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Abstract. As the Arctic region moves into uncharted territory under a warming climate, it
is important to refine the terrestrial biosphere models (TBMs) that help us understand and
predict change. One fundamental uncertainty in TBMs relates to model parameters, configura-
tion variables internal to the model whose value can be estimated from data. We incorporate a
version of the Terrestrial Ecosystem Model (TEM) developed for arctic ecosystems into the
Predictive Ecosystem Analyzer (PEcAn) framework. PEcAn treats model parameters as proba-
bility distributions, estimates parameters based on a synthesis of available field data, and then
quantifies both model sensitivity and uncertainty to a given parameter or suite of parameters.
We examined how variation in 21 parameters in the equation for gross primary production
influenced model sensitivity and uncertainty in terms of two carbon fluxes (net primary pro-
ductivity and heterotrophic respiration) and two carbon (C) pools (vegetation C and soil C).
We set up different parameterizations of TEM across a range of tundra types (tussock tundra,
heath tundra, wet sedge tundra, and shrub tundra) in northern Alaska, along a latitudinal
transect extending from the coastal plain near Utqia _gvik to the southern foothills of the
Brooks Range, to the Seward Peninsula. TEM was most sensitive to parameters related to the
temperature regulation of photosynthesis. Model uncertainty was mostly due to parameters
related to leaf area, temperature regulation of photosynthesis, and the stomatal responses to
ambient light conditions. Our analysis also showed that sensitivity and uncertainty to a given
parameter varied spatially. At some sites, model sensitivity and uncertainty tended to be con-
nected to a wider range of parameters, underlining the importance of assessing tundra commu-
nity processes across environmental gradients or geographic locations. Generally, across sites,
the flux of net primary productivity (NPP) and pool of vegetation C had about equal uncer-
tainty, while heterotrophic respiration had higher uncertainty than the pool of soil C. Our
study illustrates the complexity inherent in evaluating parameter uncertainty across highly
heterogeneous arctic tundra plant communities. It also provides a framework for iteratively
testing how newly collected field data related to key parameters may result in more effective
forecasting of Arctic change.

Key words: arctic carbon budget; arctic tundra; landscape heterogeneity; model uncertainty; parameter
sensitivity; terrestrial biosphere model.

INTRODUCTION

In arctic terrestrial ecosystems, climate is the most
important driver of change. As the Arctic warms at twice
the rate relative to the rest of the globe, with some
regions experiencing even faster rates, tundra ecosystems

are undergoing unprecedented change (Box et al. 2019,
Overland et al. 2019). This warming and related length-
ening of the Arctic growing season by ~2.5 days per dec-
ade (Euskirchen et al. 2006, Park et al. 2016) is
increasing tundra plant carbon (C) uptake and vegeta-
tion productivity, with a distinct impact on the growth
of woody shrub vegetation (Sturm et al. 2001, Myers-
Smith et al. 2011, 2015, Keenan and Riley 2018). How-
ever, these increases in vegetation productivity are not
uniform, with many areas remaining stable or even
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showing declining productivity (Bhatt et al. 2013, Phoe-
nix and Bjerke 2016, Lara et al. 2018). Together with
vegetation impacts, warming in northern high latitudes
is thickening the active layer (a soil layer above per-
mafrost that freezes and thaws seasonally). This thicken-
ing of the active layer makes available for decomposition
and release the large amounts of organic C (Hugelius
et al. 2014, Strauss et al. 2017) that have been stored in
these cold permafrost soils for millennia (Schuur et al.
2015), and may result in the release of potent greenhouse
gases and a positive feedback to warming. However, it is
unclear if these soil C losses will be counterbalanced by
increased plant C uptake (McGuire et al. 2018, Mekon-
nen et al. 2018).
As the Arctic region moves into uncharted territory, it

is important to refine the terrestrial biosphere models
(TBMs) that help us to further understand and predict
these changes. These models include several sources of
uncertainty, including uncertainty in how best to repre-
sent the complexity of the system (Bradford et al. 2016,
Lique et al. 2016, Lovenduski and Bonan 2017, López-
Blanco et al. 2018), driving climate and atmospheric
data (Clein et al. 2007, Cowtan and Way 2014, Dodd
et al. 2015), validation data (including both a lack of val-
idation data and uncertainty associated with such mea-
surements; Lovenduski and Bonan 2017, Fisher et al.
2018), and model parameters (Hararuk et al. 2015,
Fisher et al. 2018). A model parameter is a configuration
variable internal to the model and whose value can be
estimated from data collected in the field or determined
through empirical experimental approaches in a labora-
tory setting. Model parameter uncertainty depends upon
(1) the sensitivity of the model to the input parameters
(i.e., the change in model output resulting from a change
in parameter value) and (2) the uncertainty of these
parameters. A sensitive parameter that is well con-
strained by observations may have a lower impact on
model uncertainty than a moderately sensitive parame-
ter that is poorly constrained.
Terrestrial biosphere models are often characterized

by a high level of complexity, resulting in the need for a
large number of model parameters. Even when the
model outputs and observations agree, it remains impor-
tant to address overall parameter uncertainty (i.e., con-
front the estimated parameter value with the range of
possible variation from observations), to confirm this
agreement is for the correct reasons. However, it is chal-
lenging to determine the influence model parameter
uncertainty has on model results. This is, in large part,
due to the complex nature of this endeavor, with dozens
of model input parameters that can vary over space and
time, and evaluating alternative parameter combinations
can have many complex interconnected feedbacks in the
model (Viskari et al. 2019). Furthermore, while some
parameters can be well constrained by a rich source of
data, a number of them are often poorly documented,
especially for remote high latitude regions where obser-
vations are scarce (Schimel et al. 2015) and the tundra

vegetation communities display large amounts of hetero-
geneity across the landscape. Hence, it was parameters
such as these, with little to no field data, which moti-
vated the determination of how these parameters influ-
ence model outputs. That is, would the extra effort
required to measure these parameters in the field pay off
in terms of reducing model uncertainty?
Evaluation of ecosystem model parameter uncertainty

requires an efficient methodology to test the model
parameterizations of the underlying plants and soils in a
given ecosystem and to iteratively test a model parame-
terization with new data. One such framework for this
evaluation is the Predictive Ecosystem Analyzer
(PEcAn, Fig. 1; Dietze et al. 2013, LeBauer et al. 2013,
Wang et al. 2013). PEcAn is an ecoinformatics toolbox
that consists of a scientific workflow to manage environ-
mental data and a Bayesian data assimilation system to
synthesize this information within ecosystem models.
PEcAn treats model parameters as probability distribu-
tions and estimates parameters based on synthesis of
available field data, and then quantifies both parameter
and model output uncertainty. While PEcAn has been
applied broadly across ecosystems and biomes and can
interface with a wide range of ecosystem models, it has
not been used specifically in a study that focuses on the
various tundra types that comprise arctic terrestrial
ecosystems. Here, we incorporate the Terrestrial Ecosys-
tem Model with Dynamic Vegetation and Dynamic
Organic Soil Layers (DVM-DOS-TEM, v0.3.0, referred
hereafter as simply TEM) into the PEcAn framework.
TEM has been developed for and applied to high-
latitude arctic tundra and boreal ecosystems and has
been shown to have generally good agreement with field
data from these regions (Euskirchen et al. 2009, 2014,
Genet et al. 2018). To date, the overall parameter uncer-
tainty in the model has not yet been directly accessed.
Furthermore, recent data collection efforts at an array

of sites across northern Alaska (Fig. 2) provides motiva-
tion to assess parameter measurement needs and run
model simulations at these specific locations.
Across four dominant types of arctic tundra commu-

nities (heath tundra, shrub tundra, tussock tundra, and
wet sedge tundra) and the plant functional types (PFTs)
within each community (e.g., deciduous shrubs, ever-
green shrubs, mosses, lichens), we pose the following
questions:

1) Based on a set of 21 selected parameters that control
C fluxes and pools, to which parameters is the model
most sensitive and which parameters result in the
greatest model uncertainty?

2) How does this sensitivity and uncertainty vary across
output variables, including those pertaining to vege-
tation and soil C pools and fluxes in arctic tundra?

3) What is the effect of site location and vegetation
composition on sensitivity and model uncertainty,
e.g., is shrub tundra in the Seward Peninsula charac-
terized by a different set of key sensitivity and
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Ecological Applications

Vol. 32, No. 2



uncertainty parameters than a shrub tundra site in the
foothills of the Brooks Range? Are patterns in model
sensitivity and parameter uncertainty shared across a
range of tundra types that are in close proximity?

METHODS

Simulation sites

To gain a better understanding of model sensitivity
and uncertainty across a range of arctic tundra plant
communities, we performed model simulations across
Arctic Alaska that represent (1) the coastal floodplain
in northern Alaska, (2) a latitudinal transect extend-
ing from the southern to northern foothills of the
Brooks Range paralleling the Dalton Highway in
northeastern Alaska, and (3) Beringian Alaska in the
Seward Peninsula. These sites span two bioclimates,
Subzones C and E (Fig. 2, Table 1; Walker et al.
2005). The site in the coastal floodplain is in the
northern most of these bioclimates, Subzone C, and
comprises wet sedge tundra near Utqia _gvik, Alaska.
The Dalton Highway latitudinal transect in northeast-
ern Alaska spans Subzone E, and comprises sites in
low shrub tundra (sites abbreviated as DHS1–DHS5
later on). In Beringian Alaska, our simulations include

sites in heath tundra, moist acidic tussock tundra,
and low shrub tundra in Subzone E, located in close
proximity to one another on a hillslope (<1 km apart,
and consequently all under the same climate forcing)
and approximately 100 km north of the town of
Nome, Alaska in the Seward Peninsula (sites named
Kougarok later on). We examine the spatial variability
of model sensitivity and uncertainty across the various
sites, including by comparing results for low shrub
tundra from the latitudinal transect and the shrub
tundra at the Kougarok site. We examine the differ-
ences in model sensitivity and uncertainty between
vegetation communities by comparing results from the
Kougarok site for shrub, tussock, and heath tundra,
and the Utqiagvik site for wet sedge. Each of these
sites has been the focus of field studies in recent years
(Langford et al. 2016, 2019, Norby et al. 2019, Sal-
mon et al. 2019, Chen et al. 2020). Thus, we selected
to perform our simulations at these sites because, in
future studies, field data collected at these sites may
be incorporated into our model parameterizations
(data collection was still ongoing during our develop-
ment of this study), and additional field data for
model parameterization and evaluation that we find
lacking based on the study presented here could then
be collected at these sites.

Exis�ng model parameter data 
(either from the ecosystem model or from the BETY database)

Priors

Posteriors
(posteriors = priors if 

a range of 
parameter data are 

not available)

Meta-analysis
(if the database provides a 

range of values for a 
parameter)

Meta-analysis posteriors

Terrestrial ecosystem model

Newly collected data

Model ensemble

Variance decomposi�on

Sensi�vity analysis

Determina�on of cri�cal parameter 
informa�on needed to reduce model uncertainty

Ensemble posterior

FIG. 1. Diagram of the workflow of the Predictive Ecosystem Analyzer (PEcAn) coupled with the Terrestrial Ecosystem Model
(TEM). Initially, the BETYdatabase is queried for information related to parameters in TEM for a given plant functional type. If
available, these data are synthesized in a meta-analysis, resulting in a posterior trait distribution. In our case, data were available for
one parameter, leaf area index (LAI). For the remaining parameters, the posteriors are equivalent to the priors, with the distribution
chosen to best represent a given parameter. The ensemble of model runs with the TEM-PEcAn framework produces the posterior
distribution of model outputs, representing a probabilistic assessment or forecast that accounts for parameter uncertainty. The sen-
sitivity analysis and variance decomposition are then calculated, providing insight to the relative contribution of each parameter,
and how to collect future data to reduce model parameter uncertainty.
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Overview of DVM-DOS-TEM

We incorporated the Terrestrial Ecosystem Model
with Dynamic Vegetation and Dynamic Organic Soil
Layers (DVM-DOS-TEM, or simply TEM) into the Pre-
dictive Ecosystem Analyzer (PEcAn) framework
(Fig. 2). The dynamic vegetation component of TEM
has been described previously (Euskirchen et al. 2009,
2014) as has the dynamic organic soil layer version of
TEM (Yi et al. 2010, Euskirchen et al. 2016, Genet et al.
2018). TEM has been used extensively in arctic and bor-
eal permafrost regions with applications to the soil envi-
ronment (Zhuang et al. 2001, 2003, Yi et al. 2010),
tundra vegetation dynamics (Euskirchen et al. 2009,
2014), carbon storage (Genet et al. 2018), and feedbacks
to climate (Euskirchen et al. 2007, 2016). We briefly
describe the model here.
TEM is a process-based ecosystem model that is

designed to simulate carbon (C) and nitrogen (N) pools
of the vegetation and the soil, and carbon and nitrogen
fluxes among vegetation, soil, and the atmosphere
(Raich et al. 1991, McGuire et al. 1992). The version of

TEM used in this study (DVM-DOS-TEM v0.3.0, avail-
able online)6 comprises four modules: an environmental
module, a dynamic organic soil module, a disturbance
module, and an ecological module with vegetation
dynamics. The environmental module simulates the
dynamics of biophysical processes in the soil and the
atmosphere, and includes soil temperature, freeze/thaw
fronts (including permafrost dynamics), water table and
soil moisture conditions for multiple layers within the
moss, fibric and humic organic horizons, and mineral
soil horizons. The dynamic organic soil layer module
calculates thickness of the fibric and the humic organic
layers and incorporates changes in the thickness of these
layers due to ecological processes (litterfall, decomposi-
tion, and burial) as well as fire disturbance. The distur-
bance module simulates the effects of logging and
wildfire on soil and vegetation C and N pools and is not
applied to the tundra sites simulated in this study. The
ecological module simulates carbon and nitrogen
dynamics in the atmosphere, vegetation, and soil,

FIG. 2. Simulation sites used in this study and their bioclimatic subzones in Alaska. The subzones can be represented through
their mean July temperatures, with warmer July temperatures increasing the size, horizontal cover, abundance, productivity, and
variety of plants. In Alaska, woody plants occur as hemiprostrate dwarf shrubs (<15 cm tall) in Subzone C (mean July temperatures
about 5°–7°C), erect dwarf shrubs (<40 cm tall) in Subzone D (mean July temperature about 7°–9°C), and low shrubs (40–200 cm
tall) in Subzone E (mean July temperature about 9°–12°C).

6http://github.com/ua-snap/dvm-dos-tem
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including the vegetation dynamics of the ecosystems.
The dynamic organic soil layer module is linked to the
ecological module so that the thickness of the organic
layers is linked to the amount of carbon stored. Each
plant community type in TEM (e.g., heath tundra, shrub
tundra, tussock tundra, wet sedge tundra) is composed
of up to 10 plant functional types (PFTs) that are
parameterized differently depending on the community
in which they are found. Example PFTs are dwarf birch
shrubs, willow shrubs, other deciduous shrubs, evergreen
shrubs, grasses, sedges, forbs, lichens, feathermoss, and
Sphagnum moss. The PFTs in each community type
compete for water, light, and available nitrogen. Over
the course of a model simulation, a given PFT may show
increases or decreases in biomass, depending on its abil-
ity to compete and in response to changing environmen-
tal conditions. Typically, under a warming arctic climate,
our model has simulated increases in biomass across all
PFTs, although shorter-stature PFTs have been shown
to exhibit slight declines in some instances due to lower
light availability as shrubs grow larger (Euskirchen et al.
2009, 2016).

The driving inputs for TEM are the climate variables
including monthly mean air temperature, total monthly
precipitation, net incoming shortwave radiation, and
vapor pressure (Climate Research Unit—CRU TS 3.1;
Harris et al. 2014, and downscaled as described in
Euskirchen et al. 2016) as well as yearly atmospheric
CO2 concentration. Site drainage classification, soil tex-
ture classification, elevation, and vegetation community
type are used to initialize model simulations. The model
is calibrated once for a representative field site for each
vegetation community type using rate-limiting parame-
ters represented in the model based on target values of C
and N pools and fluxes of representative tundra ecosys-
tems. This calibration procedure is performed because
these rate-limiting parameters typically cannot be deter-
mined directly from available data or published informa-
tion. In the calibration process, rate-limiting parameters
for GPP (Cmax in Eq. 1 below), autotrophic respiration
(Kr), heterotrophic respiration (Kd), maximum plant N
uptake (Nmax), N in litter production, and soil N immo-
bilization are adjusted until model values match the
field-based estimates of GPP, NPP, N uptake, and vege-
tation and soil C and N pools at the calibration site.
These adjusted rate-limiting parameters and field-based
estimates of GPP, NPP, N uptake, and vegetation and
soil C and N pools are then used to initialize the model
simulations when the model is simulated at other sites.
Further information on the calibration process is also
provided in previous publications that apply TEM to
simulate ecosystem dynamics (Raich et al. 1991,
McGuire et al. 1992, Euskirchen et al. 2009, 2014).

Description of TEM parameters evaluated in the
PEcAn framework

We evaluated 21 model parameters used in TEM
(Table 2) within the PEcAn framework, representing a
broad suite of ecological processes in TEM. None of
these 21 parameters are included in the calibration pro-
cedure described above. Each parameter we evaluated
relates to the key equation in the model (Eq. 1), which
governs gross primary production (GPP). In TEM, the
overall amount of GPP of a plant functional type
(GPPPFT) within a given tundra community, is regulated
by the maximum rate of C assimilation (Cmax), moder-
ated by several functions, and is calculated for each leaf,
wood (including woody course roots), and fine root
component of a PFT

GPPPFT ¼ f ðCO2Þf ðPARÞf ðTÞf ðGvÞðLEAFÞmax

� f ðFOLIAGEÞf ðTHAWPCTÞf ðNAVÞ
(1)

where f(CO2) is a function of the atmospheric CO2 con-
centration, f(PAR) is a function of photosynthetically
active radiation, f(T) is a function of the monthly mean
air temperature, f(Gv) is a function of relative conduc-
tance of the vegetation to CO2 uptake (Gv), f(LEAF) is

TABLE 1. Tundra community types and the four plant
functional types (PFTs) within each tundra community that
had the four greatest initial values for vegetation carbon (C)
stocks (e.g., biomass) among the PFTs that comprised each
community, with that percentage of vegetation C provided
next to each PFT.

Tundra community type, PFTs, and site
MAAT
(°C) P (cm)

Heath
Decidous shrubs (21%), evergreen shrubs (49%),
mosses (28%), lichens (2%)
Kougarok (65.167°N, 164.833° W) −3.5 41

Shrub
Dwarf birch (58%), willow (22%), other deciduous shrubs
(5%), feathermoss (9%)
Kougarok (65.167°N, 164.833° W) −3.5 41
DHS1 (67.017°N, −150.293° W) −6.7 38
DHS2 (67.383°N, −150.101° W) −6.2 25
DHS3 (67.828°N, −149.821° W) −7.6 21
DHS4 (69.009°N, −148.825° W) −9.1 16
DHS5 (69.343°N, −148.728° W) −9.6 16

Tussock
Dwarf birch (10%), evergreen

shrubs (27%), sedges (34%),
Sphagnum (11%)
Kougarok (65.167°N, 164.833° W) −3.5 41

Wet sedge
Sedges (72%), grasses (2%),
feathermoss (8%), Sphagnum (8%)
Utqia _gvik (71.228° N, −156.602°W) −11.1 16

Notes: “Sites” refers to the site name and latitude and longi-
tude where each tundra community type was simulated. Mean
annual air temperature (MAAT, °C) and total annual precipita-
tion (P, mm) are given for the years 1990–2015, as calculated
with the model input data from the Climate Research Unit (see
Methods).

March 2022 ARCTIC TUNDRAMODELUNCERTAINTY Article e02499; page 5



TABLE 2. Description of parameters used with the simulation and summary of the prior distributions and range (when applicable)
of parameter medians or range of medians across PFTs, grouped according to their ecological function.

Parameter (units)

Description and
reference for

parameter values Distribution

Range of a statistic across PFTs

Medians a b LCL UCL

Parameters related to photosynthetic temperature (Photo temp)

Tmin (°C) minimum temperature
for photosynthesis

Uniform −7.9 to −4.9 −7.5 to −11.0 −5.0 to 0 −7.4 to −10.8 −0.25 to −5.1

Toptmin (°C) the range of minimal
temperatures for
photosynthesis

Uniform 3.5–5.5 1.5–2.0 9.0–9.5 1.7–2.2 8.8–9.3

Toptmax (°C) the range of maximum
temperatures for
photosynthesis

Uniform 20.0–23.0 10.0–20.0 25.0–30.0 10.5–20.5 24.7–29.5

Tmax (°C) maximum temperature
for photosynthesis

Uniform 25.0–35.0 20.0–22.0 28.0–45.0 20.2–25.5 27.8–44.5

Parameters related to leaf area (Leaf area)

SLA (m2/kg leaf) specific leaf area (leaf
area per leaf mass)

Weibull 12.8 3.5 14.2 4.8 20.7

iLAI (m2/m2) starting value for leaf
area index

Gamma 0.035–2.0 1.0–2.0 0.25–20.0 0.001–1.51 0.18–2.5

Parameters related to fine roots (Fine roots)

Fine root
productivity
at depth [10]–[50] (%)

fine root allocation
vertically in soils, every
10 cm from 0 to 50 cm
(%); not applicable for
all PFTs (a total of five
parameters)

Uniform 2.0–50.0 0.01–35 4.0–90.0 0.11–35.5 3.9–88.0

Parameters related to leaf stomata conductance and vpd (Leaf cond)

Vpd_open (Pa) vpd for leaf stomata
fully opened

Uniform 0.9 0.8 1.1 0.8 1.1

Vpd_closed (Pa) vpd for leaf stomata
fully closed

Uniform 4.1 3.2 5.0 3.3 5.0

Cuticular
conductance
(µmol�m−2�s−1)

cuticular conductance
of a leaf

Log-normal 3,006.5 8.0 0.7 778.1 11,766.1

Parameter related to radiation influence on leaf stomates (PPFD50)

PPFD50
(µmol�m−2�s−1)

amount of photosynthetically
active radiation
at which stomates
partially (half) close

Uniform 75.0 5 145 8.6 141.5

Parameter related to canopy conductance (Canopy cond)

Gcmax (m/s) maximum canopy
conductance

Uniform 0.003 0.003 0.004 0.003 0.004

Parameter related to nitrogen availability (Labile N)

Labile N (g N/m2) labile N concentration Uniform 0.20 0.05 0.34 0.15 0.34

Parameter related to reflectivity (Albedo)

Albedo (W/m2) shortwave albedo Uniform 0.16 0.01 0.30 0.02 0.29

Parameters related to light competition (Extin coeff)

Extinction
coefficient

light extinction coeffi-
cient for light competi-
tion across PFTs

Gamma 0.37–0.47 4.0–5.0 0.40–10.0 0.15–0.16 0.55–1.02

kLAI extinction coefficient for
converting between
LAI and foliar percent
cover

Uniform 0.25–0.45 0.01–0.30 0.34–0.60 0.03–0.31 0.33–0.63

Notes: Prior distributions are used in the meta-analysis for one parameter, specific leaf area (SLA), and for all other parameters
the priors were equal to the posterior distributions (as described in Methods). Terms a and b are the first and second parameters of
the probability distribution. LCL and UCL are the upper and lower 95% credible limits, respectively. LAI, leaf area index; vpd,
vapor pressure deficit. Parenthetical documentation in boldface type along with each parameter grouping refers to the abbreviation
of the parameter grouping used in figure legends and elsewhere in the manuscript. The full table of values for each community type,
PFT, and parameter is available through our code repository, https://zenodo.org/record/4349004.

Article e02499; page 6 EUGÉNIE S. EUSKIRCHEN ETAL.
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monthly leaf area relative to leaf area during the month
of maximum leaf area, f(FOLIAGE) is a scalar function
that ranges from 0.0 to 1.0 and represents the ratio of
canopy leaf biomass relative to maximum leaf biomass,
f(THAWPCT) is a freeze–thaw index that calculates the
proportion of the month that the rooting zone of the soil
is either frozen or thawed using simulated soil tempera-
tures at 10 cm depth (used to represent the onset of
photosynthesis), and f(NAV) is dynamically calculated to
model the limiting effects of plant N status on GPP
based on a comparison of N availability and N
requirement.
Each of the parameters we chose to examine within

the PEcAn framework are directly or indirectly related
to the functions within the GPPPFT equation. We
describe here how the parameters we chose to evaluate
are generally related to the functions in Eq. 1. The
f(PAR) function includes processes related to light avail-
ability, including the amount of photosynthetically
active radiation at which stomates close halfway
(PPFD50; Table 2). The f(T) function includes a regula-
tion of GPP by temperature constraints, including those
related to optimal minimal and maximal temperatures
for photosynthesis (pstemp_min, pstemp_low, pstem-
p_high, pstemp_max; Table 2, Appendix S1: Fig. S1;
Tian et al. 1999). The functions f(LEAF) and f(FOLI-
AGE) govern the leaf area index (iLAI; Table 2) and
specific leaf area (SLA) respectively, as impacted by
water availability and season. The extinction coefficient
for light competition, or light “harvesting” across PFTs
(extin_coeff) and its scaling factor (kLAI) are also indi-
rectly included in the f(FOLIAGE) function. Variables
related to the influence of vapor pressure deficit (vpd)
on canopy conductance (vpd_open, vpd_close; Table 2)
are associated with the function for relative canopy con-
ductance, f(Gv), as is the maximum canopy conductance
parameter (Gcmax) and cuticular conductance(gl_c).
The allocation to fine roots and the vertical distribution
of fine root biomass throughout the soil profile is based
on fine-root biomass production coefficient for 10-cm
vertical depth increments (frpod_perc 10–50; Table 2).
These parameters are associated with the freeze–thaw
index function f(THAW). The nitrogen supply is regu-
lated by N availability and requirement, f(NAV) above,
including labile N availability (labileN, which changes
over the course of the simulation, but is also initialized
at the beginning of the simulation; Table 2). Some of
these parameters, such as fine-root allocation at depth,
are notoriously difficult to measure in the field and avail-
able field data are scarce, particularly for arctic tundra
plant communities (Iversen et al. 2015).

PEcAn description and model simulations

The Predictive Ecosystem Analyzer (PEcAn, ver.
1.6.0) was developed to streamline the ecoinformatics of
ecological models (LeBauer et al. 2013). PEcAn sup-
ports the flow of data used in such models, and aids in

model parameterization, and error propagation, as well
as uncertainty and sensitivity analysis. It can thus assist
in evaluating what future data collection may help most
to reduce model uncertainty for a given ecological
model, or suite of ecological models.
In a typical model simulation, a model parameter is

assigned a single value, typically based on the mean of a
collection of field measurements. However, in PEcAn,
available parameterization data can be assigned to a sta-
tistical distribution, called a “prior.” Based on data avail-
able in the Biofuel Ecophysiological Traits and Yield
database (BETY; available online),7 the priors are syn-
thesized using a Bayesian meta-analysis, resulting in a
“posterior” distribution that summarizes the uncertainty
associated with each parameter (LeBauer et al. 2013).
Since the BETY database was initially developed with a
focus on temperate ecosystems in the eastern and mid-
western United States, the information in the database
pertaining to tundra plants was minimal. In the applica-
tion presented here, our posteriors were determined
based on tundra plant data available in the BETY data-
base for one parameter, specific leaf area (SLA), the one
parameter for tundra plants available in the database
that corresponded to a parameter in TEM. This poste-
rior distribution is calculated using a linear mixed model
for the unobserved “true” trait mean Θij, where i indexes
the study site and j indexes each treatment within a
study

Θij ¼ β0 þ βsiteðiÞ þ βtrjsiteðijÞ þ βghIðiÞ: (2)

This equation includes the global trait mean (β0), a
normal random effect for the study site (βsite(i), includ-
ing spatial influences such as topography, soil, etc.), a
nested normal random effect for any experimental treat-
ments (βtr|site(ij), including the influence of temperature,
N availability, etc.), and a fixed effect for greenhouse
studies (βgh; LeBauer et al. 2013, Raczka et al. 2018).
The term I(i) is an indicator variable set to 0 for field
studies and 1 for studies conducted in a greenhouse,
growth chamber or pot experiment. Additional details
on the linear mixed model and the fitting procedure are
found in LeBauer et al. (2013).
The remaining 20 parameters without tundra trait

information available in the BETY database used the
parameter information already specified in TEM. These
are based on data collected for arctic tundra communi-
ties as part of the Arctic Long-Term Ecological
Research (LTER) site near Toolik Field Station (Shaver
and Chapin 1991, Van Wijk et al. 2003, Sullivan et al.
2007, Euskirchen et al. 2012, Gough et al. 2012, Sistla
et al. 2013), and field studies on the Seward Peninsula
(Thompson et al. 2004, 2006). These data are described
previously in Euskirchen et al. (2009, 2016), and Genet
et al. (2018), and summarized in Table 2. We formu-
lated prior distributions for the central tendency

7betydb.org
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informed from this parameter information in TEM and
used expert constraints on the confidence intervals
(Table 2). Due to the lack of trait information in the
database, the posterior distributions are then equivalent
to the priors.
We then used PEcAn to propagate parameter uncer-

tainty in TEM. PEcAn uses an ensemble-based Monte
Carlo approach. An ensemble of model runs is a set of
model runs that are parameterized by sampling from the
trait parameter distributions. In our case, we chose 300
ensembles at each site for our suite of selected output
variables because this number best represented the need
to balance computationally expensive model run times
with the need to complete analysis of the results. We per-
formed the ensemble of model simulations for each site
and each chosen PFT within that site, varying one PFT
at a time, with the remaining PFTs left at their default
parameters (Fig. 2, Table 1). For each ensemble mem-
ber, parameter sets are sampled from the full joint
parameter distribution of β0, the vector of all model
parameters. Consequently, the model ensemble approxi-
mates the posterior distribution of the model output.
This ensemble of model runs then results in a posterior
distribution of the TEM output that is summarized with
standard statistics (mean, standard deviation).
Each tundra community in TEM can be parameter-

ized with up to 10 PFTs. In the analysis presented here,
we chose to examine four of the PFTs within each tun-
dra community that had the greatest initial values of
vegetation carbon among the PFTs that comprised each
community (i.e., biomass; Table 1). Given the computa-
tional requirements of running TEM within the PEcAn
framework, we limited our simulations to the years
1990–2015. Our input climate data was based on that
from the Climate Research Unit and downscaled to
1-km2 resolution available through the Scenarios Net-
work for Alaska + Arctic Planning (SNAP) data portal
(available online).8 We chose to examine four response
variables, including two carbon fluxes and two carbon
pools: the fluxes of net primary productivity (NPP) and
heterotrophic respiration (RH), and pools of soil carbon
(Soil C) and vegetation carbon (Veg C).

Analysis: parameter uncertainty, model sensitivity,
model uncertainty

Our analysis included three metrics of the model
parameters. These included (1) the coefficient of varia-
tion (CV, %), (2) partial variance to quantify model
uncertainty attributed to each parameter (%), and (3)
elasticity (unitless) to quantify model sensitivity. We
describe these metrics and associated calculations fur-
ther below.
During the course of simulations, PEcAn evaluates

each parameter at the posterior median and at the four
posterior quantiles equivalent to �[1, 2]σ quantiles of

the parameter with all other parameters held at their
nominal values (Table 2). The CV is calculated from the
posterior parameter distributions, defined as the poste-
rior standard deviation divided by the posterior mean.
The parameter uncertainty is transformed to the

model uncertainty by fitting a cubic polynomial function
(spline), gp, to the modeled range of the output variable
of interest (y-axis of the spline). The partial variancep, or
the fraction of the total variance contributed by parame-
ter p (with x-axis of the spline being the range of values
for a given parameter), quantifies this model uncertainty
and is estimated as

Partial variancep ¼
Var½gpðβOpÞ�

∑m
p¼1Var½gpðβOpÞ�

(3)

where Var represents the variance operator, m is the total
number of parameters that were varied, gp is the fitted
spline function, and βOp is the Monte Carlo sample of
the parameter values, based on the parameter distribu-
tion at which the spline is evaluated (LeBauer et al.
2013, Raczka et al. 2018). The partial variance calcula-
tion is a univariate approach and does not account for
the interaction between parameters. The partial variance
depends on the parameter uncertainty (CV) and the
model sensitivity.
The sensitivity (unitless), often also referred to as

“elasticity,” is calculated as the derivative of gp evaluated
at the median parameter value, and then multiplied
by the median parameter value (�p) over the output
median ( f )

Sensitivity ¼ dgp
dØp

�Ø

f
: (4)

The sensitivity is thus a measure of how much a
change in a parameter influences a model output. A
model sensitivity of +1 means that a model output will
double when a given parameter doubles, and con-
versely, a model sensitivity of −1 means that the model
output is halved when a parameter doubles. In our
analysis, we use the mean sensitivity and mean uncer-
tainty across our 300 ensemble runs for each site and
output variable.
Given the large number of parameters (21 parameters)

and model ensemble simulations, we grouped the param-
eters into broad process themes: (1) temperature regula-
tion of photosynthesis, (2) leaf functional traits related
to leaf area, (3) fine-root depth distribution, (4) stomatal
conductance, (5) the radiation influence on leaf stom-
ates, (6) canopy conductance, (7) soil N availability, (8)
albedo, and (9) light competition and light harvesting
among PFTs (Table 2). We then took the mean sensitiv-
ity (after ensuring that the sensitivity values within a
grouping were not opposite in sign, that is, positive and
negative, between parameters) across a given parameter
grouping to assess model sensitivity (elasticity), and the

8http://snap.uaf.edu/data
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sum the fraction of uncertainty (partial variance) to
assess model uncertainty.
We examined the overall assessment of model sensi-

tivity and uncertainty across arctic tundra plant com-
munities (shrub, tussock, wet sedge, and heath tundra),
the dominant plant functional types within them
(Table 1), and four output variables (NPP, RH, Soil C,
Vegetation C). Therefore, there were 144 estimates each
for sensitivity and uncertainty for each of the 21 param-
eters based on the parameter groupings in Table 2,
except for the fine-root parameters where there were
100 estimates each for sensitivity and uncertainty since
the non-vascular mosses and lichens do not have fine
roots. Following these general summaries of sensitivity
and uncertainty, we then examined the spatial variabil-
ity of model uncertainty by comparing results from the
shrub tundra transect (DHS1–DHS5) and the shrub
tundra at the Kougarok site. We examined differences
among community by comparing model uncertainty
for the three tundra types located within close proxim-
ity at the Kougarok site, and the wet sedge tundra in
Utqiagvik.

RESULTS

Parameter coefficient of variation

We summarized the parameter coefficient of variation
(CV) by computing the mean and standard deviation of
the CV of the posterior distribution of the parameter
groupings across the plant functional types in the four
tundra plant communities (i.e., without aggregating
across PFTs or communities prior to calculating the
mean and standard deviation of the CV; Fig. 3). The
mean CVof the albedo, fine roots, labile soil N, leaf con-
ductance, and the radiation influence on leaf stomates
(PPFD50) parameter groupings were all roughly ~0.5.
The mean CV of the canopy conductance (0.1) and

photosynthetic temperature (0.2) parameter groupings
were the smallest.

Summary of model sensitivity and uncertainty across
arctic tundra plant communities, plant functional types,

and output variables

Across all sites, PFTs, and output variables, there were
some parameters that consistently influenced model sen-
sitivity and output uncertainty (Figs. 3, 4). Other
parameters were rarely influential. The model was most
sensitive to the parameters related to photosynthetic
temperature (Fig. 4h), with modest contributions to sen-
sitivity from the leaf area (Fig. 4e) and canopy conduc-
tance (Fig. 4g) parameters. For parameters related to
the extinction coefficient (i.e., light harvesting; Fig. 4b),
fine roots (Fig. 4c), and labile soil N (Fig. 4d), model
sensitivity was generally low.
The fraction of model output uncertainty contributed

by a given parameter was dominated primarily by
parameters related to leaf area (Fig. 5e), photosynthetic
temperature (Fig. 5h), and PPFD50 (Fig. 5i), where the
fraction was between 0.9 and 1 in some instances
(Fig.5e, h, i). However, in some cases, both the extinction
coefficient (Fig. 5b) and fine-root parameter (Fig. 5c)
groupings contributed significantly to model uncer-
tainty. While Figs. 4 and 5 illustrate the generalities in
sensitivity and uncertainty across the tundra types,
PFTs, and output variables, we found important nuances
when examining specific sites and output variables,
which we discuss further below, highlighting key param-
eters and output variables of interest.

Site-level and PFT-level comparisons

Shrub tundra across the latitudinal transect and in the
Seward Peninsula.—In shrub tundra, the model sensitiv-
ity (Fig. 6; Appendix S1: Fig. S2) and uncertainty
(Fig. 7) varied by model output variable and PFT for
both the Dalton Highway latitudinal transect and for
the shrub tundra Kougarok site. For example, these
dynamics were pronounced for the parameter grouping
related to photosynthetic temperature when examining
sensitivity of NPP for the dwarf birch shrubs. Further-
more, while the dwarf birch shrubs showed a high sensi-
tivity to photosynthetic parameters, the NPP of the
other deciduous shrubs in the shrub tundra was not sen-
sitive to this parameter grouping (Fig. 6b), and were
generally not sensitive to any of the parameters tested
for the other output variables (RH, Soil C, Veg C;
Appendix S1: Fig. S2). For the parameters related to
canopy conductance, the shrub tundra sites more consis-
tently agreed across output variables and PFTs in
exhibiting negative sensitivity (Fig. 6a, b, d, e).
Model uncertainty for shrub tundra was driven by all

parameter groups. For example, for NPP of the dwarf
birch shrubs, willow shrubs, and other deciduous shrubs,

0 0.2 0.4 0.6 0.8 1.0

PPFD50
Photo temp

Canopy cond
Leaf cond
Leaf area
Labile N

Fine roots
Extin coef

Albedo

Mean CV

FIG. 3. Parameter uncertainty represented as the mean (er-
ror bars represent the standard deviation) of the coefficient of
variation (CV). The mean and standard deviation of the CV is
computed across plant function types (PFTs) in each of the four
tundra types (Table 1) for a given model input parameter, or set
of parameters, as described in Table 2.
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Ecological Applications

Vol. 32, No. 2



the parameter related to the radiation influence on stom-
atal closure, PPFD50, showed the greatest contribution
to model uncertainty, although the parameters related to
the fine roots and canopy conductance were also influen-
tial (Fig. 7a–c). For the feathermoss in the shrub tundra,
the leaf area parameters were consistently the greatest
contribution to model uncertainty (Fig. 7d, h, l, p).
Overall, in the shrub tundra Kougarok site, a wider
range of parameters typically contributed to model
uncertainty compared to the shrub tundra sites along
the transect (Fig. 7e, h, i).

Seward Peninsula: Tussock tundra, heath tundra, shrub
tundra.—Given that we observed PFTs within the
shrub tundra (i.e., dwarf birch shrubs, willow shrubs,
other deciduous shrubs, and feathermoss) along the
transect and in the shrub tundra Kougarok site that
showed differences in model sensitivity and uncer-
tainty, we examined tundra communities located in
close proximity (~≤0.5 km apart) at the Kougarok site.
These included heath tundra, tussock tundra, and
shrub tundra. Our analysis includes tundra communi-
ties that contain some of the same PFTs (Table 1). For
example, dwarf birch shrubs are in both the shrub tun-
dra and tussock tundra, and evergreen shrubs are in
both the heath tundra and tussock tundra, while moss
is found in all three tundra communities (Table 1,
Fig. 8).
In terms of model sensitivity, we found that the same

PFT, located in different tundra communities, but under
the same climate, could have opposite responses, using

the photosynthetic temperature parameter grouping as
an example (Fig. 8a–d). In the dwarf birch for the Soil C
output, the sensitivity to photosynthetic temperature
was −0.7 for dwarf birch in the shrub tundra, and 0.2 for
dwarf birch in the tussock tundra (Fig. 8c). Moss was
prevalent in all three tundra types, and the model out-
puts were generally not sensitive to the photosynthetic
temperature parameters, except for RH in the shrub tun-
dra and tussock tundra (Fig. 8a–d).
We also found key differences in model uncertainty

for the same PFTs in different tundra communities. For
example, this was pronounced with dwarf birch RH in
the shrub tundra and tussock tundra, where the greatest
contribution to model uncertainty in the shrub tundra
was the canopy conductance parameter, but was the
PPFD50 parameter in the tussock tundra (Fig. 8f).
However, overall, there were some parameters across the
tundra communities and PFTs that consistently influ-
enced model uncertainty, including PPFD50, photosyn-
thetic temperature, and LAI.

Utqiagvik.—The sedges, grasses, feathermoss, and Sphag-
num in the wet sedge tundra near Utqiagvik showed sensi-
tivity to a wide range of model parameters for the output
variables RH and Vegetation C (Fig. 9b,d). However, for
the NPP and Soil C outputs the model showed low sensi-
tivity to the parameters, except for the NPP of the sedges
(Fig. 9a,c).
The model uncertainty in the wet sedge tundra was

primarily due to the parameters related to photosyn-
thetic temperature across all model outputs and PFTs,
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except for the sedges (Fig. 9e–h). The model uncertainty
in the sedges was distributed across numerous parameter
groupings. The parameters related to fine roots were
influential for the RH and Soil C of the grasses and
sedges.

Uncertainty in pools and fluxes from 1990 to 2015.—The
estimated model uncertainty due to the selected input
parameters (Table 2) allowed us to quantify ranges of
the model outputs, or response variables, in this case
NPP, RH, Soil C, and Vegetation C at the plant commu-
nity level (shrub tundra, tussock tundra, heath tundra,
wet sedge tundra; Table 3). Based on the ensemble of
model simulations, we calculated 25th and 75th quan-
tiles of the outputs. For NPP in the shrub tundra, the
25th quantile resulted in NPP values between 13% and
17% lower, and the 75th quantile resulted in values 14–
18% higher. In the wet sedge tundra, the quantiles were
greater, at 23% and 36% for the 25th and 75th quantiles,
respectively. Overall, the values of NPP varied from
99 g C�m−2�yr−1 in the heath tundra to 671 g C�m−2�yr−1
in the wet sedge tundra. For the flux RH, pulses of respi-
ration resulted in estimates in the 75th percentile
between 23% and 49% higher in the shrub tundra. RH

showed less variability across the sites than NPP, ranging
from 211 g C�m−2�yr−1 in the heat tundra to
351 g C�m−2�yr−1 in the tussock tundra. The pool of soil
carbon showed large variability in the quantiles across

tundra types, ranging from just 1% in the heath tundra
to 23% at one shrub tundra site. The pool of soil C was
smallest in the heath tundra at 18 kg C/m2 to 44 g C/m2

in the shrub tundra at the Kougarok site. For vegetation
C, the 25th percentile ranged from 11% in the heath tun-
dra to 28% in the wet sedge tundra, and the 75th per-
centile ranged from 12% in the heath tundra to 29% at
one of the shrub tundra sites. Vegetation C ranged from
298 g C�m−2�yr−1 at the heath tundra site to 1,283 at the
wet sedge tundra. These results suggest that error in the
model outputs due to input parameter uncertainty varies
geographically within one community type (shrub tun-
dra) and also across community types, with heath tundra
generally showing the smallest uncertainty and wet sedge
tundra the greatest.

DISCUSSION

Uncertainty in high-latitude ecosystem biogeochem-
istry models contributes to a large spread in simulations
of key response variables that determine the trajectory
of these sensitive ecosystems under a changing climate
(Fisher et al. 2014, McGuire et al. 2018). Here, we
assessed one aspect of this uncertainty, parameter
uncertainty, for one model developed specifically for
arctic and boreal ecosystems, the Terrestrial Ecosystem
Model with Dynamic Vegetation and Dynamic Organic
Soil Layers, newly integrated into the PEcAn

0
0.2
0.4
0.6
0.8
1.0

0
0.2
0.4
0.6
0.8
1.0

0
0.2
0.4
0.6
0.8
1.0

e

0
0.2
0.4
0.6
0.8
1.0

Feathermoss Grasses Sedges Sphagnum

U
nc

er
ta

in
ty

N
P

P
R

H
S

oi
l C

Ve
ge

ta
tio

n 
C

f 

g 

h 

Canopy cond
Labile NExtinc coef Fine rootsAlbedo

Leaf 
area Leaf cond PPFD50Photo temp

-0.3

0.2

0.7

-0.3

0.2

0.7

-0.3

0.2

0.7

-0.3

0.2

0.7

Feathermoss Grasses Sedges Sphagnum

a 

N
P

P
R

H
S

oi
l C

Ve
ge

ta
tio

n 
C

b

c

d

-0.65 -0.49 -0.97

S
en

si
tiv

ity
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framework. Given the large uncertainty in the arctic
carbon cycle, including whether the Arctic is a CO2

sink, source, or approximately in balance (McGuire
et al. 2012, Belshe et al. 2013, Fisher et al. 2014), we
examined four response variables related to carbon
cycling (NPP, RH, Soil C, and Vegetation C). Our work
here is a first step towards gaining this understanding
within the context of the TEM-PEcAn framework.
Additional inquiry is currently underway using this
framework to examine these dynamics going forward,
including assessing how parameters may covary and
performing model projections into the future to 2100 to
examine the net carbon balance. In our discussion
below, we consider aspects of our analysis that are
unique to arctic tundra plant communities and addi-
tional steps to take going forward.

Uncertainty in high latitudes

Arctic tundra landscapes are highly heterogeneous
due to small-scale variations in permafrost conditions,
vegetation composition, soil types, and moisture status.
The North Slope of Alaska has been mapped to 24 ter-
restrial ecosystem communities, with greater detail than
the broader tundra types we include in our study, includ-
ing several types of tussock tundra, shrub tundra, heath
tundra, and wet sedge tundra (Jorgenson and Heiner
2003). This landscape heterogeneity is the determining
factor of variability in the regional carbon balance of
tundra ecosystems (Zulueta et al. 2011, Treat et al.
2018). Consequently, given that each of these tundra
types, and the PFTs contained within them, could be
parameterized differently in an ecosystem model, it is
important to examine how the sensitivity and uncer-
tainty vary across the PFTs in various tundra types.
Here, we found a wide range of parameters driving GPP,
to which TEM was sensitive and which influenced model

uncertainty across four types of tundra, although a few
parameters were more prominent, including those
related to photosynthetic temperature, leaf area, and
canopy conductance for model sensitivity (Fig. 4). For
uncertainty, the model was largely influenced by param-
eters related to leaf area, photosynthetic temperature,
and the stomatal response to light (Fig. 5). Our results
also illustrate even further complexity, with geographical
differences in sensitivity and uncertainty even within the
same community type, such as shrub tundra (Figs. 5, 6).
The geographical differences within one community type
(i.e., shrub tundra) across an environmental gradient
suggests that there may be phenotypic variation or an
interaction between the environment and vegetation that
is governing this variation in the parameter sensitivity or
uncertainty. Furthermore, this finding suggests that
model parameterization may need to move away from
one parameterization for a species or PFT to include
other environmental interactions associated with the
parameters, and could involve separate model calibra-
tions for each site. This type of model parameterization
and calibration that considers phenotypic variation or
environmental interactions would be applicable not just
in arctic tundra but also in other biomes. However, the
implementation of these types of parameterizations and
calibrations would need to be assessed carefully. This
could be done by performing the type of parameter sen-
sitivity and uncertainty study we present here to first
determine which parameters influence model sensitivity
and uncertainty the most given that this additional detail
in the parameters would likely be both time-consuming
to collect and computationally expensive to implement
in the model.
Model parameter sensitivity and uncertainty caused

variation in the overall ranges in the response variables
in terms of the values of NPP, RH, Soil C, and Vegeta-
tion C from 1990 to 2015 across sites (Table 3),

TABLE 3. Median values and quantiles of pools and fluxes for 1990–2015.

Site
NPP

(g C�m−2�yr−1)

Difference for
a quantile (%)

RH
(g C�m−2�yr−1)

Difference for
a quantile (%)

Soil C
(kg C/m2)

Difference for
a quantile (%)

Veg C
(g C/m2)

Difference for
a quantile (%)

25th 75th 25th 75th 25th 75th 25th 75th

Dalton Highway shrub transect
1 424 13 14 311 17 42 26 7 11 1,209 13 13
2 384 17 16 298 14 49 30 19 13 1,083 18 18
3 365 18 19 289 12 31 35 23 6 1,044 17 17
4 300 17 19 279 12 28 33 14 14 740 18 27
5 302 18 22 277 15 25 31 16 15 740 17 29

Kougarok
Shrub 308 17 18 286 15 23 44 5 9 741 18 27
Tussock 671 17 18 351 6 8 38 12 3 957 18 20
Heath 99 20 21 211 2 4 18 1 1 298 11 12

Utqiagvik
Wet sedge 115 23 36 212 3 32 30 2 4 1,283 28 25

Mean across quantiles 18 20 11 27 11 8 18 21

Notes: NPP, net primary productivity; RH, heterotrophic respiration; Veg C, vegetation C.
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illustrating challenges in constraining the C budget in
these tundra ecosystems. The large variability in the Soil
C and RH are particularly relevant in the context of a
thawing permafrost landscape and potential C emissions
(Schuur et al. 2015). Likewise, as we work towards gain-
ing a better understanding of tundra plant productivity
under a warming climate (Myers-Smith et al. 2011,
2015), the model uncertainty related to NPP and Vegeta-
tion C are relevant.
Studies examining model parameter sensitivity and

uncertainty in the context of arctic ecosystem biogeo-
chemistry models are rare. Davidson (2012) applied the
Ecosystem Demography (ED2) model and the PEcAn
framework to tundra in northern Alaska and found that
the parameters that contributed the most to model
uncertainty in selected response variables (aboveground
biomass, diameter growth, and net ecosystem exchange)
included reproductive allocation, growth respiration,
and leaf allometry. Fine-root allocation parameters also
had some influence on model uncertainty in certain
PFTs in ED2, similar to our findings. Dietze et al. (2014)
examined the NPP response across a wide range of
biomes and PFTs also using ED2 within the PEcAn
framework, hypothesizing that the importance of
temperature-limited parameters would increase with lati-
tude. However, in both Davidson (2012) and Dietze
et al. (2014), a parameter related to photosynthetic tem-
perature had no effect in tundra, which differs from our
findings. This may be related to differences in the func-
tional forms of the model and, in particular, for the
equation underlying the calculation of GPP. That is, dif-
ferent methods of calculating GPP across models may
result in differences in our interpretation of model
parameter uncertainty and sensitivity. These results sug-
gest the value of performing a multi-model intercompar-
ison of sensitivity and uncertainty across TBMs
simulated at tundra sites to determine if there is a set of
parameters that consistently influence model sensitivity
and uncertainty. This type of model intercomparison
would then permit the separation of parameter uncer-
tainties and sensitivity across models from differences in
model structural uncertainties. This would then help to
formulate data needs that are common across models to
those that are linked simply to the structure of a specific
model and could be applied to other regions than the
arctic tundra.

Future data collection

The Arctic has long been considered data sparse due
to its cold climate and remote geography. A recent study
found that data acquisition in the terrestrial arctic is pri-
marily concentrated near roads, populations, or field sta-
tions (Metcalfe et al. 2018), and this is certainly true in
northern Alaska. Long-term monitoring programs and
experiments are also rare. Furthermore, many types of
data collection in terrestrial arctic ecosystems require
easy access to a laboratory setting for further sample

processing, and in remote arctic settings, laboratory
space is limited or nonexistent. Consequently, arctic
ecosystem models often lack data for parameterization,
substituting model parameters for arctic ecosystems with
those from lower latitudes, especially when the model
was initially developed for temperate regions (Davidson
2012). Thus, for the parameters that are recognized as
influential on model uncertainty, how difficult are the
data to collect in the Arctic?
Parameters related to leaf area, including LAI and

SLA, are relatively easy to collect across tundra commu-
nities and PFTs. Others, such as those related to optimal
photosynthetic temperature parameters require the con-
struction of temperature response curves (Rogers et al.
2017) that typically take place in a laboratory setting
immediately following plant data collection in the field.
The fine-root parameters are also laborious to measure,
especially with the need to distinguish the roots across
plants species, at multiple depth increments, and in per-
mafrost soils (Iversen et al. 2015). Biomass harvests of
plant tundra communities to determine allocation
between the wood, leaf, and root components are labor
intensive and need to be performed within the narrow
window of peak biomass in late July. Consequently,
when determining which data to collect in the field, it is
important to consider for which parameters even a small
amount of data constraint will likely prove effective in
reducing predictive uncertainty.
Recent advances in remote sensing and multi-sensor

data from unoccupied aerial systems (UASs) of plant
traits may also prove key in improving parameterization
of arctic ecosystem models (Schimel et al. 2015, Yang
et al. 2020). The LAI of arctic PFTs can be estimated
using active LiDAR (Magney et al. 2016) and through
optical multispectral imagery (Juutinen et al. 2017). Leaf
economic traits including leaf N and SLA are detectable
using leaf to landscape hyperspectral remote sensing
(Smith et al. 2002, Singh et al. 2015, Serbin et al. 2019).
Other recent efforts with a newly developed UAS
deployed near the Seward Peninsula study site in this
study have accurately mapped the tundra ecosystems,
and measured canopy-scale greenness, canopy height,
and other derived characteristics, such as shrub fraction
and lichen fraction (Yang et al. 2020). Entirely indirect
traits such as root characteristics may seem impossible
to measure with remote sensing (given that remote sens-
ing struggles to penetrate most soil types) but mapping
root traits will become tractable by identifying covarying
aboveground (i.e., leaf and size traits) and belowground
trait–trait relationships (Sloan et al. 2013). These meth-
ods of determining plant traits with remotely sensed and
UAS data can take place across space and time, thereby
potentially permitting the input of spatially, and even
temporally, explicit maps of plant traits into arctic
ecosystem models, considering variation in parameters
across a geographic area (e.g., the phenotypic plasticity
idea as discussed above), thereby helping to reduce
model parameter uncertainty.

March 2022 ARCTIC TUNDRAMODELUNCERTAINTY Article e02499; page 15



Mechanics in the PEcAn set-up

When performing the initial set-up within the PEcAn
framework, there are considerations to take into account
that could have an impact on the results, including the
time period over which the response variables are ana-
lyzed, and the input parameter distributions. Here, we
analyzed the simulations from the period 1990–2015.
While it is possible that there could be an effect of simu-
lation time period (e.g., 1 yr vs. 10 yr vs. decades) on the
model uncertainty, this has not been observed in other
studies that have used this framework over a multiyear
period (Dietze et al. 2014, Raczka et al. 2018). The
model input parameter distributions we used were based
on expert and literature-based estimates. Given that
these distributions can have a large impact on model
sensitivity, as more data become available, it will be ben-
eficial to reassess their accuracy.

CONCLUSION

The framework presented here provides an in-depth
and reproducible parameter sensitivity and uncertainty
analysis for ecosystems in the Arctic and elsewhere. We
find that sensitivity and uncertainty related to model
parameters in the heterogeneous arctic landscape is com-
plicated. It is necessary to assess this uncertainty across a
range of tundra types and the plant functional types
within them for several response variables. The parameters
do not necessarily contribute equally to model sensitivity
or uncertainty within the same community type over an
environmental gradient, such as the shrub tundra sites we
analyzed. Even the model sensitivity and uncertainty in
tundra types within close proximity and including some
similar PFTs could vary widely. The analysis we present
here is simply an initial step in accounting for and reduc-
ing uncertainty in arctic ecosystem models. The next step
will consider the parameters shown here to result in the
greatest uncertainty and direct data collection efforts
accordingly to provide additional model constraint. Even
though parameter uncertainty is simply one source of
model error, it typically accounts for much of the observed
differences across ecosystem biogeochemistry models
(Dietze et al. 2011), and is important to consider in pro-
jecting Arctic carbon budgets.
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