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Abstract

Biomechanical testing methodologies for the spine have developed over the past

50 years. During that time, there have been several paradigm shifts with respect to

techniques. These techniques evolved by incorporating state-of-the-art engineering

principles, in vivo measurements, anatomical structure-function relationships, and the

scientific method. Multiple parametric studies have focused on the effects that the

experimental technique has on outcomes. As a result, testing methodologies have

evolved, but there are no standard testing protocols, which makes the comparison of

findings between experiments difficult and conclusions about in vivo performance

challenging. In 2019, the international spine research community was surveyed to

determine the consensus on spine biomechanical testing and if the consensus opinion

was consistent with the scientific evidence. More than 80 responses to the survey

were received. The findings of this survey confirmed that while some methods have

been commonly adopted, not all are consistent with the scientific evidence. This

review summarizes the scientific literature, the current consensus, and the authors'

recommendations on best practices based on the compendium of available evidence.
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1 | INTRODUCTION

In vitro cadaveric tissue, testing plays a crucial role in the understand-

ing of human spinal biomechanics, and can be an effective means for

predicting the in vivo response to mechanical stimuli or determining

the effects of disease or clinical interventions. However, the ability for

in vitro tests to have clinical relevance and predict in vivo perfor-

mance is predicated on the quality of the study design and

experimental techniques. Many factors can introduce artifacts into

the data and outcomes. Careful attention to experimental methods is

necessary to minimize the differences between the in vitro experi-

mental conditions and the analogous in vivo environment to yield data

with high predictive value.

Biomechanical testing methodologies for spinal motion segments

have developed over the past 50 years. During that time, there have

been several paradigm shifts in techniques, which evolved by
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incorporating state-of-the-art engineering principles, in vivo measure-

ments, anatomical structure-function relationships, and the scientific

method. While the goal of innovative testing methods is to enhance

clinical relevance, the evolution of techniques has made the compari-

son of results across studies more complex. As a result, there has been

a push toward harmonization of methods to allow for the comparison

of findings between experiments.1,2

Despite previous efforts to define best practices for in vitro bio-

mechanical testing of spinal motion segments, there remains a wide

variation in experimental approaches. However, multiple parametric

studies have demonstrated that experimental techniques can signifi-

cantly affect outcomes. Because of the lack of uniformity in experi-

mental methods, we conducted a review of the literature to

summarize the scientific evidence related to best practices in mechan-

ical testing of spinal motion segments. We also surveyed spine

researchers to gauge current opinions on the best methods used for

testing motion segment biomechanics.

2 | METHODS

A literature review was conducted using the keywords “spine biome-

chanics.” Articles, which included in vitro testing from 1990 to 2019,

were reviewed in the following categories: Sample Selection and

Preparation, Pre-Testing Measures (eg, measuring disc anatomy

before testing), Initial Conditions, Testing Environment, Test Condi-

tions, Cyclic Testing, Viscoelasticity, and Study Design (Figure 1).

Based on inconsistencies in experimental techniques found in the litera-

ture, survey questions were developed to determine if there is a consensus

on techniques for biomechanical testing of spinal motion segments. While

the literature review broadly encompasses motion segment biomechanics,

survey questions specifically focused on methods used for human cadaver

testing (Google Forms; Supporting Information S1).

The survey link was emailed to members of the Orthopaedic

Research Society Spine Section, The International Society for the

Study of the Lumbar Spine, and the broader international spine bio-

mechanics research community with a request to forward the survey

among colleagues.

Scientific evidence from the literature review was compared to

survey responses for each category. Based on the compendium of the

available evidence, the authors made recommendations on best prac-

tices for each sub-category.

3 | RESULTS

3.1 | Summary of survey responses

There were 83 responses to the survey, which included 57 researchers

(engineers or scientists), 23 physicians, and 3 responses from other

disciplines. From this cohort, 10 researchers, 10 physicians, and 3 from

other disciplines had not performed in vitro biomechanics research

were excluded from the study, leaving 60 respondents with experi-

ence related to spine biomechanics. Results from the specific survey

questions are reported in each relevant section below.

3.2 | Summary of the literature

3.2.1 | Sample selection

Appropriate specimen selection is a critical factor for in vitro biome-

chanical testing of human cadaveric tissue. Factors such as the extent

of degeneration, specimen age, sex, or spinal level can confound

results significantly.3 Selection of nonhuman specimens can eliminate

some of the variability inherent in human cadaveric specimens, but

F IGURE 1 Multiple parameters
related to experimental methods can
affect the measured mechanical
properties of spinal motion segments
during in vitro testing
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may also introduce additional confounding factors based on the dif-

ferences in anatomy and tissue properties between human and non-

human species.4

While single-level specimens are typically used to characterize

the effect of pathology or therapy on the spine, only multi-segment

constructs can be used to assess the more global effects (such as adja-

cent level disease) of an intervention on the kinematics and mechanics

of the spine.

Sample selection: extent of degeneration

Intervertebral disc: Healthy discs respond to loading differently than

pathologic discs. The extent of disc pathology affects inherent motion

segment mechanical properties, including ROM, stiffness, and neutral

zone.5 Mechanical properties have been measured intra-operatively

using a sensor-instrumented vertebral distractor (spinal stiffness

gauge) which flexes the spine while measuring resistance to motion.

Results demonstrated a nonlinear correlation between motion seg-

ment stiffness and degeneration.6,7 Initially, motion segment stiffness

decreases in early stages of degeneration,8 but later increases with

more advanced stages of degeneration.9-13 With increasing degenera-

tion, the loss of proteoglycans results in a desiccated, less mobile disc,

while osteophyte formation and hypertrophy of ligaments may later

increase motion segment stiffness.12

The response of a motion segment to compressive axial load is

also affected by the extent of disc degeneration.14,15 In his pioneering

work, Perey showed that the distribution of forces through the inter-

vertebral disc to the adjacent endplate is dependent on the disc's abil-

ity to develop internal hydrostatic pressure.16 A healthy disc, when

loaded axially, develops hydrostatic pressure in the nucleus pulposus,

which results in tensile forces along with the circumferential direction

of the annulus fibrosus. The net compressive force imposed on the

endplates adjacent to the annulus is subsequently reduced.14 In

degenerated discs, hydrostatic pressure is reduced due to a loss of

glycosaminoglycans in the nucleus and inner annulus and applied com-

pressive forces are transmitted directly to the endplates, which affects

the response of the motion segment to axial loading.16,17 In this way,

the amount of glycosaminoglycans in the disc affects stress and strain

distribution and motion segment mechanical behavior.18-20

Concentric and radial tears and rim lesions are common in

degenerated discs,21-23 and there is a correlation between loss of disc

height and annular fissures in degenerative discs.7 These changes in

disc structure result in a decrease in torsional stiffness and an increase

in flexion and extension stiffness when lesions are present.7,23 Ante-

rior rim lesions reduce peak moments in extension, lateral bending,

and axial rotation.24 Torsional stiffness is also affected with increasing

degeneration resulting in increased torsional stiffness.25 In the lumbar

spine, there is an increase in axial rotation and lateral bending range

of motion (ROM) with an increased grade of degeneration.7,26 In the

cervical spine, degenerative discs have a smaller cross-sectional area

and a more posterior instantaneous axis of rotation than their healthy

counterparts,27 which affects both the kinematics and mechanics of

the motion segment.

Degree of disc degeneration affects compressive viscoelastic

properties, under dynamic and static creep loading conditions.28-30

The viscous modulus and viscosity are reduced with increasing degen-

eration. When subjected to dynamic loading, healthy discs are much

more deformable and lose more height than degenerated discs, likely

due to fluid egress.31 Radial tears have been shown to reduce the hys-

teresis of the disc in flexion/extension and lateral bending.24

In a compromised disc, such as after nucleotomy, both disc pres-

sure and endplate strains decrease.32 The distribution of endplate

strains is also altered in a compromised disc.32 Thus, the response of

the disc to mechanical loading is different depending on the extent of

degeneration.

Spinal ligaments: Similar relationships have been found between

aging, degeneration, and the mechanical properties of spinal liga-

ments. The stress at rupture and modulus of elasticity of the

ligamentum flavum decrease linearly with age33 and the stress at the

failure of both the anterior34 and posterior35 longitudinal ligament

also decreases with age. The mechanical properties (strength, modu-

lus) of spinal ligaments also decrease with increasing disc degenera-

tion and facet pathology.34,36 In the initial stages of spinal

degeneration, there is a decrease in ligament stiffness and strength,

however, with advanced degeneration, hypertrophy of the ligaments

can increase both stiffness and strength.36

Facet joints: If the facets are altered during the preparation of a

specimen or if they are pathologic, the mechanical properties of the

motion segment changes significantly, as facet joints contribute sig-

nificantly to motion segment mechanical properties.37-39 Pathology

of the facet joints affects not only stability and stiffness but also

the motion coupling characteristics of the cervical spine.40 Approxi-

mately 100% of cervical spine specimens over age 50 years have

facet pathology, and similar rates have been noted in the lumbar

spine.41,42

In the lumbar spine, facet joints contribute primarily to stability in

axial rotation and, to a lesser extent, lateral bending. Facet joints make

a substantial contribution to anterior shear load-bearing during the

initial 2 mm of displacement, and their contribution increases with

increasing displacement.43 Changes in the orientation of the facet

joints affects spine kinematics and mechanics.44,45

Bone: There is a broad range of bone mineral density (BMD)in

vertebrae, which correlates strongly with age,46 where BMD and bone

mechanical properties decline with increasing age.23 These decreases

are significant because small differences in BMD can cause significant

differences in the likelihood of fracture under load.46,47 BMD is a key

factor in dictating the failure load of a motion segment.48 BMD also

affects the mechanical properties of the bone-implant interface.48 An

implant may be predisposed to subsidence or loosening if tested in

osteopenic bone, as the ultimate strength and fatigue properties of

the bone are strongly correlated with BMD.46,49,50 Quantitatively,

increased bone mineral content has a protective effect whereby a 1 g

increase in bone mineral content leads to a 12% increase in cycles to

failure.46 In torsion, the maximum load at failure of a motion segment

is affected by BMD.25

COSTI ET AL. 3 of 25



Sample selection: specimen age

Age has a very significant effect on motion segment mechanical prop-

erties.50,51 Both static16 and dynamic24 mechanical properties depend

on age. Age also correlates to BMD, which affects the mechanical per-

formance of individual vertebrae and motion segments.46,52 Compres-

sive strength of vertebrae is reduced to approximately half in 60- to

79-year-old specimens relative to 20- to 39-year-old specimens.53

Spinal ligament mechanical properties also correlate to age with a

decrease in tensile strength and modulus with increasing age.36

The extent of degeneration correlates with age that further

affects mechanical properties.6 Disc size and height also change with

age.54 Tensile stiffness of the disc is decreased significantly in 60- to

79-year-old specimens relative to 20- to 39-year-old donors.53

Fatigue failure of motion segments is also age-dependent with youn-

ger specimens having increased fatigue life relative to older speci-

mens.46,55 In anterior-posterior shear, young specimens creep more

than older specimens before failure.52 This is important because creep

affects stiffness.52

Sample selection: spinal level

The size, shape, orientation, and proportions of the discs, vertebrae,

and facets is dependent on spinal level.54,56,57 In vivo, the magnitude

of the loads, the motion, and the orientation of the disc at each level

of the spine relative to the transverse axial plane is also unique.58-60

Data from in situ measurements using a spinal stiffness gauge indi-

cated that there is a significant difference in stiffness between levels

of the lumbar spine in flexion; L5-S1 had the highest stiffness which

was significantly higher than L2-L3, L3-L4, and L4-L5.
6 The variation in

stiffness by spinal level has been demonstrated with multiple in vitro

studies, both in the lumbar and cervical spine.11,56,61-63 BMD also var-

ies by spinal level which can affect mechanical properties.64-66

Sample selection: sex

Differences in lumbar motion segment stiffness, range of motion, and

hysteresis have been observed with sex. Motion segments from male

donors have higher stiffness, lower ROM, and less hysteresis.6,13,67 In

the lumbar spine, disc area and height are 25% and 15% smaller,

respectively, in discs from females than males,54 which can affect

internal stresses, pressures, and load transfer to the vertebral

endplates.68 Disc height has a significant effect on the rotational stiff-

ness, with taller discs having lower stiffness.23,69-71 Cervical discs

from male specimens generally fail at higher loads, as much as 25%

greater than discs from females.51 In the lumbar spine, female motion

segments have significantly more segmental motion than male seg-

ments.13 However, it is unclear whether there are intrinsic differences

in mechanical properties between motion segments from male and

female donors or whether the observed differences are primarily due

to size differences.13,68 In the cervical spine, the response to dynamic

loading is also sex-dependent.51

Extent and timing of degeneration are also sex-dependent.

Degenerative changes in females lag behind males by approximately

10 years.72 The prevalence of endplate lesions is higher in males than

females, which can impact disc mechanics as described above.73

Sample selection: survey results

The majority of respondents (65%) indicated that when investigating

therapies for disc degeneration, specimens should be “among a spec-

trum of healthy to degenerated, the extent of which should be

reported for each specimen” (Supporting Information S1, Q29).

Almost all respondents (95%) agreed that the extent of degeneration

should be reported (Supporting Information S1, Q30). Several respon-

dents indicated that the selection of specimens is often limited by

what is available and that selecting specimens with specific properties

is prohibitive based on the limited supply.

Respondents indicated that the most important properties to

report are donor age (97%), disc level (97%), grade or stage of degen-

eration (95%), bone mineral density (67%), disc dimensions including

height and area (65%), donor weight or body mass index (55%;

Supporting Information S1, Q30). A majority of respondents indicated

that some specimen properties are important to control including

grade or stage of degeneration (90%), disc level (82%), donor age

(65%), and BMD (55%; Supporting Information S1, Q31).

3.2.2 | Sample Preparation

Sample preparation: fresh vs fixed

Autolysis degrades tissues, which will ultimately affect their mechani-

cal properties. Autolysis may be significant during extended exposure

times, particularly for high cycle mechanical testing or long-term creep

testing. Fixing of specimens can slow or eliminate autolysis, but the

fixation process may significantly alter mechanical properties.

Although neutral buffered formalin does not affect bone mineral

content, it does alter the structure of collagen fibers.74 Formalin fixa-

tion significantly increases stiffness and decreases the range of

motion in flexion/extension, lateral bending, and torsion of motion

segments by as much as 96%.75 Results indicate that biomechanical

testing of formalin-fixed tissue is not representative of in vivo

conditions.

More recently, alternatives to formalin fixation have been

implemented. Many of these newer fixation techniques have been

developed to “feel” like fresh tissue during dissection. Because of the

natural feel, it is intuitive that the tissue may also have similar

mechanical properties to fresh tissue. Although few researchers would

consider using formalin-fixed tissue for mechanical testing,

researchers or surgeons might be tempted to use tissue for mechani-

cal testing that has been fixed with newer techniques. Thiel fixation

maintains nonlinear load-deformation characteristics of motion seg-

ments, but increases the ROM and has a destabilizing effect on tis-

sues.9,76 Similarly, the “Fix for Life” embalming technique significantly

increased motion segment stiffness in all loading directions relative to

nonembalmed tissue.77

Sample preparation: freezing

The effects of freezing and thawing specimens before use have been

studied extensively.78-83 Drying out of specimens during the freeze-

thaw process can alter their mechanical properties, however,
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wrapping specimens in saline-soaked gauze and placing them in sealed

double plastic bags for freezing mitigates these effects.78,80 Passive

freezing at −20�C or colder temperature has minimal effect on the

elastic properties or dynamic properties of bone and disc tissue.29,80,81

While freezing can affect the range of motion, stiffness, and neutral

zone of the porcine intervertebral disc after a single freeze-thaw

cycle,79,82 the effects of similar protocols are not significant in human

specimens.29,30 The effects of up to four freeze-thaw cycles at −20�C

are minimal on mechanical properties of fresh-frozen human cadaveric

motion segments.83

Sample preparation: tissue transection or removal

Harvesting and preparation of specimens often necessitate tissue

transection or resection. Specimens are often tested with the pos-

terior elements removed, which is significant biomechanically

because there is normally load-sharing between the disc and facet

joints in both the cervical84,85 and lumbar spine.86,87 Removal of

facets in the lumbar spine inherently changes disc biomechanics,

resulting in an increase in ROM and decrease in stiffness in flexion/

extension, lateral bending, and torsion.37,38 Effect of facet removal

in the lumbar spine is dependent on the mode of testing,88 where

the effects of facet joint removal are most prominent in torsion and

less so for axial loading.89 Removal of facet joints does not signifi-

cantly affect creep properties of lumbar motion segments,89 indi-

cating that the viscoelastic response of a motion segment is

primarily dictated by the disc. In the cervical spine, the facet joints

are loaded during flexion, extension, lateral bending, and torsion90

and the facet joints carry as much as 45% of the force when a

motion segment is loaded in axial compression.91 Removal of the

facets in the cervical spine significantly reduces stiffness in exten-

sion and increases range of motion.91

Each of the major ligaments (supraspinous, interspinous,

ligamentum flavum, intertransverse, posterior longitudinal, and ante-

rior longitudinal) also contributes to the mechanical properties of a

motion segment.92,93 Transection of the posterior ligaments generally

decreases stiffness and increases ROM primarily in flexion.94 The

anterior longitudinal ligament resists axial rotation and also

extension.94

Sample preparation: potting

To facilitate mechanical testing, specimens must be potted in a way

that eliminates relative motion between the specimen and testing

apparatus in all six degrees of freedom. Mechanical properties of the

potting material can also confound measurements of specimen

mechanical properties if the potting material deforms significantly dur-

ing loading.

Specimens have been potted in polymers, low melting tempera-

ture alloys (LMA), or even Plaster of Paris.2,81,95 Fast setting epoxies

such as Bondo (Bondo Corp., Atlanta, GA) are attractive because they

are inexpensive and easy to use. Dental acrylic and poly(methyl) meth-

acrylate (PMMA) are commonly used for potting specimens. One limi-

tation of all of the polymers is that none allow for unpotting and

repotting.

Low melting temperature alloys (often referred to as “Wood's

Metal”) with melting temperatures as low as 47�C (Cerrolow-117,

McMaster-Carr Supply Company, Elmurst, IL) minimize thermal necro-

sis and solidify within minutes. Specimens potted in LMA can be

unpotted by rewarming the LMA for reuse.96 One limitation of LMA is

that it is very dense and can add significant inertia to testing fixtures.

When comparing PMMA, dental acrylic, and LMA, research has

shown that filler materials can confound measurements on vertebral

body stiffness by more than 9%.97One study concluded that LMA is

superior for minimizing the confounding effects of potting materials

based on its higher modulus of elasticity and repeatability during

reuse.95 Materials with a higher modulus of elasticity deform less and,

in turn, reduce the potential confounding effect of potting material

deformation on the overall measurement of the specimen deforma-

tion during loading.

Sample preparation: survey results

With respect to sample preparation, only 5% of respondents indicated

that only fresh samples should be used for testing while 82% of

respondents felt that freezing specimens before use was acceptable

(Supporting Information S1, Q11). However, 50% of respondents felt

that only a single freeze-thaw cycle was appropriate.

3.2.3 | Pre-testing measures

American Society of Testing and Materials (ASTM) and the Interna-

tional Organization for Standardization (ISO) provides standardized

approaches for testing synthetic materials. However, applying these

approaches to the spine is challenging and often inappropriate due to

variations in specimen anatomy and the condition of the tissues (eg,

normal or degenerated). Normalizing specimen anatomy can be

achieved by measuring disc height and area prior to testing and can

also be used to facilitate load- or stress-controlled protocols; how-

ever, limited access to imaging can prohibit disc measurement and can

result in inconsistency in testing methods and reporting of specimen

properties. Moreover, procedures for procuring and imaging spine

specimens may differ depending on whether the researcher has

access to fresh tissue and imaging equipment, as may be the case in

research labs connected to research hospitals.

Clinical based imaging, such as magnetic resonance (MR) imaging,

computed tomography (CT), or X-ray, are commonly used to assess

disc health and can be used to measure disc anatomy. Imaging of

specimens after harvest but before testing accounts for the release of

residual stresses from spinal ligaments and muscles, which may cause

in vitro disc height measurements to be greater than in vivo measure-

ments.30,98-103 Johnstone et al. showed that fluid content of the inner

annulus increases after autopsy compared to discs with the same

degenerative grade during surgery, resulting in more uniform

intradiscal pressure throughout the disc.104

Each imaging modality provides different assessments that may

be important for defining mechanical testing parameters or inter-

preting results. Sagittal plain X-rays of intact spines are commonly
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used in the clinical assessment of spine and disc health, where

osteophytes and disc height narrowing can be viewed. CT provides a

three-dimensional reconstruction but is not as commonly used for

characterizing motion segments for in vitro testing, due to challenges

in imaging soft tissues.105 CT imaging is more commonly applied in

bone research to provide bone mineral density as an assessment of

bone quality and strength.106

Soft tissues are easier to visualize through MR imaging, with rela-

tive disc health being assessed with the Pfirrmann scale.107 There is

also a growing body of work showing the relationship between disc

function and the quality of tissues surrounding the disc, including

musculature, and cartilaginous endplates.28,108-111 Specifically, MR

imaging has been used to evaluate the relationship between endplate

pathology and nutrient diffusion into the disc as well as the relation-

ship with lower back pain.112-114 Quantitative MR imaging can also

provide a biochemical composition, such as water or glycosaminogly-

can content.115 Quantitative MR imaging with T1ρ-mapping is able to

identify early-stage disc degeneration,116,117 which may be ideal spec-

imens for assessing treatment strategies that aim to prevent the pro-

gression of degeneration. Recent work showed that quantitative MR

is sensitive to assess changes in water content due to diurnal loading

in vivo and mechanical loading in vitro.118,119

Regardless of the imaging modality used, disc height and area can

be measured prior to mechanical testing. The wedge-shaped nature of

the disc makes it difficult to identify a single point for measuring disc

height, resulting in a variety of approaches and significant variations

in reported values. For example, human lumbar disc heights can vary

from 5 mm in the posterior region to more than 10 mm in the anterior

region.118

Disc heights taken from two-dimensional images may be acquired

at a single location (eg, center of the disc)120 or averaged by outlining

the area of the disc space on a 2D image and dividing the area by its

anterior-posterior or lateral dimension in a mid-sagittal or mid-coronal

image, respectively.121 Three-dimensional images, acquired with MR

imaging or CT, can be used to create a planar map of disc height

throughout the disc, which can then be averaged.122 Researchers

without access to noninvasive imaging may use calipers to measure

disc height either before testing79 or once the disc is removed from

the vertebral bodies after testing. This approach is confounded by

potential tissue loss during dissection and further reductions in resid-

ual stresses which may allow the disc to expand further, thus over-

estimating the disc height at the beginning of the mechanical test.20

Pre-testing measures: survey results

Approximately 60% of survey responders stated that they never or

only sometimes measure disc area or height prior to testing, with

approximately 35% of responders always measuring disc area and

approximately 40% always measuring disc height prior to testing

(Supporting Information S1, Q7, Q9). There was no consistency

regarding the stage of specimen preparation when imaging was con-

ducted with approximately 25% of responders imaging the intact

spine vs those who imaged the prepared motion segment (�35% for

disc area and � 40% for disc height; Supporting Information S1, Q8,

Q10). Depending on the researcher's institution, noninvasive imaging

can be quite costly (eg, $600/hour), which may partially explain the

lower percentage of researchers who image motion segments prior to

testing compared to imaging the intact spine.

3.2.4 | Initial conditions

Initial conditions: preconditioning

Like all soft tissues, the intervertebral disc exhibits hysteresis with

cyclic loading.123 Hysteresis is greatest in the first cycle, relative to

subsequent cycles.124 Once a specimen has completed enough cycles

for its mechanical response to loading to become repeatable, it is con-

sidered preconditioned. Preconditioning tends to increase neutral zone

and decrease stiffness relative to the first cycle or few cycles of test-

ing.125 Hysteresis is also highly dependent on loading rate; the disc

exhibits strain rate dependence, which can affect hysteresis and alter

effective stiffness by up to 20%.81,126

There are advantages to preconditioning from a study design

standpoint in that the properties of preconditioned tissue are repro-

ducible and eliminate the potential confounding effects of cycle num-

ber and load history (provided that the number of cycles does not

result in additional creep). If the goal of a study is to compare different

treatment conditions in the same specimen or across specimens, then

preconditioning is advantageous.127

There are a number of preconditioning protocols that have been

used for spine biomechanical testing. Commonly, for a range of

motion testing, two cycles of testing are completed to precondition

the specimens before collecting data on the third cycle for analy-

sis.75-77,80,128-135 However, similar protocols with one cycle of

preconditioning,43,124,136,137 three to four cycles of

preconditioning,39,138-140 or 10 or more cycles of preconditioning

have been reported.11,141-143 Alternatively, specimens are tested one

cycle at a time and the data are analyzed in real-time to determine if

additional cycles of loading are required to produce a repeatable

response.24,140,142

Initial conditions: survey results

The vast majority of respondents (81%) indicated that preconditioning

of specimens should be conducted before collecting data for mechani-

cal testing (Supporting Information S1, Q16). Most commonly (33%),

respondents indicated that 3-5 cycles of preconditioning were suffi-

cient. Fewer (17%) indicated that specimens should be preconditioned

cyclically until steady state is achieved. An equal number of respon-

dents (12%) indicated that specimens are best conditioned 2 cycles or

6-10 cycles of loading before collecting data.

Initial conditions: preload

Reproducing in vivo spinal loads in vitro remains a challenge.129 There

is currently no consensus as to the appropriate magnitude or means

of applying these physiologic loads in vitro.144 The loads developed

across the disc space of a motion segment in vivo are the result of

three factors: body weight, muscle force, and externally applied
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loads.56 Bodyweight (the weight of the head acting on the cervical

spine or weight of the torso acting on the lumbar spine) causes an

axial load when the spine is vertical. To account for the forces that

result from body weight, axial compressive preloads are commonly

applied during in vitro mechanical testing.1

The magnitude and direction of applied axial compressive

preloads can significantly affect the mechanical and kinematic proper-

ties of a motion segment.145,146 Axial preloads strongly influence a

spectrum of load-deformation characteristics, including stiffness,

ROM, and neutral zone (NZ).128 Stiffness and hysteresis of lumbar

spine specimens in bending and rotation appear greater at higher axial

preloads than lower axial preloads.89,147-149 In the lumbar spine, the

magnitude of preload affects ROM significantly when applying a 0 N

vs 200 N vs 400 N axial load. With increasing preload, ROM

decreases in torsion.137 In degenerated lumbar spines, increasing axial

preload results in higher stiffness in all directions of testing.150 Both

axial compression and distraction cause an increase in torsional stiff-

ness of motion segments up to 150% of the no axial load

values.151,152 When discs are isolated, preload magnitude affects dis-

placement and stiffness during dynamic loading.153 The relative

increase in stiffness with compressive preload is nonlinear in the lum-

bar spine145,153 but becomes more linear above 250 N.151In the cervi-

cal spine, increasing preload results in a decreased neutral zone,

higher stiffness at low loads, and better reproduction of in vivo

ROM.62,154

Multiple techniques have been used to apply axial preloads. How-

ever, the method of application of the preload, specifically magnitude

and direction, are key to mimicking the in vivo environment.137 As

first described by Patwardhan, axial loads should be applied tangent

to the curve of the spine while passing through the center of rotation

of each motion segment.155 This paradigm-shifting methodology, the

“follower load,” addresses many of the limitations of other techniques

for applying an axial load through the center of rotation of one or mul-

tiple motion segments.155 Various versions of the follower load tech-

nique have been evaluated with variations including fixed upper cups

with vertical hanging weights, fixed upper cups with weights guided

at the lower cup, and fixed upper cups with weights guided at the disc

level.137 Results demonstrated that other techniques introduce con-

founding effects into mechanical testing, but the artifact from the fol-

lower load technique was minimal.

While the follower load technique is generally considered to facil-

itate high fidelity reproduction of in vivo loading, it is often not used

in vitro because (a) it is time-consuming and technically challenging to

position the necessary cable guides appropriately, (b) if multiple condi-

tions of a specimen are being tested (ie, intact, injured, and

instrumented) the axis of rotation may change for each condition and

thus the application of the cable guides must change, and (c) it is

impossible to test the same specimens in multiple directions of loading

(ie, flexion-extension and lateral bending). Further, to replicate in vivo

physiologic motion, the magnitude of the preload should vary

depending on the extent of motion; in the cervical spine, an axial pre-

load is not necessary at the ends of motion but must be maximum

near the middle of motion to replicate in vivo motion.156

Lumbar spine axial compressive preload

The magnitudes of lumbar axial compressive preloads have been indi-

rectly determined by measuring the weight of the body above each

level of the spine, during in vivo nucleus pressure

measurements,144,157 directly measured using telemeterized spinal

implants,158 or calculated using muscle-driven musculoskeletal and

finite element models.144 The appropriate magnitude of axial com-

pressive preload depends on the in vivo scenario being modeled.

In his seminal work in 1950, Ruff determined the fraction of body

weight imposed across each level of the thoracolumbar spine.58 In this

study, the thoracolumbar spines of human subjects were radiographed

while standing, and the disc heights were measured. Subjects were

then positioned supine and a yoke was applied at the shoulders.

Weights were added to the yoke system which caused axial compres-

sion of the thoracolumbar spine. With each incrementally increasing

weight, the thoracolumbar spine was radiographed, and disc heights

measured. Disc heights subjected to applied axial loads in the supine

position were compared to disc heights while standing to determine

the fraction of body weight at each level of the spine during neutral

standing. These data provide magnitudes for axial preload during

neutral standing at each level of the spine (Table 1). For a typical

American male of weight 900 N,159 Ruff's data indicate an axial

preload of approximately 540 N at the L4-L5 disc.

The static axial compressive preload can be estimated from upper

body weight measurements; however, these can underestimate the

actual loads generated from muscle recruitment during dynamic activi-

ties. Physiological axial compressive preload magnitudes vary with the

type of activity, where minimal compressive loads are present during

lying down when compared to sitting, standing, and lifting activities

(Table 2).144

TABLE 1 Axial preload applied to the spine is a result of the
weight of the head in the cervical spine and torso in the lumbar spine

Spine Force

Level [% BW]

T5 21

T6 25

T7 29

T8 33

T9 37

T10 40

T11 44

T12 47

L1 50

L2 53

L3 56

L4 58

L5 60

Note: Body weight (BW) fractions above each level of the thoracic and

lumbar spine have been determined by Ruff.58
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While a 400 N axial preload is commonly applied to the lumbar

spine during in vitro ROM testing, a range of loads have been used

depending on the in vivo loading condition being replicated. Axial

compressive preloads may range from 0 to 250 N,23,145,160-166 350 to

500 N,11,43,55,126,137,142,145,148,165,167,168 and greater than

500 N.26,55,92,95,150,151,155,167,169-173 For conditions to simulate

in vivo bending of the lumbar spine, axial compressive preloads above

500 N are generated144 depending on disc cross-sectional area. Low

magnitude axial loads (0-250 N) may simulate lying down, but several

studies have applied pure moments with no axial compressive pre-

load.39,134,137,174-178 In other studies, the decision on the magnitude

of preload is often without justification.23,43,55,137,142,160-162,164,166

Lumbar spine axial compressive preload: survey results

From the survey responses, 74% of researchers stated that applying

an axial compressive preload was either absolutely critical or some-

what important with a higher preference for absolutely critical

(Supporting Information S1, Q17). Less than 10% reported that apply-

ing a preload was either somewhat unimportant or not important at

all. Almost 20% chose “Other” where most indicated that it depended

on the research/clinical question. For the magnitude of lumbar spine

axial preload, most researchers surveyed would apply between

351 and 500 N (29%), followed by 251-300 N (25%), 0-250 N (20%),

and greater than 500 N (14%; Supporting Information S1, Q18). All

researchers supported the application of a preload. Of the 12% of

responders who chose “Other”, their comments suggested that the

magnitude of the preload depended on the research question, the disc

area, the donor's bodyweight, or should be on data from studies that

measured the in vivo nucleus pressure.

Cervical spine axial compressive preload

The biomechanical protocols for ROM testing in the cervical spine

also vary from study to study. Critical parameters such as axial preload

and magnitude of applied forces and applied moments vary widely

across different studies with no universally accepted protocol. Some

specimens have axial compressive preloads applied while others do

not. The magnitude of axial preload ranges from 0 to 125 N. Some

axial loads are applied using the follower load concept and others

are not.

In the cervical spine, axial preload ranges from 20 to

50 N.139,146,179 To simulate physiologic loading conditions, axial loads

have ranged from 50 to 125 N. The lower forces (50 N) represent

axial loading from the weight of the head and neck in the neutral posi-

tion, whereas the higher forces (100 N and greater) represent axial

loads due to the weight of the head and muscle forces during physio-

logic motion.180 Recently, ROM testing of the cervical spine with a

follower load of 100 N and an applied moment of 2.0 Nm in flexion-

extension demonstrated the highest fidelity and reproducibility rela-

tive to in vivo range of motion when compared to other combinations

of preloads and applied moments.180,181

Cervical spine axial compressive preload: survey results

The survey results found that most researchers (42%) applied a cervi-

cal axial compressive preload of between 51 and 150 N, followed by

0-50 N (29%) and 151-250 N (9%; Supporting Information S1, Q19).

Eighteen percent chose “Other”, however, half of these indicated that

they have not tested cervical spines before, and the remaining half

recommended considering the disc area, donor bodyweight, and the

research question.

3.2.5 | Testing environment

Testing environment: time and temperature

Environmental exposure time affects the mechanical properties of the

spine.2,80Increasing exposure time to an ambient temperature signifi-

cantly alters motion segment ROM. Data from the lumbar spines of

pigs and sheep demonstrate ROM increases of 30%-50% with ambi-

ent exposure up to 72 hours, although the increase is less than 10% in

the first 10-20 hours.2 Storage in a refrigerator between thawing and

testing reduces the effects of exposure time and results in minimal

changes in tissue properties up to 14 days of refrigerated storage.80

TABLE 2 Compressive loads to
replicate physiological loading

Applied load (N) Stress (L4L5)
L3L4 L4L5 MPa

Lying supine 100 106 0.06

Sitting slouched 270 286 0.16

Sitting relaxed 460 488 0.27

Standing 500 530 0.29

Sitting with actively straightening back 550 583 0.32

Mid-range during walking 590 625 0.34

Holding 20 kg close to body 1100 1166 0.64

Note: in vitro testing by Dreiscarf et al determined the load needed to replicate intradiscal pressures as

measured by Wilke et al.129,153 Values reported by Dreiscarf et al were used as the baseline values for

L3-L4 and L4-L5 discs (bold values). Data from Wilke et al were used to calculate the relative difference in

activity. Finally, the applied stress for the L4-L5 disc was calculated by using an average disc area of

1826 mm2.99,121
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The effect of time-temperature of exposure of the human tho-

racic spine was quantified by Panjabi as 0.009 mm/day of change in

translation and 0.022�/day change in rotational ROM.80 The effects

of environmental exposure are amplified at higher temperatures. At

37�C, the cellular autolytic processes are accelerated, and the speci-

men's biomechanical properties are compromised rapidly reducing the

viable testing window. ROM, neutral zone, stiffness, and hysteresis

are all affected by testing temperature. In the lumbar spine, both

ROM and neutral zone are reduced at room temperature testing rela-

tive to body temperature.11 This is particularly significant in axial rota-

tion but less significant in flexion and extension.142 In axial rotation,

motion segments demonstrate a significantly reduced stiffness at

body temperature relative to room temperature.

To help preserve specimen longevity with minimal changes to tis-

sue mechanical properties during long-duration or elevated tempera-

ture testing, protease inhibitors are added to a hydrating solution.182

Protease inhibitors reduce the rate of putrefaction and tissue autolysis

and are often used during long-term testing.126,183-185

Testing environment: hydration

Disc mechanical properties are dictated in part by its internal osmotic

pressure, which is dependent on the salt-based or sugar-based hydrat-

ing solution used.21,186-188 Exposure to ambient air can affect disc

hydration, so measures to mitigate dehydration are critical for mini-

mizing confounding effects of tissue hydration during testing.2,124,189

Maintenance of physiologic hydration is particularly challenging in

long-duration tests, such as high cycle or creep testing. With increas-

ing exposure to air (without rehydration), porcine and ovine lumbar

motion segment stiffness is reduced and ROM is increased.2,133 Like-

wise, hyperphysiologic swelling of human lumbar motion segments

can increase disc water content and confound mechanical testing

results.78,124 While there is a substantial body of research on the

effects of disc hydration on in vitro mechanical properties, there is no

universally accepted protocol for maintaining physiologic hydration.

Wrapping specimens in saline-soaked gauze, spraying or dripping

irrigation on specimens, conducting testing in 100% humid environ-

ments, or testing specimens within a hydrating solution are all

methods to minimize the effects of air exposure.2 When specimens

are maintained in a 100% humid environment, the change in water

content of the disc is minimal during testing.124 Submerging speci-

mens in a bath is also effective at reducing dehydration. However, if

specimens are allowed to swell unconstrained, the hydration becomes

hyperphysiologic.124,190 This can occur in as little as 1 hour of immer-

sion.191 Hyperphysiologic tissues absorb more energy than physio-

logic tissues which can alter their dynamic properties and

stiffness.190,191

Submerging tissue in saline while applying a constraining load

(or first submerging tissue unconstrained then applying a compressive

load) allows for tissue hydration while minimizing the likelihood of

hyperphysiologic swelling.189 However, the duration of immersion

and the magnitude of the constraining loads that have been used var-

ies widely. With a broad range of justifications, lumbar motion seg-

ments have been immersed in saline with axial loads ranging from

150 to 500 N,43,52,82,192 immersed in saline under axial stresses ranging

from 0.1 to 1 MPa compression,26,143,189 immersed in saline

unconstrained,78,138,149,153,182 or immersed in water unconstrained.139

The osmolarity of the bath, which is often not considered, may greatly

alter fluid flow into and out of the disc, impacting measured mechanical

properties. A recent study showed that hydration in saline may not be

appropriate for maintaining swelling of excised tissues, whereas adjusting

saline bath osmolarity with polyethylene glycol (PEG) may restrict fluid

flow into biological tissues, such that the water content remains compa-

rable to fresh tissues.187

A specimen's load history also affects its hydration, altering

disc height, disc volume, and mechanical properties.119,193 Com-

pressive properties measured during short-duration tests

(<90 minutes) are not affected significantly by the testing environ-

ment (ie, air, saline-soaked gauze, or submerged in a bath),193 but

long-duration tests in the air do result in an increase in stiffness

when compared to tests performed in a bath.191 Moreover, if speci-

mens are evaluated using protocols that include multiple loading

conditions (eg, dynamic loading or compression, bending, rotation,

etc.), the change in disc anatomy will alter normalized mechanical

properties as evaluated using classical mechanics, such as strain,

stress, and, therefore, modulus. Immersion in saline between test

cycles improves disc recovery between tests.194

Testing environment: survey results

Like the wide range of current practices reported in the literature, sur-

vey results were variable with respect to testing environment. A

majority of respondents (61%) indicated that testing at 37�C is more

physiologically relevant than room temperature testing, however, 17%

indicated that there is no difference in relevance between room tem-

perature and 37�C testing (Supporting Information S1, Q12).

A majority of respondents (62%) indicated that specimens should

be kept moist during testing with wet gauze or spray and 7% pre-

ferred testing in a 95% humid environment for the maintenance of

hydration (Supporting Information S1, Q13). Interestingly, only 22%

indicated that immersion in a bath was most appropriate for specimen

hydration. For respondents who submerge specimens in a bath, 77%

indicated that they apply a preload (Supporting Information S1, Q14).

With respect to hydration solution, 94% of respondents use saline

(Supporting Information S1, Q15).

3.2.6 | Test conditions

Lumbar spine testing strategies

The goal of in vitro biomechanical testing is to evaluate the response

of specimens, both intact and after various interventions, in a manner

that approximates in vivo performance.195 The closer in vitro biome-

chanical testing of the spine simulates in vivo loading regimes, the

more confident we can be when evaluating the biomechanical

response of the native segment, its treatments and future tissue

repair, replacement, and regeneration strategies. This goal is currently

unachievable due to unknown in vivo 6DOF force and moment
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magnitudes, and due to limitations of testing systems to reproduce

in vivo conditions.2,3,171,196,197

The application of pure moments198 during load-controlled test-

ing vs displacement-controlled testing has been the subject of much

debate199 over the past 40 or more years. A pure moment is a pure

rotation that applies only torque to a specimen without any axial or

shear loads and can be applied independently or in combination with

other loads, such as axial compression. Applying individual

unconstrained pure moments does not simulate in vivo loads,2 how-

ever, this technique presents a method for standardized testing for

comparison across laboratories.2,200 Displacement-controlled testing

may more closely replicate the measured in vivo translations and rota-

tions of vertebrae about a fixed axis of rotation,199,201,202 however,

this may also introduce nonphysiological coupling effects.199 The test-

ing apparatus required for the application of pure moments is often

considered to be more straightforward for developing in-house when

compared to the testing systems required to replicate complex 6DOF

in vivo translations and rotations. There is substantial work based on

both the application of pure moments, either with axial

loads128,136,137,142,150,155,160,161,163,164,166-168,171,179,197,203-206 or

without axial loads,7,39,63,134,137,162,174-177,207-214 and with using dis-

placement control/stiffness test methods also being commonly

used.23,32,43,125,126,148,165,215-218

There have been many novel methods and systems developed to

facilitate testing under load-control and displacement-control, and

some have represented paradigm shifts in advancements towards rep-

licating physiological loading. A “universal spine tester” was devel-

oped by Wilke et al,219 which represented a significant breakthrough

in continuous (�1�/s),220 unconstrained 6DOF pure moment testing

where single or multiple spine segments could be loaded in each DOF

without repositioning. This system included the ability to indepen-

dently apply muscle forces, either unilaterally or bilaterally during the

simultaneous application of 6DOF loads. Patwardhan et al introduced

a paradigm shift for the application of larger magnitude, more-

physiological preloads, in the form of a compressive follower load,

particularly for increasing the load-carrying capacity of the whole lum-

bar spine without buckling.155 Before these studies, new develop-

ments in the application of a combination of load and displacement

(hybrid) control strategies were employed for 6DOF testing of knee

joints using a serial (articulated) robot manipulator.221 Gilbertson et al

further developed this hybrid control strategy for spine segment test-

ing, based on measuring the specimen stiffness in” real-time”, to iden-

tify the path of passive motion (ie, least resistance and zero off-axis

forces/moments) and follow the segment's center of rotation.215 This

control strategy essentially replicated unconstrained, pure moment

testing systems, and has been implemented by others, all of which

operate at quasi-static speeds.204,205 Using these techniques, the

kinematic path was recorded and could be played back in position

control for testing at faster speeds.

Another paradigm shift in techniques for 6DOF testing was the

development of a novel Stewart platform, or parallel (hexapod) robot

by Stokes et al.148 Spine segments were placed inside the workspace,

as opposed to on top, as used with conventional platforms. The design

allowed a fluid bath to be conveniently fitted around the inferior spec-

imen mounting pillar. The robot primarily operated in 6DOF position

control with the ability to apply load control in 1DOF. The Stewart

platform concept is well known for its high load carrying capacity,

good dynamic performance, precise positioning, and high structural

stiffness when compared to serial robots, at the expense of a smaller

overall envelope of motion.222 For the first time, Thompson, Barker,

and Pearcy used a serial robot to more closely simulate in vivo physio-

logical lumbar segment kinematic motion through their ROM,201 and

about their IAR,202 as measured in humans.125 Displacement control

was used to apply the in vivo kinematic motions in flexion-extension,

lateral bending, and axial rotation.

In 2007, Panjabi developed a “Hybrid” test method where an

unconstrained pure moment was first applied to the intact spine and

the total ROM measured, then after an intervention, an unconstrained

pure moment was applied until the same intact total ROM was

achieved. This method allowed for the standardized comparison of

the kinematics of each vertebra between the intact and treated states

to study adjacent level effects.223,224

Goertzen and Kawchuk used a commercial parallel robot (hexa-

pod) to implement a novel velocity-based force control approach for

unconstrained 6DOF spine testing.208 Velocity-based force control is

commonly used in serial robots and had not previously been

implemented for biomechanical testing. This control was performed at

a constant angular velocity of 0.25�/s, which is quasi-static. Lawless

et al, in 2014, developed a new approach to achieving closer to real-

time unconstrained 6DOF load control197 using a custom-developed

hexapod robot.225 This system used an adaptive velocity-based 6DOF

load control strategy together with the simultaneous, independent

application of a compressive preload. This improved control system

achieved unconstrained 6DOF load control at speeds of up to two

orders of magnitude greater than previous systems with continuous

loading at rates up to 4.8 Nm/s. In 2016, Wilke et al developed a

6DOF dynamic testing system capable of applying very fast angular

velocities of 707 �/s in position control in lateral bending and axial

rotation, and 400 �/s in flexion-extension.171 These speeds are appro-

priate for studying the sudden overload failure mechanisms of the

disc, such as during herniation and endplate failure during combined,

complex loading.226,227

Lumbar spine testing strategies: survey results

Seventy-five percent of all researchers identified the importance of

applying pure bending to specimens during in vitro ROM testing as

being either “absolutely critical” or “somewhat important,” with a rel-

atively even split between each (Supporting Information S1, Q20).

Ten percent of researchers chose “somewhat unimportant” or “not
important at all.” Fourteen percent chose the “other” category, where

half of these respondents noted that their decision depended on the

research question or that they used displacement control tests.

When surveyed on how loads should be applied during bending

and rotation testing, researchers revealed that the application of pure

bending moments combined with axial loads was most common

(58%), followed by 23% who chose other methods (Supporting
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Information S1, Q21). Within the other methods, three-quarters

suggested that the way in which loads should be applied depended on

the research question with the remaining respondents using displace-

ment control/stiffness test methods. Sixteen percent chose pure

moments with no combined loading.

Survey responses for the best techniques for applying bending

and rotation found that the majority of responders (41%) rec-

ommended either load or position control, depending on the task

(Supporting Information S1, Q22). The next ranked recommendation

was by a combination of load control and position control (30%). Only

a small minority of respondents indicated that load control only (14%)

or position control only (11%) were appropriate.

Lumbar spine bending moment

The magnitudes of bending moments that are produced in vivo in the

lumbar spine remain unknown. Estimates of physiologic bending

moments have been indirectly determined by EMG-assisted kinematic

chain models,228-230 measured using telemeterized spinal

implants,231-233 or calculated using finite element models.234

While the magnitude of in vivo moments has never been directly

measured, the magnitudes of in vivo vertebral rotations and their

instantaneous centers of rotation have been determined.202,235-237

Using these in vivo rotational data, in vivo moments can be estimated

through in vitro testing. Using 6DOF load control systems and testing

at near-physiological loading rates26,197,225 with physiologically rele-

vant axial preloads,202,238 and with hydration at 37�C,26 estimations

of bending moments can be made. For example, the lateral bending

stiffness of mildly degenerated cadaver lumbar motion segments

(L1-L2, L3-L4) using the above-described loading regime, under an

average axial compressive preload of approximately 600 N (to create

an 0.5 MPa equivalent in vivo intradiscal pressure), when rotated 3� in

one direction, was approximately 3 Nm/�.26 For similar specimens,

another study reported a stiffness of 1.2 Nm/� but had applied a pure

moment of 7.5 Nm and an axial preload of 440 N.11 At a lateral bend-

ing angle of 3�, the applied moment would need to be 9 Nm in the

first study26and 3.6 Nm in the second study.11

Using a finite element model of the whole lumbar spine,

Dreischarf et al170 determined, based on comparison to in vivo

intradiscal pressure measurements, that the best agreement with

in vivo values was a moment of 7.8 Nm under a 700 N compressive

follower load for maximum physiologic loading in lateral bending.

Based on these indirect measurements, applied bending moments

for in vitro lumbar spine mechanical testing range from 2.6 to 7.5

Nm11,23,128,137,142,164,174,177,178,210,239 and 7.6 to

10 Nm.7,134,137,155,160,161,176,215,240 Some studies have applied greater

than 10 Nm,39,150,166,167 and other studies measured bending

moments while conducting tests in position or hybrid position-load

control.8,26,32,95,125,126,148,165,172,185,216,241

Lumbar spine bending moment: survey results

The majority (50%) of survey respondents suggested that applying

between 2.6 and 7.5 Nm of the bending moment would mimic physio-

logical loading, followed by 29% recommending applying between 7.6

and 10 Nm (Supporting Information S1, Q23). Thirteen percent chose

“Other” where responders indicated that the magnitude of applied

bending moment should depend on the research question, or be

scaled based on anthropometric parameters, or that the tests should

be conducted under position control for achieving realistic motion, or

that physiological loading cannot be replicated without including the

contributions from muscles.

Cervical spine bending moment

The techniques used to load the cervical spine in flexion, extension,

lateral bending, and torsion are highly variable. Techniques range from

pure moment application,84,242-246 to pure moment with axial

load,247,248 to axial load only,244 to combined bending with compres-

sion.175,249-253 Testing apparatuses range from those that facilitate

unconstrained motion254 to techniques where specimen motion is lim-

ited by the testing apparatus247,251 and may introduce artifacts into

the ROM measurement.37 Like the lumbar spine, some specimens are

loaded with pure moments214,242-244,255,256 while others are loaded

using combined compression/bending protocols where the magnitude

of the compression and the magnitude of the bending cannot be inde-

pendently controlled.175,249-252 Magnitude of applied moments ranges

from 1.0 Nm249,250 to 5.0 Nm.251 Axial preloads typically range from

0 N (no axial load) to 125 N156,181,257 and have been as high as

300 N.258 ROM testing with a follower load of 100 N and applied

moments in flex/extension of 2.0 Nm demonstrated highest fidelity

and reproducibility relative to in vivo measurements.180,181

Cervical spine bending moment: survey results

For applied cervical bending moment magnitude, the majority of

respondents would apply between 1.6 and 2.5 Nm (53%), followed by

2.6-3.5 Nm (15%), 0-1.5 Nm (9%), and greater than 3.5 Nm (6%;

Supporting Information S1, Q24). As for the preload survey responses,

half of the 17% in the “Other” category have not tested cervical

spines, and the remaining half suggested 5 Nm, position control test-

ing, scaling by donor bodyweight, and the research question.

3.2.7 | Cyclic testing

Monotonic testing is commonly used as a means to assess disc mechan-

ics. However, monotonic loading has limited fidelity with respect to

physiological loading conditions. Early spine biomechanics studies used

cyclic loading to assess disc “fatigue” properties. From a mechanics per-

spective, fatigue loading refers to applying cyclic loading until failure.

Achieving, a disc failure in vitro is a significant challenge, often requiring

hyper-physiological loads and moments.55,172,259,260 Therefore, what is

commonly described as “fatigue” loading is more descriptively extended

or high cycle loading.261 Dynamic properties of the disc have been

assessed under single and multiple loading modalities, including tension-

compression,99,262 compression-only,261,263 flexion or flexion-extension

bending,264,265 and torsional loading with or without compression.24,89

The use of multiple loading modalities provides a closer representation

of in vivo loading during activities of daily living.
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Differences in testing protocols (eg, frequency used, or applying

load- or displacement-control) increases complexity in comparing find-

ings between studies. Often load-controlled protocols are applied

when disc height is not known a priori, with loading rates from 0.0005

to 5 Hz, which is roughly equivalent to 1-10 kN/s.120,126,189,193,266 In

vivo, the rate and frequency of disc loading are highly variable and

activity-dependent. Walking is often used as a baseline for guiding

cyclic loading protocols, where the average walking pace has been

shown to range between 1.4 and 2.1 Hz.267 This may be doubled for

spine loading (eg, the spine is loaded for foot strike on both the left

and right sides). Loading rates between 0.5 and 5 Hz has been shown

to have relatively small impacts on disc stiffness (<5%).120,193 How-

ever, differences in disc stiffness measurements have been observed

when testing at hyper-physiological or hypo-physiological loading

rates.126,189

As described with preconditioning, hysteresis stabilizes by the

third cycle, with less than 2% change in stiffness and hysteresis for

subsequent cycles.193,261 However, nonfailure properties, such as

storage and loss modulus, have been evaluated over a wide range of

loading cycles, with analysis being performed up to the 50th

cycle.182,261,263,268,269 While relatively small changes are observed

from one cycle to the next, creep deformation accumulates with each

dynamic loading cycle(ie, accumulation of <2% change between

cycles),193 which can confound comparisons between studies.

Due to the nonlinear behavior of the disc, multiple approaches

have been developed for data analysis (eg, calculating neutral zone

and linear region stiffness).269,270 Limited consensus regarding data

analysis methods has been shown to cause significant differences in

reported values.271 Calculating a neutral zone may not be clinically rel-

evant, as this is the point in vitro where the disc has zero resistance to

load between tension and compression. The magnitude of preload

also dictates the linearity of the response to dynamic loading. Studies

that have evaluated axial rotation and 6DOF observed more linear

behavior (or pseudo-nonlinear) when a larger compressive preload

was applied.145,149,151,272

For long-duration cyclic loading or fatigue loading, faster loading

rates have been used,263,264 but the relevance of hyper-physiologic

rates is questionable. Although higher loading rates shorten the test-

ing time for failure testing (eg, within �1000 cycles), increasing load-

ing frequency from quasi-static to hyper-physiological causes a 5- to

6-fold increase in stiffness.189 Moreover, disc joint (vertebra-disc-ver-

tebra) failure at higher frequency has been shown to include both ver-

tebral body failure in addition to endplate failure, which is more

commonly observed at lower frequencies (<2 Hz or 3000 N/

s).172,266,273

3.2.8 | Viscoelasticity

Viscoelastic loading

The intervertebral disc is a viscoelastic composite structure with time-

dependent mechanical properties, but few studies concurrently mea-

sure both static and dynamic properties. However, a limited number

of studies have measured disc behavior under both condi-

tions.103,262,269,274 In vivo, the disc is subjected to some amount of

compression throughout the diurnal loading cycle, due to the weight

of the body and muscle engagement, making creep testing relevant to

in vivo biomechanics. However, studies that evaluated creep-recovery

behavior showed that creep mechanics differ between the first cycle

and subsequent cycles.275 This suggests that creep loading protocols

may also need a preconditioning phase of either cyclic loading or mul-

tiple creep-recovery cycles before the disc response achieves a

steady-state condition.30,113,275-277 Multiple creep-recovery cycles

essentially acts as a low-frequency cyclic loading test with a square

waveform.

Similarly, hold times for creep tests vary significantly, from

5 minutes to 24 hours (Table 3). For human discs, very long duration

creep tests rarely achieve creep displacement equilibrium in vitro (eg,

greater than 8 hours),278 which differs from findings with healthy

bovine discs that have reported equilibrium after 15 hours of load-

ing.279 However, achieving intradiscal pressure equilibrium in vitro

required an additional 20 hours for the internal pressure to decrease

towards 0 MPa.279

There is also a range of applied load magnitudes used during

creep testing (Table 3). Often load-control protocols are employed

due to challenges in measuring disc geometry a priori; therefore, disc

area or applied stress is rarely reported, making it difficult to compare

between studies (Table 3, italicized stress values). Alternatively, if disc

area and height can be measured a priori, stress-controlled protocols

can be employed and based on physiological activities (Table 2).

Creep stress is reported in the range from as low as 0.06 MPa,

which is equivalent to the intradiscal pressure experienced while lying

in a supine position, to over 2 MPa, which is greater than expected

in vivo pressure but not high enough to cause damage (Table 2).238,280

Viscoelastic recovery

While creep testing has mainly been used to evaluate fluid flow out of

the disc, there has been a shift towards using similar techniques at

low loading conditions to investigate the recovery behavior of fluid

flow into the disc.288,301 Because disc behavior is dependent on load-

ing history, disc recovery will be affected by the creep loading proto-

col that was applied (magnitude and duration). A recent study with

healthy bovine discs showed that disc recovery from creep was

dependent on the magnitude of applied load, where the initial elastic

recovery behavior was greater for discs that experienced higher loads

during creep.302

Stress magnitudes applied during recovery range from no loading

(0 MPa) to 0.04 MPa, which is slightly lower than the estimated stress

on a lumbar disc during supine lying (Table 4).29,30,275,276,301-306 Stud-

ies on disc recovery face similar challenges with reaching equilibrium,

where full disc height recovery is often not achieved in 0.15 M

phosphate-buffered saline, even after 24 hours of unloaded or low-

load recovery.275,302 Recent studies have shown that the recovery

environment and previous loading history will greatly alter disc recov-

ery mechanics, and the ability to achieve equilibrium during recov-

ery.303,307 That is, disc recovery does achieve equilibrium when under
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higher osmotic conditions that prevent fluid flow into biological tis-

sues, but the direct representation of in vivo osmotic loading remains

unknown.

For analyzing creep data, often rheological models are used to

curve-fit to experimental results. These models may use three to five

parameters, which do not have physical interpretation, to describe the

TABLE 3 Summary of studies that applied axial disc compression

Time (hrs) Applied load (N) Applied stress (MPa) Species Comparable in vivo activity

Adams260 4 *** Human Body weight (BW)

Koeller281,282 0.08 950 0.52 Human Holding <20 kg near body

Kolditz283 24 0.60 Human Holding 20 kg near body

1.20 High Loading

Keller28 0.5 *** *** Human Adjusted by BW

Ohshima284 24 49-294 0.06-0.34 Porcine Lying supine to walking

Holmes285 0.5-6 1600 0.88 Human High loading

Li286 1 *** *** Human Adjusted by BW

Ekstrom287 0.22 50 0.06 Porcine Lying supine

100 0.11 Less than slouched sitting

Riches288 0.33 1.00 Human High loading

Palmer289 0.33 0.40 Murine Mid-range during walking

0.80 High loading

Sarver290 0.5 0.25 0.25 Murine Sitting relaxed

Boxberger122 0.75 4.5 0.28 Rat Standing

Johannessen262 2 200 0.50 Ovine Holding <20 kg near body

Heuer130 0.25 500 0.27 Human Sitting relaxed

Luo111 2 1000 0.55 Human Holding <20 kg near body

Masuoka103 0.15 1.00 Rat-tail High loading

1.5

15

O'Connell121,291,292 0.33 1000 0.55 Human Holding <20 kg near body

Korecki293 1 0.20 Bovine Sitting

Barbir274 0.5 12.5 0.78 Rat High loading

Pollintine278 0.5 1150 0.85 Human High loading

1

2

Campana294 0.17 400 0.27 Human Sitting Relaxed

Hwang295 1.67 1.00 Rat-tail High Loading

Holguin296 1 6 0.37 Rat Mid-range during walking

Martin297 1 1.5 1.19 Murine-tail High Loading

van der Veen298 24 0.80 Human High Loading

Bailey299 0.33 0.50 Murine Holding <20 kg near body

Pei300 0.08 200 0.32 Ovine Sitting with straight back

600 0.95 High Loading

1000 1.59 High Loading

Bezci190 4 200 0.41 Bovine Mid-range during walking

1000 2.04 High loading

Schmidt277 8 0.50 Bovine Holding <20 kg near body

Russo141 1 0.25 Ovine Sitting Relaxed

Note: For studies that did not report stress, applied stress was calculated by using either the average disc area reported in the paper or species-specific disc

area from data in O'Connell et al and/or Beckstein et al (italicized stress values).99,121 Applied stress was then compared to in vivo loading conditions using

data provided in Table 2. Bovine discs are acquired from the caudal region of the spine due to cuts made in the lumbar spine for the meat industry. All

other discs were taken from the lumbar region unless specified (eg, for rat or mouse).
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overall nonlinear response.28,262,302 Since these tests are not likely to

achieve equilibrium, the model parameters are useful for comparing

data between groups, but the models will likely overestimate predic-

tions of equilibrium, due to insufficient data.298

Cyclic and viscoelastic testing: survey results

There was a strong consensus in the survey that mechanical prop-

erties from both static and dynamic loading are equally important

(70% of responders; Supporting Information S1, Q25). Approxi-

mately one-third of survey responders stated that they did not

have prior experience with static (either creep or stress-relaxation)

loading (Supporting Information S1, Q26). Of survey respondents

with static loading experience, there was no consensus regarding

the testing time (Supporting Information S1, Q27). Approximately

30% of responders stated that tests should be conducted for up to

2 hours, while 39% of responders suggesting tests be conducted

8 hours or longer, which reflects the lack of consensus in the litera-

ture (Tables 3 and 4).

For study designs that require the same specimen to be

tested repeatedly, 83% of respondents indicated that specimens

should be rehydrated between testing (Supporting

Information S1, Q32). Approximately 50% of survey responders

stated that specimens should be rehydrated for a specified

amount of time before retesting the specimen. Of respondents,

34% indicated that specimens should be rehydrated until disc

height has recovered.

3.2.9 | Study design

In addition to the above reported findings, which are highly relevant

for experimental spine biomechanics, there are many study design

aspects that are common for all scientific research, which also applies

to spine mechanics.309 The importance of designing a study that is

adequately powered based on a priori sample size calculations, and

utilizes a repeated measures study design (each sample acts as its own

control for normalizing data), if feasible, are critical for reducing sam-

ple size and the chances of false-negative findings.310,311 Estimations

of effect sizes for a priori analyses is challenging without in-house

pilot data or from equivalent studies in the literature.311 Of greatest

challenge is the determination of clinically relevant effect sizes, which

may be of a different magnitude when compared to in vitro data.6

When no significant differences are found, post hoc power analyses

are critical for determining whether the study is underpowered.

Finally, an analysis of repeatability of methodologies, within or

between laboratories is important to consider.168,177,193,311 A number

of these aspects were explored in the survey, which are summarized

below.

Study design: survey results

For the best approach to reporting the effect of a treatment on seg-

ment mechanical properties, most survey responders (50%) chose a

repeated measures (paired) study design where the treatment data

were normalized to the same specimen in its intact state (Supporting

TABLE 4 Summary of studies that applied axial compression to disc joints, followed by recovery

Time
(hr)

Applied
load (N)

Applied

stress
(MPa) Species

Comparable in
vivo activity

Recovery
time (hr)

Recovery
load (N)

Recovery
stress (MPa)

Comparable in
vivo activity

Burns301 8 178 0.10 Human Less than

slouched

sitting

16 44 0.02 Less than lying

Bass30 0.33 100 0.11 Porcine Less than

slouched

sitting

0.67 0 0 Not comparable

(NC)

Dhillon29 0.33 1.00 Human High Loading 0.67 0 0 NC

MacLean306 4 2.5 0.20 Rat-tail Sitting 6 0.04 Supine lying

van der

Veen276
0.25 2.00 Porcine High Loading 0.5 0.001 NC

Hsieh305 0.25 0.30 Rat-tail Standing 0.5 0.003 NC

Chuang304,308 1 750 1.01 Bovine High Loading 24 0 NC

O'Connell275 4 1000 0.55 Human Holding <20 kg

near body

Up to 24 20 0.01 Less than lying

Bezci303 2 300 0.61 Bovine Holding 20 kg

near body

12 20 0.04 Supine lying

Bezci302 24 100-1200 0.15-2.00 Bovine Sitting to High

Loading

18 10 0.02 Less than lying

Note: For studies that did not report stress, applied stress was calculated by using either the average disc area reported in the paper or species-specific disc

area from data in O'Connell et al and/or Beckstein et al (italicized stress values).99,121 Applied stress was then compared to in vivo loading conditions using

data provided in Table 2. Bovine discs are acquired from the caudal region of the spine due to cuts made in the lumbar spine for the meat industry. All

other discs were taken from the lumbar region unless specified (eg, for rat or mouse).
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Information S1, Question 28). The next common choice (22%) was to

normalize data from the treatment group to an untreated control

group. Twelve percent chose not to normalize and just report the raw

data. Another 9% wrote in other choices that emphasized the need to

report both the raw data and data normalized to both the treatment

and intact condition.

For eliminating bias from testing history, most respondents (43%)

chose to randomize testing order (Supporting Information S1, Q33).

However, 36% chose to use a control group to undergo repeat testing

without injury/treatment if randomization cannot be used. Ten per-

cent would increase their sample size to minimize bias, and 7% chose

“Other” where they supported combinations of the two most pre-

ferred options and included conducting an a priori power calculation.

With regards to conducting an a priori power analysis, most

responders (51%) do so before commencing a study, although 37% indi-

cated that they sometimes perform this analysis, while 12% do not con-

duct this analysis (Supporting Information S1, Q34). Most responders

(35%) indicated that they used data from their laboratory from similar

studies as the basis for their a priori analysis, and a similar proportion

(31%) would use data from an equivalent published study (Supporting

Information S1, Q35). Approximately 15% would conduct a pilot study

for the project from which to calculate their a priori sample size. Almost

20% chose the “Other” category where most indicated that they would

choose either of the first three options. For the choice of sample size,

the overwhelming majority (79%) of researchers would use a sample size

of between 6 and 10 specimens (Supporting Information S1, Q36). Less

than 10% would use greater than 10 samples, and 7% would only use

3-5 samples. The remaining 5% chose “Other” where they indicated that

they would conduct an a priori sample size calculation first.

Most researchers (66%) perform tests for normality on their data

before selecting either a parametric or nonparametric statistical analysis,

with another 25% indicating that they would sometimes perform this test

(Supporting Information S1, Q37). Seven percent do not test for normality.

Almost 50% of researchers would use a clinically relevant differ-

ence between groups as the basis of their interpretation of statistical

findings with a further 37% indicating that they would sometimes do

this (Supporting Information S1, Q38). A small proportion (11%) do

not compare to clinically relevant differences, and 5% (Other) pointed

out that clinically relevant differences are not always available and

would use them if they were.

The responses from researchers regarding how they determined

the clinically relevant difference varied across the first three options

(Supporting Information S1, Q39). The majority (64%) would use

in vivo data from either the same or a related treatment, and a further

19% would use in vivo data from an unrelated treatment but the same

spine region. Almost 15% chose “Other” were most preferred the

same three options and noted that this also depended on the research

question.

The majority of respondents (53%) would sometimes treat each

spinal level as separate groups in their statistical analysis, and a further

34% said they always would (, Q40). Ten percent would not separate

each spinal level, and one in the “Other” category would first test for

difference and then pool the levels if no differences were present.

Most researchers (59%) indicated that they had validated their

findings by either repeating a study or collaborating with another lab

to repeat their study. However, 39% indicated that they have not vali-

dated their findings (Supporting Information S1, Q41). One researcher

in the “Other” category had not validated their findings due to limited

availability of funding, however, they noted the importance of validat-

ing when possible.

4 | CONCLUSIONS FROM LITERATURE
REVIEW

The broad range of experimental techniques found in the literature high-

lights the importance of finding a consensus on factors that can confound

mechanical testing data. When designing a research study, it is important to

address the specific research question(s) and to justify the chosen methods

using evidence from the peer-reviewed literature. If best practices are

beyond the ability of specific labs, it may be more appropriate to seek col-

laborations with colleagues who have access to best practices or avoid con-

ducting a study that has limited physiological relevance altogether. There

are many subtle variables that can significantly confound testing results.

Each of these variables should be reported in detail and, if the sample size is

sufficient, be included as an independent factor in the data analysis. Ulti-

mately, the goal of experimental design is to reduce the confounding effects

of these factors sufficiently so that measured differences in outcomes are

due to the treatments and not secondary factors related to variation in tech-

niques. Moving toward a consensus will greatly improve the ability to com-

pare findings across studies and evaluate potential therapeutic

strategies.312,313

5 | RECOMMENDED BEST PRACTICES

Decades of experimental spine biomechanics research have enhanced

our understanding of the effects that experimental techniques can

have on outcomes. This has resulted in a substantial body of work

explicitly focused on how to optimize in vitro spine biomechanical

testing so that it best predicts in vivo performance of spinal tissue—

both native and post-intervention. Despite the wealth of information

on technique, it is impossible to define a universal template for

in vitro testing methods because the goals of spine biomechanics

studies vary widely. The specific methods most appropriate for a

study largely depend on the specific scientific questions of that study.

However, the following list of best practices was developed based on

the scientific rationale summarized from the available literature for

mechanical testing of motion segments.

5.1 | Sample selection

• The most appropriate specimens for any given study are those that

mimic the patient population or tissue properties that are most rel-

evant to the hypothesis being tested.
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• Reporting of individual specimen demographics is critical.

• Specimen characteristics, including age, extent of degeneration,

sex, spinal level, and bone quality should be determined and

reported.

• Studies should be adequately powered to include these character-

istics as independent factors in statistical analyses. Alternatively,

variations in these parameters should be controlled by either

screening or distributing them evenly among treatment groups as

much as possible to minimize their potential confounding effects.

5.2 | Sample preparation

• Formalin-fixed tissue and its alternatives should not be used for

biomechanical testing.

• If specimens are not used immediately after harvesting, they

should be wrapped in saline-soaked gauze, sealed in double plastic

bags, and frozen at −20�C or colder until the time of use.

• Specimens should not be subjected to more than 4 freeze-thaw

cycles at −20�C.

• Resection or transection of tissue structures should be reported.

• A high modulus material should be used for specimen potting and

care should be taken to eliminate any relative motion between the

specimen and the testing apparatus.

• Disc dimensions (eg, height) should be measured and reported as

well as whether they were measured before or after mechanical

testing. The manner by which dimensions were measured (eg, cali-

pers, CT, MRI) should also be reported.

5.3 | Testing environment

• Testing duration, temperature, and specimen hydration should be

controlled and documented.

• Prior to testing, specimens should be hydrated by constrained

immersion in saline under an appropriate preload (detailed below).

• During testing, specimens should be maintained moist at all times

either in a 100% humid environment, by wrapping specimens in

saline-soaked gauze or plastic, with periodic irrigation, or with con-

strained immersion in a bath.

5.4 | Initial conditions: preconditioning

• Preconditioning protocols should be controlled and reported.

• For ROM testing, two cycles of testing are commonly sufficient to

precondition specimens. However, when the intent of

preconditioning is to minimize the cycle-to-cycle variation in the

mechanical response of a specimen, individual specimens should

be tested one cycle at a time and the data analyzed after each

cycle to determine when preconditioning has been achieved.

• As an alternative to cyclic loading, preconditioning can be achieved

by the application of a static load based on the spinal level

(Tables 1 and 2).

5.5 | Initial conditions: preloading

• For ROM testing in load control, during testing, axial compressive

preloads should be applied through the axis of rotation of the

motion segment (or segments) utilizing the follower load or similar

technique.

• The magnitude of axial compressive preload should be dictated by

the analogous in vivo intradiscal pressure from which the equiva-

lent axial compressive force can then be calculated using the disc

area and an appropriate correction factor (Table 2).144

5.6 | Spine testing strategies

• Unconstrained 6DOF load control, unconstrained 6DOF hybrid

position-load control, or application of unconstrained pure

moments with axial compressive preloads are acceptable tech-

niques for ROM testing.

• In the lumbar spine, maximum bending moments in the range of

7.6-10 Nm are most representative of physiological loading.

• In the cervical spine, maximum bending moments of 2.0 Nm repro-

duce in vivo motion.

5.7 | Cyclic and viscoelastic testing

• Cyclic loading tests should be performed until changes in displace-

ment plateau reach an equilibrium (eg, the rate of change in dis-

placement is less than some predetermined threshold).

• Due to extended testing times for creep or recovery (ie, greater

than 8 hours), experiments need to be performed within a bath;

however, care should be taken to ensure that specimens are not

overhydrated prior to testing (Section 5.5).

• In long term static (creep) testing, axial compressive loads range

between 460 N and 530 N in the lumbar spine to approximate sit-

ting or standing (Table 2).

• Combined loading protocols (eg, compression with bending or rota-

tion) better represent in vivo loading.

• The order of the applied loading should be controlled and reported

to minimize fluid-flow effects.

5.8 | Study design

• An a priori sample size calculation, and the rationale for the choice

of sample size should be undertaken and justified.

16 of 25 COSTI ET AL.



• Repeatability of methodology from prior studies within the same

laboratory (or from other external published studies), and/or

between other laboratories should be considered.

• Independent validation of laboratory findings to confirm that alter-

native tests demonstrate general equivalence in results, for exam-

ple, measurement of disc area compared between using calipers vs

X-ray/CT/MRI, should be performed.

• Normalization of results to an appropriate control, such as a

repeated-measures (paired) study design, if appropriate, should be

performed.

• Post hoc power analyses for nonsignificant findings to determine if

there truly are no differences between treatment groups, or if the

study is merely underpowered, are required.

• Interpretation of results in a clinical context should be presented,

including estimations of this with justifications and evidence: how

does the experimental effect size relate to the clinically relevant

effect size?
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