and medical sciences to aid biological discovery and provide
insights for patient prognosis, diagnosis and therapy (Eddy et al.,
2020; Miao et al., 2021; Palla et al., 2022), an open-source tool for
streamlined analysis of mFTIR data could unlock the significant po-
tential of this method to better characterize the relatively under-
studied biochemical profile of tissues, and the data generated could
then be integrated with other data modalities. This would substan-
tially increase the utility of mFTIR beyond data partitioning, and
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enable its use in disease characterization since multi-modal and inte-
grative approaches enable streamlined data exploration and valid-
ation linking specific cellular processes to key macromolecular
features.

In order to address this need, we present Photizo—an open-
source Python library which makes use of the SCANPY library
(Wolf et al., 2018) and AnnData objects to enable spectral analysis
while preserving spectra-level clinical data annotation. It includes
pre-processing, analysis and visualization functions, including spa-
tial mapping of spectra (Fig. 1).

2 Materials and methods

2.1 Inputs and pre-processing
Data inputted into Photizo are read into a numpy array for
pre-processing steps. Following pre-processing of each sample, sub-
sequent steps can be performed for individual samples or for joint
analysis of multiple samples. If using a data frame with multiple
samples, we recommend creating an annotation data frame in pan-
das containing sample information (e.g. sample name, clinical data).
This is necessary for visualization of clinical variables and of
single-sample data.

Photizo pre-processing allows exclusion of outlier spectra with
evidence of light scattering and spectra in regions with signal indica-
tive of no sample (e.g. sample holes, regions outside of sample bor-
ders), enabling application of vector normalization to only spectra
of interest. Positions of excluded spectra are saved for repopulation
prior to spatial mapping. We recommend spatially verifying the pos-
ition of excluded spectra to ensure consistency with histological
features (e.g. holes).

Pre-processing also enables the exclusion of the CO2 region,
which is useful when the CO2 captured is of atmospheric origin and
does not contribute to the analysis. Excluding this region prior to
clustering ensures that atmospheric alterations do not create batch
effects. Calculating the second derivative of the spectra is also
included in Photizo, which controls for baseline variation at the time
of collection, thereby also minimizing batch effects in subsequent
clustering.

2.2 Analysis
2.2.1 Principal component analysis

Principal component analysis (PCA) can be used as a dimensionality
reduction method and can be useful for identification of batch or
spectral baseline effects prior to further analyses, and for discovering
variables of genuine interest. Photizo has a PCA function optimized
for spectral data, that rapidly generates cumulative explained vari-
ance plots and a plot of the top eigen-spectra. The PCA outputs can
also be used for principal component projection and custom
plotting.

2.2.2 Clustering

Photizo includes clustering tools which make use of uniform manifold
approximation and projection dimensionality reduction (Becht et al.,
2019) paired with the Leiden algorithm (Traag et al., 2019) for com-
munity detection. Clustering may be performed with entire spectra or
with a particular region of interest using the region selection functions.

2.2.3 Visualization and quantification

Cluster profiling benefits from functions for visual spectral inspec-
tion. Tools for quantitative comparisons also contribute to cluster
characterization, with functions implemented for numerical integra-
tion of the area below the spectra within the wavenumber window
of interest. Selection of the window of interest may be verified with
a specific spectral inspection function, whereby the user can account
for subtle peak shifts in the data to select integration windows con-
sistent with the collected data. Resulting quantified values can be
used for statistical comparisons and visualized using violin plots.

Among the quantitative measures generated as outputs are esti-
mates for secondary structure composition derived from the spectral
features; these do not rely on spectral decomposition, but rather use
statistically estimated content previously reported in the literature
(Goormaghtigh et al., 2009), making this approach robust and
reproducible.

Two key visualization functions in Photizo enable spatial map-
ping of data in the configuration of data collection, requiring only
the number of spectra obtained in the x and y axes at time of collec-
tion. The first function maps integrated values for visualization of
chemical content estimation across the tissue for a particular region
of interest. The second enables spatial mapping of cluster classifica-
tion. This feature is key for comparison with histological character-
ization and permits correlative analysis or integration (using
machine learning-, topological- or tensor-based approaches, e.g.)
with other spatially resolved molecular profiling methods applied to
adjacent tissue sections, such as spatial transcriptomics, imaging
mass spectrometry or spatial proteomics.

2.3 Example workflow and reference dataset
To facilitate the use of the library by new users, we have made avail-
able infrared imaging by focal plane array detector data, with spa-
tially resolved spectra collected from brain sections for exploration
of the library’s functionality. This includes areas from three neuro-
degenerative disease cases and three controls, enabling performance
of a full workflow with reference figures, data and metadata prior
to using the library on their own data.

3 Conclusions

Here, we present Photizo, an open-source library for analysis of
FTIR spectroscopy data, which includes functionality for analyzing
spatially resolved mFTIR data. This library is built in Python—a
popular programming language with noted code readability—ena-
bling users to analyze FTIR data with more flexibility regarding
sample number and data size than currently available options, all at
a low monetary cost. Photizo streamlines analysis of multiple sam-
ples, including the option of joint sample analysis, making its meth-
ods reproducible and easy to standardize across samples and
datasets. Being built on Python, it can also be used for scripts sub-
mitted to cluster computing, vastly reducing computational costs for
analysis. It has flexible functionality, facilitating reusability of basic
functions and can be easily integrated into further workflows or
analyses (e.g. statistical comparison of quantitative findings), and
may also be adapted to the analysis of other vibrational spectros-
copy methods. Importantly, while certain tools utilized for Photizo
come from biomedical sciences, the library is specimen-agnostic and
can easily be used for spectral analysis of other sample types.

With the rise of integrative multi-modal analysis, this package con-
tributes to closing the gap for mFTIR data to be analyzed as part of
larger integrative studies, providing biochemical context for other
omics technologies. Jointly, these features contribute to maximizing

Fig. 1. Example workflow of mFTIR data in Photizo. The Photizo workflow includes

pre-processing, PCA, clustering and cluster quantification and visualization solu-

tions for FTIR spectroscopy and imaging data. WN, wavenumber
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the utility of spectroscopy data at lower costs, increased options for
automation and streamlined but flexible processing of large datasets.

Funding

This work was performed with support from the Wellcome Trust and Royal

Society (204290/Z/16/Z) to CAD, and the Interdisciplinary Bioscience DTP,

supported by the BBSRC to MG-P. Tissue samples and associated clinical and

neuropathological data were supplied by the Multiple Sclerosis Society Tissue

Bank, funded by the Multiple Sclerosis Society of Great Britain and Northern

Ireland, registered charity 207495.

Conflict of Interest: none declared.

References

Baker,M.J. et al. (2014) Using Fourier transform IR spectroscopy to analyze

biological materials. Nat. Protoc., 9, 1771–1791.

Becht,E. et al. (2019) Dimensionality reduction for visualizing single-cell data

using UMAP. Nat. Biotechnol., 37, 38–44.

Bellisola,G. and Sorio,C. (2012) Infrared spectroscopy and microscopy in can-

cer research and diagnosis. Am. J. Cancer Res., 2, 1–21.

Eddy,S. et al. (2020) Integrated multi-omics approaches to improve classifica-

tion of chronic kidney disease. Nat. Rev. Nephrol., 16, 657–668.

Goormaghtigh,E. et al. (2009) Protein secondary structure content in solution,

films and tissues: redundancy and complementarity of the information con-

tent in circular dichroism, transmission and ATR FTIR spectra. Biochim.

Biophys. Acta, 1794, 1332–1343.

Heraud,P. et al. (2010) Early detection of the chemical changes occurring dur-

ing the induction and prevention of autoimmune-mediated demyelination

detected by FT-IR imaging. Neuroimage, 49, 1180–1189.

Kneipp,J. et al. (2000) Detection of pathological molecular alterations in

scrapie-infected hamster brain by Fourier transform infrared (FT-IR) spec-

troscopy. Biochim. Biophys. Acta, 1501, 189–199.

Martel,C. et al. (2020) Diagnosis of idiopathic amyotrophic lateral sclerosis

using Fourier-transform infrared spectroscopic analysis of patient-derived

skin. Analyst, 145, 3678–3685.

Miao,Z. et al. (2021) Multi-omics integration in the age of million single-cell

data. Nat. Rev. Nephrol., 17, 710–724.

Palla,G. et al. (2022) Spatial components of molecular tissue biology. Nat.

Biotechnol., 40, 308–318.

Toplak,M. et al. (2021) Quasar: easy machine learning for biospectroscopy.

Cells, 10, 2300.

Traag,V.A. et al. (2019) From Louvain to Leiden: guaranteeing

well-connected communities. Sci. Rep., 9, 5233.

Wehbe,K. et al. (2015) Discrimination between two different grades of human

glioma based on blood vessel infrared spectral imaging. Anal. Bioanal.

Chem., 407, 7295–7305.

Wolf,F.A. et al. (2018) SCANPY: large-scale single-cell gene expression data

analysis. Genome Biol., 19, 15.

3492 M.Grant-Peters et al.


