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Several universities around the world have resumed in-person teaching after successful vaccination 
campaigns have covered 70/80% of the population. In this study, we combine a new compartmental 
model with an optimal control formulation to discover, among different non-pharmaceutical 
interventions, the best prevention strategy to maximize on-campus activities while keeping spread 
under control. Composed of two interconnected Susceptible-Exposed-Infected-Quarantined-
Recovered (SEIQR) structures, the model enables staff-to-staff infections, student-to-staff cross 
infections, student-to-student infections, and environment-to-individual infections. Then, we model 
input variables representing the implementation of different non-pharmaceutical interventions 
and formulate and solve optimal control problems for four desired scenarios: minimum number of 
cases, minimum intervention, minimum non-quarantine intervention, and minimum quarantine 
intervention. Our results reveal the particular significance of mask wearing and social distancing in 
universities with vaccinated population (with proportions according to UK data). The study also reveals 
that quarantining infected students has a higher importance than quarantining staff. In contrast, 
other measures such as environmental disinfection seems to be less important.

The epidemic ascribed to the virus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
has greatly impacted society and the economy around the world. In December 2019, China reported cases of 
pneumonia of unknown cause in Wuhan. The World Health Organisation (WHO) declared the coronavirus 
disease 2019 (COVID-19) a pandemic in March 11, 20201. By 3 November 2021, WHO has reported over 246 
million cases with more than 5 million deaths around the world1.

The virus generally causes respiratory symptoms such as cough, sneezing, shortness of breath, along with other 
symptoms including fever, headache2 and olfactory or gustatory dysfunctions3. Since direct contact and aerosol 
transmissions are two important ways of infection4, symptomatic individuals are high spreaders. Meanwhile, the 
virus can also survive on surfaces and then invade the human body through eyes, nose or mouth via touching5,6. 
Some carriers are asymptomatic, but they can still infect other susceptible individuals7,8.

Many countries have conducted successful vaccination campaigns. However, vaccination uptake in most 
of these countries have platooned at around 70/80% of their total population9. Moreover, SARS-CoV-2 has 
shown a relatively high ability to adapt10. Several variants have been reported11 with four considered to be of 
main concern: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2). In particular, the Delta vari-
ant has shown to be more infectious and more severe, leading to second or third waves in the UK, India and 
South Africa12, in addition to having partial resistance to vaccines13,14. The fast emergence of viral mutations has 
also raised wide considerations on whether current vaccines will be effective on new lineages appearing in the 
future15–17. Moreover, recent studies also show a decay of the protection that vaccines offer as time from vaccina-
tion increases18,19, which prompted several counties to start a booster campaign. Therefore, in such a complex 
situation the implementation of non-pharmaceutical interventions such as mask wearing and social distancing 
have remained fundamental measures in containing the disease20.

OPEN

EEE, Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK. *email: g.scarciotti@
imperial.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16532-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13039  | https://doi.org/10.1038/s41598-022-16532-5

www.nature.com/scientificreports/

This work studies the situation in British universities in the Fall 2021 when the institutions re-opened (requir-
ing that all non-self-isolating students attend lectures in person) while maintaining a combination of non-phar-
maceutical measures in place. The objective of universities is to maximise on-campus activities while maintaining 
the spread of the disease under control. Universities are “small-environments” which have special features for 
which general purpose models may be inadequate. For instance, a university is composed of two fundamentally 
different populations, the students and the staff (e.g. professors, lecturers, technicians and administrators), which 
have different degrees of interaction, vaccination rates and serious symptoms. General purpose models focus 
mostly on modelling the spread of the disease, but here we are interested in maximising on-campus activity 
subject to limited spread. Our main contribution is two-fold: on one hand we provide a modelling framework 
to maximise safe on-campus activity. On the other hand, a ranking of non-pharmaceutical interventions and 
their fundamental importance in achieving the objective naturally emerges from our analysis. Moreover this 
emergent behaviour is shown to be relative robust to modelling parameters.

The first block of our framework is a compartmental model. Compartmental modelling is a popular choice 
for research on COVID-19. Cooper et al.21 used an SIR model with changing total population to estimate the 
growth of the epidemic in different nations. To explicitly model details such as incubation period, hospitalization, 
and quarantine, Leontitsis et al.22 proposed an SEAHIR model. Giordano et al.23 created a far more complete 
SIDARTHE model, reflecting potential effects of non-pharmaceutical interventions implemented by the govern-
ment. Various stochastic versions with higher complexity have also been designed to estimate the development 
of the pandemic under feasible countermeasures24–26. However, most of these models consider the influence 
of prevention and control measures by tweaking the model’s parameter values. The use of control theory for 
analysis of COVID-19 countermeasures is then suggested by, e.g., Zhong et al.27. Therein, a feedback control 
law is designed for a SIRD model to estimate the combined effects of three non-pharmaceutical interventions. 
Nevertheless, this study does not systematically evaluate and compare the importance of different interventions 
under different constraints. In this paper, we propose a new deterministic compartmental model for the spread-
ing of COVID-19 in universities and investigate the importance of non-pharmaceutical countermeasures using 
optimal control techniques.

Consisting of a double SEIQR structure, our model distinguishes the epidemic evolution stages of students 
from those of staff. All individuals can potentially undergo five statuses: susceptible S (including the vaccinated), 
exposed E (asymptomatic), infected I (symptomatic), quarantined Q (hospitalized or isolated), and recovered R. 
Since all members are studying or working within the same confined space, the coronavirus can also transmit 
via the environment. An extra compartment C is used to represent the environmental virus concentration. The 
overall structure of the model is depicted in Fig. 1. This compartmental model automatically assumes that the 
total population is homogeneously mixed, which is reasonable because everyone belonging to the same depart-
ment is following similar daily routines in the common confined spaces. The individuals in the compartments 
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Figure 1.   Model structure. Flow chart of five epidemic stages among students and staff in a university 
department: S, susceptible (including the vaccinated); E, exposed (asymptomatic); I, infected (symptomatic); Q, 
quarantined (hospitalized or mandatorily isolated); R, recovered. The subscript “y” stands for students while the 
subscript “s” denotes staff.
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also have similar probability of infections due to the virus surviving in the environment. The model does not 
involve the isolation of asymptomatic subjects because it is less likely to occur in the context of a university 
population. Since the vaccinated and boosted individuals can still get infected, we regard them as susceptible 
but with lower infection rates (i.e. vaccine breakthrough infections). Because of the relatively short term of the 
time frame of this study, both the decrease of vaccine protection rate and the possibility of re-infection among 
recovered people are omitted. Death of vaccinated individuals is also negligible.

To assess the efficacy of the various intervention strategies under study we first evaluate a baseline scenario 
in which no countermeasures are implemented. The parameters for this scenario are taken from the literature. 
Some of the values of the parameters are obtained according to the proportion of vaccinated individuals and vac-
cine effectiveness reported in the UK28–30. A detailed description of this procedure is reported in the “Methods”.

We consider five possible non-pharmaceutical interventions that can be implemented by the university after 
reopening: mask wearing, social distancing, environmental disinfection, quarantine on infected students and 
quarantine of infected staff. In the United Kingdom, surgical masks are the most commonly employed in the 
mask-wearing policy, while spraying of disinfectants in the common spaces and cleaning of frequently touched 
surfaces like desks and chairs in the lecture rooms are the most common environmental disinfection measures. 
To study the effectiveness of these measures in the model, we define five input control variables associated with 
each of these measures. We then use optimal control to study four desired scenarios: minimum number of cases, 
minimum intervention, minimum non-quarantine intervention and minimum quarantine intervention. In all 
scenarios, it is assumed that the University starts to control the epidemic 14 days after the asymptomatic carriers 
firstly appear. We also model the desire of keeping the infection under control as constraints in the optimisa-
tion. In particular, we impose constraints on the number of infected cases and on the number of days required 
to extinguish the epidemic. In the minimum-case scenario, the epidemic is controlled with no efforts spared, 
leading to the strongest minimization of COVID-19 cases. For minimum intervention, we study the possibility 
of minimizing the total effort of all control measures. In the minimum non-quarantine intervention, we mini-
mise the use of mask wearing, social distancing and environmental disinfection. In the last scenario, minimum 
quarantine intervention, we minimize the use of quarantines. By comparing the obtained optimal trajectories in 
different scenarios, we identify an emergent behaviour that shows a ranking on the importance of the different 
non-pharmaceutical interventions.

Results
Baseline: no interventions.  We first generate a baseline scenario in which no intervention is performed. 
We simulate the evolution of the epidemic in one department of the university. The results are shown in Fig. 2. 
As case study we consider a department where the total number of students is 1200 and the number of members 
of staff is 150 (i.e. similar to the EEE department of Imperial College London). We focus on the case study of 
students returning to in-person teaching after a period of lockdown or remote teaching. For this reason, the 
initial condition of the study corresponds to a small number of asymptomatic cases. Hence, we assume that 5 
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Figure 2.   Prediction in the baseline scenario of no interventions. (a) Evolution of COVID-19 among students. 
(b) Evolution of COVID-19 among staff. Magnitudes are in proportion to the total number of students or staff.
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students and 2 staff members are initially asymptomatic (the exact numbers used for the initial condition do not 
matter as long as they are of the same order of magnitude). Based on our analysis of the model parameter values, 
the effective reproduction number R0 on day 0 is 2.50 among non-immune population, but it reduces to 1.40 
once we factor in the effect of vaccination. After two weeks, 1.8% of students and 3.1% of staff have caught the 
disease. Without countermeasures, increasingly more individuals will get infected during the coming 120 days. 
Simultaneously, Rt keeps decreasing and becomes smaller than 1 after 76 days. At day 134, 56% of students and 
63% of staff have been infected and Rt = 0.718 . In the end (without considering further infections from outside 
the department), the epidemic last around 250 days, rendering 59% of students and 66% of staff infected. This 
prediction result reveals the necessity of imposing non-pharmaceutical measures at the current UK vaccination 
levels (see “Methods” for the exact percentages).

Optimal interventions for four objectives.  We now study the effect of non-pharmaceutical interven-
tions. Which interventions to implement, when and how strongly are all decisions made by the optimisation 
method to optimise the objective. We have selected four different optimisation objectives. In all scenarios, inter-
ventions are introduced 14 days after the initial exposure of 5 students and 2 staff members. In all scenarios, we 
impose the constraints that the epidemic must end within 120 days and that at least 94% of students and staff are 
not infected. Thus, the overall timeline is 134 days.

Minimum number of cases.  In this scenario the optimisation objective is formulated to minimise infections, 
even though this may require that all non-pharmaceutical interventions are implemented at full strength. The 
optimal trajectories are depicted in Fig. 3. The epidemic is completely ended at around the 60th day when the 
individuals are only in two states: susceptible and recovered. More than 97% of students and 96% of staff do not 
get infected in this scenario. From the figure we see that this result is achieved by implementing all interventions 
unreservedly, from mask wearing to mandatory quarantine. This reduces Rt to around 0.217. While initially 
there is a strong need for all countermeasures, after 30 days the optimal strategy relies mostly on distancing and 
masks. All cases have been quarantined by the 45th day. After approximately 60 days, the department reaches a 
steady state and the infection is stopped. Consequently, at this point the optimal strategy eases the interventions 
because the epidemic has been successfully contained.

Minimum intervention.  In this case the objective function is the norm of all control variables. As a conse-
quence, the aim here is to minimise the use of all interventions (including quarantine) while still satisfying the 
constraint that at least 94% of the population is not infected. The resulting optimal trajectories are shown in 
Fig. 4. The epidemic is ended with 4.3% of students and 6% of staff having been infected. With respect to before 
we can see that there is a decrease in the strength of the interventions. We can also note that there is an emerg-
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Figure 3.   Optimal trajectories for the minimum-case scenario. Optimal trajectories when the department 
spares no effort to contain the epidemic. (a) and (b) The epidemic evolution among students and staff, 
respectively. (c) The optimal strategies for mask wearing ( κm ), social distancing ( κd ), and environmental 
disinfection ( κe ). (d) The optimal strategies for mandatory quarantine on infected students ( κqy ) and infected 
staff ( κqs).
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ing ranking between the interventions. Figure 4c shows that the environmental disinfection is far less important 
than mask wearing. For what concerns mandatory quarantine shown in Fig. 4d, we notice again that isolation 
of infected students plays a more significant role in controlling the spread of COVID-19 than the isolation of 
staff. All five control interventions are strongest at the beginning of the epidemic, and then their magnitude is 
attenuated gradually over time.

Minimum use of non‑quarantine interventions.  In this case we want to minimize the use of masks, social dis-
tancing and environmental disinfection. As a result we expect an increase of the use of quarantines. The resulting 
optimal trajectories are shown in Fig. 5. As expected the figures show little use of non-quarantine interventions, 
and a strong use of quarantines. We stress that the primary objective of keeping 94% of the susceptible population 
infection free is maintained. Again, Fig. 5d demonstrates the higher importance of quarantine among students 
with respect to staff. This shows the predominant role played by student quarantine in controlling the epidemic.

Minimum quarantine.  In this scenario we want to minimise the use of quarantine, but we allow a strong use 
of mask wearing, social distancing and environmental disinfection. The resulting optimal trajectories are shown 
in Fig. 6. As a result, the quarantine control variables are zero and the other three interventions are major tools 
to resolve the epidemic in this scenario. Figure 6c clearly shows the primary role of mask wearing and social 
distancing in keeping the infection under control. The figure also shows that environmental disinfection in com-
parison play little role when strong mask wearing and social distancing are in place.

Discussion
The figures show an emerging behaviour: non-pharmaceutical interventions have different importance and this 
importance arises mathematically from the evolution of the epidemic. In a typical university department com-
posed of 1200 students and 150 staff, with a vaccination rate of 68% for students and 78.8% for staff (see “Meth-
ods”,28) we see that the implementation of non-pharmaceutical interventions is still fundamental to reduce the 
number of infections to one tenth of the number of infections appearing in a completely uncontrolled scenario.

The ranking that arises from the study is as follows: wearing masks is the most effective measure among the 
considered interventions. Keeping social distance is ranked close second. This priority of mask wearing is reason-
able in a university, where close contact is often unavoidable. Furthermore, we can also see that environmental 
disinfection seems to be far less necessary if both measures are strongly enforced. As for the enforcement of 
mandatory quarantines, the result yields that quarantine of symptomatic students is more significant than quar-
antine of staff. This ranking is robust with respect to model parameters. This is shown in the sensitivity study 
presented in the Supplementary Material.
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Figure 4.   Optimal trajectories for the minimum intervention scenario. Optimal trajectories when the 
department would like to minimise the enforcement of control measures. (a) and (b) The epidemic evolution 
among students and staff, respectively. (c) The optimal strategies for mask wearing ( κm ), social distancing ( κd ), 
and environmental disinfection ( κe ). (d) The optimal strategies for mandatory quarantine on infected students 
( κqy ) and infected staff ( κqs).
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Figure 5.   Optimal trajectories for minimum use of non-quarantine interventions. Optimal trajectories when 
the departments would like to minimise use of masks, social distancing and environmental disinfection. (a) and 
(b) The epidemic evolution among students and staff, respectively. (c) The optimal strategies for mask wearing 
( κm ), social distancing ( κd ), and environmental disinfection ( κe ). (d) The optimal strategies for mandatory 
quarantine on infected students ( κqy ) and infected staff ( κqs).
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Figure 6.   Optimal trajectories for the minimum quarantine scenario. Optimal trajectories when the 
department would like to minimise the enforcement of mandatory quarantines. (a) and (b) The epidemic 
evolution among students and staff, respectively. (c) The optimal strategies for mask wearing ( κm ), social 
distancing ( κd ), and environmental disinfection ( κe ). (d) The optimal strategies for mandatory quarantine on 
infected students ( κqy ) and infected staff ( κqs).
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Our ranking results between mask-wearing, social distancing, environmental disinfection and overall manda-
tory quarantine (or even lockdown) are similar to the results of other studies that consider the entire (country) 
population27,31. The two main differences here are that we separate the small-environment population into two 
groups and that the policy is decided algorithmically in an optimal manner, rather than by a human policymaker. 
Our results also provide the optimal variations in implementation strength of different measures within differ-
ent time periods.

From a practical perspective, the university should emphasize mask wearing and social distancing when on-
campus teaching is resumed, especially among students. The study also suggests that the university should invest 
particular effort in identifying and quarantining infected students. Therefore, our findings demonstrably reflect 
the importance of different non-pharmaceutical interventions and help assess the trade-off between high-quality 
teaching and limiting COVID-19 infections. This is crucial at a time in which universities are under pressure to 
increase on-campus activities.

Our study indicates that optimal control theory can be used to determine the optimal combination of non-
pharmaceutical interventions which do not just take into account the objective of no-infections, but also different 
goals, such as socioeconomic needs. In this regard, note that the optimal control idea can be applied to models 
that are completely different from the one we proposed, providing further flexibility and impact beyond this 
specific case study.

Our study also shows a gap in the epidemiological research regarding the evolution of the pandemic in small 
environments. There are plenty of small environments, such as primary schools, certain companies and nursing 
homes that have distinct populations (e.g. elderly and nurses) with homogeneous within-population characteris-
tics but different cross-population characteristics (e.g. age, immunity) and require design tools to assess the best 
interventions to be implemented in order to maximise in-person activities while keeping the infections under 
control. This idea could even be used in studies of diseases different from COVID-19.

We also point out that some practical factors are not explicitly considered in our study. Firstly, the model does 
not consider the infections brought from outside the campus. We omitted this aspect because we wanted to focus 
on the study of the priority of different mitigation measures. The model could be modified to take into account 
the scenario of a sudden change in the external environment by either introducing another virtual compartment 
or using recently published results on the use of hybrid models to address exactly the problem of abrupt changes 
in the populations32. Another limitation is that the input variables (the interventions) in our optimal control 
problem are continuous in magnitude. It may be difficult to give practical significance to the numerical values 
representing the interventions. However, we stress that the optimal trajectories are used here only to compare 
the relative importance of different interventions. Further research can be done on discretizing the magnitude of 
the input variables into specific levels that correspond to scientifically-defined interpretable practical meanings. 
Finally, we omitted the effects of contact tracing measures, the analysis of which entails a network model that 
portrays detailed disease transmission paths among the population33.

Methods
Uncontrolled university model.  One of the main premises of the work is that the model is constructed 
based on the mean-field assumptions on two groups of populations (students and staff) that have different char-
acteristics. Students in the university are a strongly homogeneous population. They attend lectures in consistent 
groups and often live in the same accommodation (student halls). Most of their social interactions are with 
other students, through students societies. Apart for some exceptions, students also have the same age (18–22 
years old), the same vaccination rates, the same response to the virus in terms of infection rates and morbidity. 
Moreover, the university is perfectly capable of imposing population-wide interventions (e.g. all students need 
to wear a mask). In contrast, staff are a bit less homogeneous population than students but share common char-
acteristics, while being very different from the student population. For instance, as the staff group is older, it is 
more prone to infection and therefore they have higher infection rates. Another example is that the “exposed” 
staff have higher probability to present symptoms and so have enhanced infectiousness once infected. Thus, the 
mean-field assumption is an acceptable approximation in this case and all these characteristic differences have 
been factored in the various parameters of the model.

The proposed double SEIQR model is described by 11 differential equations, 5 associated to the epidemic 
evolution of students, 5 associated to the epidemic evolution of staff, and 1 representing environmental infection. 
We first introduce, describe and analyse the uncontrolled model. In “Control of the university model” section  
we modify the model by introducing the control variables that represent non-pharmaceutical interventions. The 
double uncontrolled SEIQR model is described by
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where all model parameters are denoted by Greek letters with specific biological meanings. We now provide a 
detailed explanation of each parameter. We stress that this model is uncontrolled, so the values discussed below 
are for the baseline scenario, i.e. no intervention is implemented. Also, the parameters are firstly introduced for 
unvaccinated population and then modified according to the UK vaccination proportions.

•	 Individual infection rates βy , βs kβy , kβs
	    The individual infection rates represent the average number of susceptible individuals who can be infected 

by a virus carrier via direct contacts in unit time. βy indicates student-to-student and staff-to-student infection 
rates. βs indicates staff-to-staff and student-to-staff infection rates. In other words, we assume that student-
to-student and staff-to-student rates are the same and staff-to-staff and student-to-staff rates are the same. 
βs and βy are the infection rates of the asymptomatic compartments. Considering the age difference, it is 
reasonable to expect that βy < βs because staff are more likely to get infected. kβs and kβy are the infection 
rates of the symptomatic group. Since sneezing and coughing play a major role in the direct transmission of 
the virus, the symptomatic carriers generally have larger infection rates, i.e. k > 1 . Here it is assumed that k 
has the same value among students and staffs. Referring to the scenario 3 of pandemic planning produced 
by the CDC34, k is generally 4. However, in this confined environment case, k should be smaller because 
asymptomatic subjects can spread the virus more easily. We selected a value of k = 1.5 . According to the study 
conducted by Leontitsis et al.22, the general infection rate β is 0.1466. This value is expected to be larger in a 
confined space because of the higher number of direct contacts between people. In summary, putting together 
all these data and observations, the parameters have been selected as βy = 0.163 , βs = 0.225 , kβy = 0.2445 
and kβs = 0.3375.

•	 Environmental infection rates βcy , βcs
	    These parameters represent how many susceptible people are infected by the contaminated environment 

in unit time. They are properties of the virus in the environment. There is no clear value in the literature and 
we estimate the value of βcy to be 0.171 (based on the expected basic reproduction number). Moreover, it is 
reasonable to expect that the ratio βs/βy equals the ratio p = βcs/βcy . Then βcs = pβcy = 0.236.

•	 Probability of becoming symptomatic εy , εs
	    They are the inverse of the average incubation period. According to35, this average period is 5 days. Con-

sidering that staff are of higher age, we set εy = 1/5 = 0.2 and εs = 1/10 = 0.1.
•	 Probability of recovery from an asymptomatic state ξy , ξs
	    Similarly, the inverses of these quantities denote the average number of days spent by exposed/asympto-

matic subjects to recover (i.e. they present no symptom during the whole period). Referring to34, this portion 
accounts for 15% . Since εy = 0.2 and εs = 0.1 (corresponding to 85% of the population). Then ξy = 0.0353 
and ξs = 0.0176.

•	 Isolation rates ηy , ηs
	    These parameters denote the proportion of symptomatic individuals who are isolated due to serious illness 

or mandatory quarantine. Since we initially model the unrestricted situation (i.e. no quarantines), infected 
individuals are at this point isolated mainly due to hospitalization. According to the survey conducted and 
reported by36, the values are ηy = 0.06 and ηs = 0.106.
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= εsEs(t)− (ηs + ρs)Is(t)
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= ηyIy(t)− ϕyQy(t)

dQs(t)
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= ηsIs(t)− ϕsQs(t)

dRy(t)
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= ξyEy(t)+ ρyIy + ϕyQy(t)

dRs(t)
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= ξsEs(t)+ ρsIs + ϕsQs(t)

dC(t)

dt
= µy(Ey(t)+ kIy(t))+ µs(Es(t)+ kIs(t))− δC(t)
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•	 Recovery rates of infected individuals ρy , ρs 
	   ρ

−1
y  and ρ−1

s  indicate the average time for infected people which are not isolated to recover. If mandatory 
quarantine is not implemented, mild cases will not isolate. These two parameters mainly describe the recovery 
rate of this group. According to37, the average length of recovery is approximately 14 days. In mild cases, we 
set this length at 10 days for students, and 18 days for staff. Thus, ρy = 1/10 and ρs = 1/18.

•	 Recovery rates of quarantined individuals ϕy , ϕs
	    ϕ−1

y  and ϕ−1
s  indicate the average time for “quarantined” individuals to recover. In the baseline scenario this 

refers to hospitalised individuals. It may take six-nine weeks for severe cases to recover38. We set ϕy = 1/40 
while ϕs = 1/55.

•	 Virus shedding rates to the environment µy , µs , kµy , kµs

	    These parameters measure the spread of the virus from asymptomatic/symptomatic individuals to the 
environment, with the effects brought by symptomatic subjects being higher. Similarly to the case of βcy and 
βcs , there is no clear value in the literature for these parameters. In this “small environment” model we expect 
the values to be µy = µs = µ = 0.25 (based on the expected basic reproduction number).

•	 Virus decaying rate in the environment δ
	    This measures the speed of decay of the virus in the small environment. Since the airborne virus could 

stay in aerosol for up to 1 day and survive on the surface for longer39–41, this rate δ is set at 0.7.

We denote Nt to be the total population in the department. The total number of students is represented by Ny 
and number of staff is labelled by Ns . A summary of the meaning the parameters is given in Table 1.

These initial values refer to studies on the COVID-19 epidemic before vaccination. We now describe how 
the parameters are adapted to a vaccinated population. According to the UK data provided by28, about 68% 
of young adults between 18 and 24 years old have been vaccinated by the 1st November 2021. This quantity 
become 78.7% among people aged between 25 and 64. Since vaccines utilized in the UK can reduce COVID-
19 infections by around 65%29,30, we can see that the 68% vaccinated students will have 65% less probability of 
getting infected. The same happens to the 78.7% of staffs. Therefore, the average reductions in βy and βcy are 
0.68× (1− 0.65)+ 0.32 = 0.558 . The average reductions in βs and βcs are 0.787× (1− 0.65)+ 0.213 = 0.488 . 
Consequently, due to vaccinations in the current situation, infection rates in this university model with mixed 
vaccinated/unvaccinated population becomes: βy = 0.0910 , βcy = 0.0954 , βs = 0.1098 , and βcs = 0.1152 . Since 
vaccines can also reduce the probability of symptomatic infections and of severe illness42, other parameter values 
are also tuned accordingly. This adjustment changed the R0 from 2.50 (totally unvaccinated and no interventions) 
to 1.40 (mixed population but still no intervention). Since it is still greater than 1, the COVID-19 epidemic will 
still develop in the university model if no other control or prevention measures are introduced. Accordingly, the 
derived parameter values of the model before and after vaccinations are summarised in Table 2.

Analysis of the uncontrolled university model.  Equilibrium points.  Denote x = [Sy , Ss, Ey , Es, Iy ,
Is, Qy , Qs, Ry , Rs, C]⊤ . By equating all derivatives in (1) to zero, it is easy to determine the equilibria 
x̄ = [S̄y , S̄s , 0, 0, 0, 0, 0, 0, R̄y , R̄s , 0] , where

These equilibria imply that at the end of pandemic, the individuals are either susceptible to or recovered from 
the disease.

Basic reproduction number.  The basic reproduction number is a crucial criterion to measure the average num-
ber of susceptible people that could potentially be infected by a primary case43. This parameter is highly depend-
ent on the fraction of the susceptible population and it provides information about the potential of the epidemic 
outbreak. If R0 < 1 the disease will gradually disappear. If R0 > 1 increasingly more people will be infected.

(2)S̄y + S̄s + R̄y + R̄s = 1, S̄y ≥ 0, S̄s ≥ 0, R̄y ≥ 0, R̄s ≥ 0

Table 1.   Model parameter definitions.

Parameters Definitions

βy , βs Infection rate for asymptomatic students/staff to susceptible students/staff (including cross infections)

kβy , kβs Infection rate for symptomatic students/staff to susceptible students/staff (including cross infections)

βcy , βcs Infection rate from uncleaned environment to susceptible students/staff

εy , εs Probability that an asymptomatic student/staff becomes symptomatic

ξy , ξs Probability that an asymptomatic student/staff recovers without symptoms

ηy , ηs Isolation rate of symptomatic student/staffs

ρy , ρs Recovery rate of infected student/staffs

ϕy , ϕs Recovery rate of quarantined students/staffs

µy , µs Environmental shedding rate by asymptomatic students/staffs

kµy , kµs Environmental shedding rate by symptomatic students/staffs

δ Decaying rate of virus in the environment
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Derivation of the basic reproduction number for the uncontrolled university model is based on the next 
generation matrix method described by44–46. The university model (1) has five infectious compartments: Ey , Es , 
Iy , Is and C. We collect these in the infection state xif = [Ey ,Es , Iy , Is ,C]⊤ . Let F  denote the rate of increase of 
secondary cases and V denote the progression rate. Accordingly, xif  obeys the equation

where F  and V given by

and

We linearise Eq. (3) around the equilibrium and we denote the Jacobians of F  and V as F and V, respectively. 
Thus, we obtain

where

and

(3)ẋif = F − V
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(6)ẋif = (F − V)xif

(7)F =











S̄y βy S̄y βy S̄y βy k S̄y βy k S̄y βcy
S̄s βy p S̄s βy p S̄s βy k p S̄s βy k p S̄s βcy p

0 0 0 0 0

0 0 0 0 0

µy µs kµy kµs 0











(8)V =











εy + ξy 0 0 0 0

0 εs + ξs 0 0 0

−εy 0 ηy + ρy 0 0

0 − εs 0 ηs + ρs 0

0 0 0 0 δ











.

Table 2.   Model parameter values.

Parameters Before vaccination After vaccination

βy 0.163 0.0910

βs 0.225 0.1098

k 1.5 1.5

βcy 0.171 0.0954

βcs 0.236 0.1152

εy 0.2 0.2

εs 0.1 0.1

ξy 0.0353 0.0857

ξs 0.0176 0.0429

ηy 0.06 0.012

ηs 0.106 0.0212

ρy 0.1 0.125

ρs 0.0556 0.0833

ϕy 0.025 0.0714

ϕs 0.0182 0.0714

µy 0.25 0.25

µs 0.25 0.25

δ 0.7 0.7
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Denoting σy = ηy + ρy and σs = ηs + ρs , the next generation matrix K is therefore derived as

The obtained matrix K is nonnegative and has rank 2. In particular, it has three zero eigenvalues and two positive 
eigenvalues. According to44, R0 is the spectral radius of K, i.e. its largest eigenvalue. By computing det(�I − K) , 
the characteristic polynomial is

We recall that we have assumed that µy = µs = µ , which means that students and staff have equal rates of 
spreading the virus into the environment. The two non-zero eigenvalues can be derived by finding the roots of 
the polynomial

Denote

Then

Since the constants a and c are both positive, the quadratic equation has two real roots and R0 will be the larger 
one. Therefore, we can express R0 as

In the next section we show how R0 is related to the stability of the equilibrium point.

Stability analysis. 

Proposition 1  If R0 < 1 , the equilibrium points x̄ of the uncontrolled university model (1) is asymptotically stable.
Proof  Model (1) can be reformulated into a feedback interconnection. Compartments Ey , Es , Iy , Is , Qy , Qs , C form 
a positive linear subsystem with output feedback topology. Defining xl = [Ey ,Es , Iy , Is ,Qy ,Qs ,C]⊤ , ys = Csxl(t) , 
yR = CRxl(t) , the subsystem can be formulated as
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	�  �

where ry = εy + ηy , rs = εs + ηs . Since output yR does not contribute to the variations of the state variable xl , 
we can represent the overall system dynamics by the output feedback loop as

Derivatives of the remaining compartments can be calculated as

Note that the system has a time-varying feedback Ks(t) . Around the equilibrium x̄ , the system behaviour is 
determined by using the constant feedback term K̄s as

Therefore, the dynamics of the original model is equivalent to that of this closed-loop system. To study its stabil-
ity, we firstly derive the closed-loop system matrix Acl as

To determine its closed-loop poles, we compute its characteristic equation, i.e. det(�I − Acl) . Since all parameters 
are positive, Acl must have two negative eigenvalues at −ϕy and −ϕs . The remaining five eigenvalues are the roots 
of the polynomial p5(�):

where we have defined p̄ = S̄sp
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 and used that µy = µs = µ according to the previous analysis. The polynomial 

is finally derived as
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Ṙs(t)

]

= yR(t).

(21)K̄s =
[

S̄y 0

0 S̄s

]

ys(t).

(22)

Acl = A+ BKsCs

=



















S̄y βy − ry S̄y βy S̄y βy k S̄y βy k 0 0 S̄y βcy
S̄s βy p S̄s βy p− rs S̄s βy k p S̄s βy k p 0 0 S̄s βcy p
εy 0 − σy 0 0 0 0

0 εs 0 − σs 0 0 0

0 0 ηy 0 − ϕy 0 0

0 0 0 ηs 0 − ϕs 0

µy µs kµy kµs 0 0 − δ



















.

(23)

p5(�) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

�+ ry − S̄y βy − S̄y βy − S̄y βy k − S̄y βy k − S̄y βcy
−p̄

(

�+ ry
)

�+ rs 0 0 0

−εy 0 �+ σy 0 0

0 − εs 0 �+ σs 0

−µy − µs − kµy − kµs δ + �

∥

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∥

�+ ry − S̄y βy − �− ry 0 0 − S̄y βcy
−p̄

(

�+ ry
)

�+ rs + p̄
(

�+ ry
)

− k (�+ rs) 0 0

−εy εy �+ σy − �− σy 0

0 − εs εs k �+ σs 0

−µ 0 0 0 δ + �

∥

∥

∥

∥

∥

∥

∥

∥

∥

(24)p5(�) = �
5 + α4�

4 + α3�
3 ++α2�

2 + α1�+ α0,



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13039  | https://doi.org/10.1038/s41598-022-16532-5

www.nature.com/scientificreports/

The conditions to obtain a stable equilibrium point can be determined using the Routh-Hurwitz stability crite-
rion. The Routh table is given in Table 3.

From the Routh-Hurwitz stability criterion follows that the equilibrium point is asymptotically stable if and 
only if α4 > 0 , b31 > 0 , b21 > 0 , b11 > 0 and α0 > 0 . We evaluate these coefficients numerically for different 
values of R0 . The results are shown in Table 4 for R0 < 1 and in Table 5 for R0 > 1 . Since α0 > 0 in Table 4 and 
α0 < 0 in Table 5, the Routh-Hurwitz stability criterion confirms that the R0 found in (14) is consistent with the 
expected epidemic dynamics.

Control of the university model.  Formulation of the controlled university model.  In this study we con-
sider five non-pharmaceutical interventions that the university can implement. 

(25)
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− S̄s βy δ p ry − S̄s βy δ p σs − S̄s βy δ p σy − S̄s βcy µ p ry − S̄s βcy µ p σs

− S̄s βcy µ p σy − S̄s βy p ry σs − S̄s βy p ry σy − S̄s βy p σs σy

− S̄s βy δ εs k p− S̄s βcy εs kµ p− S̄s βy εs k p ry − S̄s βy εs k p σy

α1 = δ rs ry σs + δ rs ry σy + δ rs σs σy + δ ry σs σy + rs ry σs σy − S̄y βy δ rs σs

− S̄y βy δ rs σy − S̄y βy δ σs σy − S̄y βcy µ rs σs − S̄y βcy µ rs σy

− S̄y βcy µσs σy − S̄y βy rs σs σy − S̄y βy δ εy k rs − S̄y βy δ εy k σs

− S̄y βcy εy kµ rs − S̄y βcy εy kµσs − S̄y βy εy k rs σs − S̄s βy δ p ry σs

− S̄s βy δ p ry σy − S̄s βy δ p σs σy − S̄s βcy µ p ry σs − S̄s βcy µ p ry σy

− S̄s βcy µ p σs σy − S̄s βy p ry σs σy − S̄s βy δ εs k p ry − S̄s βy δ εs k p σy

− S̄s βcy εs kµ p ry − S̄s βcy εs kµ p σy − S̄s βy εs k p ry σy

α0 = δ rs ry σs σy − S̄y βy δ rs σs σy − S̄y βcy µ rs σs σy − S̄y βy δ εy k rs σs

− S̄y βcy εy kµ rs σs − S̄s βy δ p ry σs σy − S̄s βcy µ p ry σs σy

− S̄s βy δ εs k p ry σy − S̄s βcy εs kµ p ry σy

Table 3.   Routh table.

�
5 1 α3 α1

�
4

α4 α2 α0

�
3 b31 = − 1

a4
(α2 − α4α3) b32 = − 1

a4
(α0 − α1α4) 0

�
2 b21 = − 1

b31
(α4b32 − α2b31) α0 0

�
1 b11 = − 1

b21
(α0b31 − b32b21) 0 0

�
0

α0 0 0

Table 4.   Values of the first column of the Routh table when R0 < 1.

R0 0.9957 0.9966 0.9974 0.9983 0.9992

α4 1.3087 1.3086 1.3085 1.3084 1.3083

b31 0.4609 0.4608 0.4607 0.4606 0.4605

b21 0.0648 0.0648 0.0647 0.0647 0.0646

b11 0.0036 0.0036 0.0036 0.0036 0.0036

α0 2.2031e−06 1.7561e−06 1.3091e−06 8.6205e−07 4.1504e−07
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1.	 Compulsory mask wearing: how strongly this measure is implemented is represented by the normalised 
variable 0 ≤ κm ≤ 1.

2.	 Keep safe social distance: how strongly this measure is implemented is represented by the normalised vari-
able 0 ≤ κd ≤ 1.

3.	 Environment disinfection: how strongly this measure is implemented is represented by the normalised vari-
able 0 ≤ κe ≤ 1.

4.	 Mandatory quarantines: how strongly these measures are implemented is represented by the normalised 
variables 0 ≤ κqy ≤ 1 (for students) and 0 ≤ κqs ≤ 1 (for staff).

A group of five variables is initially defined to represent the reduction factors in the infection rates, shedding 
rates, environmental decaying rate, and isolation rates. Denoting these factors as u = [up, um, ue , uqy , uqs]⊤ , 
the university model at this stage is expressed as

Note that up , um , ue , uqyηy , and uqsηs should vary within [0, 1].
Since a reduction factor can be influenced by multiple interventions, we need to identify the relationship 

between the reduction factors (u’s) and intervention variables ( κ’s). 

(26)
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dSy(t)

dt
= −{(1− up)βy[Ey(t)+ kIy(t)+ Es(t)+ kIs(t)]

− (1− um)βcyC(t)}Sy(t)
dSs(t)

dt
= −{(1− up) pβy

�

Es(t)+ kIs(t)+ Ey(t)+ kIy(t)
�

− (1− um) pβcyC(t)}Ss(t)
dEy(t)

dt
= {(1− up)βy[Ey(t)+ kIy(t)+ Es(t)+ kIs(t)]

+ (1− um)βcyC(t)}Sy(t)− (εy + ξy)Ey(t)

dEs(t)

dt
= {(1− up) pβy

�

Es(t)+ kIs(t)+ Ey(t)+ kIy(t)
�

+ (1− um) pβcyC(t)}Ss(t)− (εs + ξs)Es(t)

dIy(t)

dt
= εyEy(t)− uqyηyIy(t)

dIs(t)

dt
= εsEs(t)− uqsηsIs(t)

dQy(t)

dt
= uqyηyIy(t)− ϕyQy(t)

dQs(t)

dt
= uqsηsIs(t)− ϕsQs(t)

dRy(t)

dt
= ξyEy(t)+ ϕyQy(t)

dRs(t)

dt
= ξsEs(t)+ ϕsQs(t)

dC(t)

dt
= (1− um) µ (Ey(t)+ kIy(t)+ Es(t)+ kIs(t))− ue δ C(t)

Table 5.   Values of the first column of the Routh table when R0 > 1.

R0 1.0001 1.0009 1.0018 1.0027 1.0036

α4 1.3082 1.3081 1.3079 1.3078 1.3077

b31 0.4604 0.4603 0.4602 0.4601 0.4600

b21 0.0646 0.0646 0.0646 0.0645 0.0645

b11 0.0036 0.0036 0.0036 0.0036 0.0036

α0
− 3.1972e−08 − 4.7898e−07 − 9.2600e−07 − 1.3730e−06 − 1.8200e−06
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1.	 Reduction of interpersonal infection rates βy and βs The person-to-person infection rates are directly influ-
enced by two measures: wearing masks and keeping social distance. Wearing masks could reduce the prob-
ability of infections during contacts while social distancing could reduce the number of direct contacts 
between individuals. Study conducted by Karaivanov et al.47 argued that the mandatory mask-wearing policy 
in confined spaces could reduce the number of infected cases by up to 40% weekly. Furthermore, Jarvis et al.48 
conducted a survey which showed that the physical distancing could reduce the number of direct contacts 
by 74% . However, since this survey might have selection and recall bias, the actual result should be lower 
than 74% to obtain a conservative estimate. In this case, we set the maximum reduction at 65% . Hence, 
1− up = (1− 0.4κm)(1− 0.65κm).

2.	 Reduction of shedding rates and environment-to-person infection rates: µy , µs , βcy , βcs Shedding rates as well 
as infections due to unclean environment can be reduced by the use of masks. According to laboratory-based 
investigations by49,50, masks could block approximately 50% to 70% droplets and aerosol, greatly reducing the 
transmission of virus. In this case, we set the maximum reduction of shedding rate to be 60% for a conserva-
tive estimate. Therefore, 1− um = 1− 0.6κm.

3.	 Enhancement of virus environmental decaying rate δ The environmental decaying rate could be magnified by 
disinfection of the confined space. Recall that the uncontrolled decaying rate was δ = 0.7 . It is hard to determine 
how much this rate is increased. A conservative estimate is that the rate is increased at the maximum by 30% , 
yielding a maximum new rate ueδ = 0.91 . The linear relationship can be finally defined as ue = 1+ 0.3κe.

While the analysis above is derived from considerations extracted from the literature, these still assumed an 
ideal enforcement of the interventions. Since the university cannot guarantee full compliance, we limit κm , κd , 
and κe to 70% of their values. 

4.	 Quarantine enhancement Recall that in model (1) the quarantined populations were simply equivalent to the 
populations who developed serious symptoms and their rate were ηy and ηs . To consider the effects of manda-
tory quarantines we replace ηy and ηs by uqyηy and uqsηs , respectively. (uqyηy)−1 and (uqsηs)−1 now indicate the 
average time that unisolated symptomatic students/staff stay in campus before being detected by the university. 
We set these values to 2, meaning that the university takes two days in average to detect and isolate infected 
individuals after their symptoms develop. Thus, the maximum values of (uqsηs)−1 and (uqsηs)−1 are both 
0.5. These values correspond to the situation where the enforcement of mandatory quarantines reaches the 
strongest degree, which means that κqy and κqs are 1. On the contrary, when mandatory quarantines are not 
implemented, i.e. κqy = κqs = 0 , we want that the resulting quarantine rates uqyηy and uqsηs are still ηy and ηs , 
respectively. These relations are formulated as uqyηy = (0.5− ηy)κqy + ηy and uqsηs = (0.5− ηs)κqs + ηs.

In summary, the following relations hold

Substituting these relationships into Eq. (26), we obtain the final controlled university model

(27)

1− up = (1− 0.4 · 0.7κm)(1− 0.65 · 0.7κd)
1− um = 1− 0.6 · 0.7κm

ue = 1+ 0.3 · 0.7κe
uqyηy = (0.5− ηy)κqy + ηy

uqsηs = (0.5− ηs)κqs + ηs .
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In this model, the variables κ = [κm, κd , κe , κqy , κqs]⊤ are the control variables that need to be optimised.

Formulation of the optimal control problem.  Now we formulate the optimal control problem that, once solved, 
provides the optimal trajectories that give the best combination of interventions to contain the epidemic within 
the university. The optimal control problem is defined as

where xtar represents the target state vector, � · �H/Q/R indicates the Euclidean matrix norm weighted by H/Q/R 
and the square matrices H, Q and R contain the weights for the final states, running states and running control 
variables, respectively. The values of xtar and the weights are changed depending on the scenario that we need 
to solve (see next section). The problem has also constraints on both states and control variables. In fact, we 
need that the states lie between 0 and 1. Thus, even without further requirement the state constraints are at least 
xmin = xf ,min = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤ and xmax = xf ,max = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]⊤ . Simi-
larly, the lower bounds of the control variables should be κmin = [0, 0, 0, 0, 0]⊤ while their upper constrains are 
κmax = [1, 1, 1, 1, 1]⊤ . The initial condition sets the starting point of the system. We assume that the university 
starts to react two weeks after the first exposed subjects appear among students or staff. Thus, we first run the 
simulation of the original un-controlled model for 14 days and get the resulting state values on day 14, namely 
x14 . Then this state is used as the initial condition for the optimisation problem, namely x(0) = x14 . We finally 
require that the epidemic is eliminated within 120 days, so t0 = 0 and tf = 120.

Implementation of four different scenarios.  Balancing the trade-off between controlling the spread of COVID-
19 and resuming the normal campus activity is the main question considered in this study. According to differ-
ent trade-off ’s between these two objectives, four scenarios are studied: minimum number of cases, minimum 
intervention, minimum non-quarantine interventions, and minimum quarantine interventions. Each scenario 
corresponds to different weight matrices and different path constraints.

For the first scenario (minimum number of cases), the university does not impose any limitations on the 
strength of the interventions to lead to the fastest mitigation of the epidemic. Mathematically, the controller is 

(28)
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dSy(t)

dt
= −{(1− 0.28κm)(1− 0.455κd)βy[Ey(t)+ kIy(t)+ Es(t)+ kIs(t)]

− (1− 0.42κm)βcyC(t)}Sy(t)
dSs(t)

dt
= −{(1− 0.28κm)(1− 0.455κd) pβy

�

Es(t)+ kIs(t)+ Ey(t)+ kIy(t)
�

− (1− 0.42κm) pβcyC(t)}Ss(t)
dEy(t)

dt
= {(1− 0.28κm)(1− 0.455κd)βy[Ey(t)+ kIy(t)+ Es(t)+ kIs(t)]

+ (1− 0.42κm)βcyC(t)}Sy(t)− (εy + ξy)Ey(t)

dEs(t)

dt
= {(1− 0.28κm)(1− 0.455κd) p βy

�

Es(t)+ kIs(t)+ Ey(t)+ kIy(t)
�

+ (1− 0.42κm) pβcyC(t)}Ss(t)− (εs + ξs)Es(t)

dIy(t)

dt
= εyEy(t)− [(0.5− ηy)κqy + ηy + ρy]Iy(t)

dIs(t)

dt
= εsEs(t)− [(0.5− ηs)κqs + ηs + ρs]Is(t)

dQy(t)

dt
= [(0.5− ηy)κqy + ηy]Iy(t)− ϕyQy(t)

dQs(t)

dt
= [(0.5− ηs)κqs + ηs]Is(t)− ϕsQs(t)

dRy(t)

dt
= ξyEy(t)+ ρyIy(t)+ ϕyQy(t)

dRs(t)

dt
= ξsEs(t)+ ρsIs(t)+ ϕsQs(t)

dC(t)

dt
= (1− 0.42κm) µ (Ey(t)+ kIy(t)+ Es(t)+ kIs(t))

− (1+ 0.21κe) δ C(t).

(29)

J∗ = min
x(·p),κ(·p)

J = �x(tf )− xtar�2H +
∫ tf

t0

�x(τ )− xtar�2Q + �κk(τ )�2R dτ

s.t. ẋ(t) = f (x(t), κ(t), t),

xmin ≤ x(t) ≤ xmax,

xf ,min ≤ x(tf ) ≤ xf ,max,

κmin ≤ κ(t) ≤ κmax,

x(0) = x14,
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designed to maximise the number of susceptible people during the whole period, i.e., the proportions of the 
susceptible students/staff are maintained as close to one as possible. In contrast, the values of the other compart-
ments need to be as close as possible to zero in this scenario. Therefore, we set the target state as

Meanwhile, the weight matrices are set as

where in the matrix R we use 10−2 instead of 0 to improve numerical stability of the solver. The constraints on 
both states and control variables remain the same as the basic requirements discussed before, namely

For the other three scenarios, we require that the number of susceptible students and staff cannot go below 94% 
of the total population (i.e. the number of infected individuals is equal or below 6% ). We can easily achieve this 
by setting more restrictive state constraints. Consequently, we do not need to use the weights H and Q (also 
because it is difficult to intuitively understand the meaning of the weights on the states in these scenarios). 
Hence, we select H = 0 and Q = 0 and xtar is not used. Additionally, to ensure that the epidemic is completely 
concluded after 134 days, the number of exposed and infected individuals should become zero at the final state. 
Recall that Ny , Ns , and Nt indicate the total number of student, staff, and the total population, respectively. Then 
the constraints on states should be

while the input constraints remain unchanged

The only difference in the formulation of the other three scenarios is the value of the weight matrix R. In the 
minimum intervention scenario, the solver aims to minimize the total norm of the control signal while satisfying 
the 94% constraint. Thus, all control variables are heavily weighted and the matrix R is selected as

In the scenario of minimisation of non-quarantine interventions, the strength of first three interventions (wearing 
masks κm , keeping social distance κd and disinfecting the environment κe ) are minimised, while the quarantines 
are not. In this situation, the matrix R becomes

In the minimum quarantine scenario, the norm of quarantine rates for the infected students ( κqy ) and staff ( κqs ) 
are minimised. Since mandatory quarantine has the largest impact on campus activities, this scenario aims to 
find how the spread can be minimised while avoiding quarantine enforcement. Hence, the matrix R is

Data availability
All model’s parameters taken from the literature are opportunely referenced in the main text. No further data 
is used.

Code availability
The code is available at https://​github.​com/​Zirui​Niu/​Unive​rsity_​Epide​mic_​Model_​with_​Contr​ol.​git.

(30)xtar = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤.

(31)

H = diag([100; 100; 0; 0; 0; 0; 0; 0; 0; 0; 0])
Q = diag([100; 100; 0; 0; 0; 0; 0; 0; 0; 0; 0])
R = diag([10−2; 10−2; 10−2; 10−2; 10−2]).

(32)

xmin =[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

xmax =[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]⊤

xf ,min =[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

xf ,max =[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]⊤

κmin =[0, 0, 0, 0, 0]⊤

κmax =[1, 1, 1, 1, 1]⊤.

(33)

xmin = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

xmax = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]⊤

xf ,min = [
0.94Ny

Nt
,
0.94Ns

Nt
, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤

xf ,max = [1, 1, 10−4, 10−4, 10−4, 10−4, 1, 1, 1, 1, 1]⊤,

(34)
κmin = [0, 0, 0, 0, 0]⊤

κmax = [1, 1, 1, 1, 1]⊤.

(35)R = diag([100; 100; 100; 100; 100]).

(36)R = diag([100; 100; 100; 10−2; 10−2]).

(37)R = diag([10−2; 10−2; 10−2; 100; 100]).

https://github.com/ZiruiNiu/University_Epidemic_Model_with_Control.git
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