
Introduction

Research has shown that Ca2+-dependent plas-
malemmal ion channels are responsible for intersti-
tial cells of Cajal (ICC) pacemaker potentials [1–3],
and spontaneous Ca2+ activity in ICC is considered
the primary mechanism. Namely, oscillations of the
intracellular (cytosolic) Ca2+ concentration ([Ca2+]i) in
ICC periodically activate plasmalemmal Ca2+-
dependent ion channels, thereby generating pace-
maker potentials. This review will, thus, focus on
Ca2+-associated mechanisms in ICC in the gastroin-
testinal (GI) tract including auxiliary organs.

Numerous preparations and methods are used in
studies of various types of ICC contained in the GI
tract. In the following sections, types of ICC are iden-
tified in descriptions of most tissue-level experi-
ments; the term ICC represents interstitial cells
expressing c-Kit or other ICC markers in experiments
using isolated cells and cultured preparations.

Voltage-gated Ca
2+

channels

Voltage-gated Ca2+ channels (VGCC) are thought to
play a central role in E–C coupling in smooth muscle
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cells, including GI smooth muscle. L-type (high volt-
age-activated [HVA]) Ca2+ channels appear to be
predominant in most smooth muscle cells because
dihydropyridine (DHP) Ca2+ antagonists, such as
nifedipine and nicardipine largely depress contractile
activity. It has been shown that the �1-subunit of the
smooth muscle L-type Ca2+ channel (Cav1.2b) is a
splice variant of the cardiac one (Cav1.2a) and has a
higher sensitivity to DHP Ca2+ antagonists [4].

Guinea-pig stomach smooth muscle, frequently
used to investigate mechanisms underlying sponta-
neous electrical activity, referred to as slow waves
[5], provides a good example with which we can
assess the role of VGCC in smooth muscle tissues
showing spontaneous phasic contractions. DHP
Ca2+ antagonists completely abolish spontaneous
contractile activity, with little effect, however, on pace-
maker potentials (and electrical activity recorded
from smooth muscle cells, that is, slow waves) [6, 7].
Similar spontaneous electrical activities resistant to
the DHP-Ca2+ antagonist have been reported in sev-
eral other GI smooth muscle tissues [8, 9]. It is thus
considered that DHP-sensitive L-type Ca2+ channels
play an essential role in E–C coupling in GI smooth
muscle cells, although these channels are not
involved in the generation of pacemaker electrical
activity in ICC (Fig. 1). For this reason, DHP-Ca2+

antagonists are frequently used to differentiate pace-
maker electrical activity by suppressing smooth mus-
cle activity. However, pacemaker cells in some tis-
sues, for example, sub-mucosal ICC (ICC-SM) in the
colon, produce different responses to DHP Ca2+

antagonists: 1 µM nifedipine completely abolishes the
spontaneous plateau potentials [10]. Furthermore, in
the guinea-pig stomach, a small inhibitory effect was
observed when nifedipine was greater than 10 µM [7].

In cardiac pacemaker cells, T-type (low voltage-
activated [LVA]) Ca2+ channels, known to play an
important role in pacemaking, are suppressed with
low concentrations (~40 µM) of Ni2+ [11]. Applications
of similar concentrations of Ni2+ to guinea-pig stom-
ach smooth muscle tissue (including the smooth
muscle layer and myenteric plexus) have little effect
on spontaneous electrical activity [7]. On the other
hand, in the isolated circular smooth muscle layer,
which does not contain myenteric ICC (ICC-MY) but
contains only intramuscular ICC (ICC-IM), very low
concentrations of Ni2+ (1–10 µM) significantly sup-
press spontaneous electrical activity. The inhibitory
effect is more potent in the plateau phase than in the

initial upstroke of pacemaker electrical activity,
agreeing well with the notion that ICC-IM produces
re-generative potentials forming the plateau phase
[12, 13]. However, the discrepancy in the Ni2+

concentration range may suggest the existence of
Ni2+-sensitive mechanisms other than T-type Ca2+

channels involved in ICC-IM. Recent reverse tran-
scriptase-polymerase chain reaction (RT-PCR)
examinations have provided supporting evidence
that neither the L- nor the T-type Ca2+ channel gene was
detected in ICC-DMP (deep muscular plexus) and
ICC-IM of the murine and human small intestine [14].

The existence of VGCC may differ depending on
the ICC types, locations of the gut and species. Ward
and Sanders [15, 16] reported that 40 µM Ni2+ cause
sizeable reduction (>50%) in the upstroke velocity of
spontaneous electrical activity in canine colon, and a
combined application of nifedipine (1 µM) and Ni2+

(40 µM) abolishes it. These results suggest a major
contribution of T-type Ca2+ channels. In ICC-SM of
the murine colon, Hotta et al. [17] reported that the
application of either mibefradil (3 µM) or Ni2+ (100 µM)
significantly reduced the rate of rise in the upstroke
of pacemaker potentials. Kim et al. [18] recorded
VGCC currents either sensitive or resistant to DHP
Ca2+ antagonists from ICC in the murine colon and
small intestine. The DHP-resistant component of
VGCC current is blocked by a higher concentration
(100 µM) of Ni2+ or by a T-type Ca2+ channel antag-
onist, mibefradil. The inhibitory effect of mibefradil
may involve the blockade of voltage-gated Na+ chan-
nels (VGSC) resistant to tetrodotoxin (TTX) (Nav1.5
encoded by SCN5A), which has been shown to exist
in ICC [19, 20].

Non-selective cation channels

Non-selective cation channels (NSCC) can carry an
electric charge for ICC pacemaking current, and
many of these channels can permeate Ca2+. It is
well-known that spontaneous electrical activities in
GI smooth muscle tissues require extracellular Ca2+

[5]. Therefore, NSCC may make a significant contri-
bution to ICC pacemaking.

Under a voltage clamp condition, Thomsen et al.
[21] and Koh et al. [22] recorded oscillating inward
currents from cultured ICC of the murine small intestine.
Removal of extracellular Na+ abolishes the oscillatory
inward currents [22], suggesting that oscillating
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inward currents are produced by the periodic activa-
tion of NSCC. Nakayama and Torihashi [23] showed
that high concentrations (100–120 µM) of Cd2+ and
Ni2+ suppress oscillatory inward currents in cell clus-
ter preparations isolated from the murine small intes-
tine, which contains ICC. Using a special thin muscle
layer preparation made by enzymatic treatment
under hydrostatic pressure, Goto et al. [24] demon-
strated that depolarization steps can evoke large
inward currents through NSCC in ICC showing spon-
taneous electrical activity.

Transient receptor potential (TRP) homologues
form NSCC. Epperson et al. [25] and Liu et al. [26]
detected mRNA of classical (or canonical) TRP
(TRPC), such as TRPC2, TRPC4 and TRPC6 in ICC,
using RT-PCR. Torihashi et al. [27] showed immuno-
histochemical evidence for the expression of TRPC4
in the caveolae where numerous cellular signals
interact. Walker et al. [3] recorded oscillatory inward
currents similar to TRPC4: a NSCC inward current
inhibited by Ca2+ (see also Note added in proof).

Melastatin-type TRP (TRPM) homologues are
channel/enzyme fusion proteins.TRPM6 and TRPM7
(formerly referred to as <TRPC>), which contain a
kinase domain in the C-terminus, are well-known to
act as Mg2+-permeable channels [28–30]. Kim et al.
[31, 32] showed mRNA of TRPM2, TRPM4, TRPM7
and TRPM8 in cultured ICC from the murine small
intestine, and they reported that TRPM7 channels
play an essential role in generating oscillatory cur-
rents in ICC; that is, the ionic selectivity and pharma-
cological properties are essentially the same
between TRPM7 and ICC oscillatory currents. The
authors also showed that the knockdown of TRPM7
by the use of siRNA suppressed spontaneous elec-
trical activity in ICC. However, the reduction of
TRPM7 expression may affect ICC pacemaking
through intracellular Mg2+ homeostasis and cell via-
bility [30, 33]. The regulation of intracellular Mg2+ via
TRPM-like Mg2+-permeable channels has been
shown in intestinal [34, 35] and vascular smooth
muscle cells [36–38].

The frequency and duration of GI pacemaker
activity are largely modulated by temperature and
energy metabolism [23, 39, 40]. Nakamura et al. [41]
suggested that in such modulations of pacemaker
activity, several pathways are operating in parallel.
Although the mRNA expression of TRPM4 and
TRPM8 has been shown in cultured murine ICC [31,
32], the existence of vanilloid type (TRPV) and

ankyrin-like TRP (TRPA) channels has not yet been
assessed. TRPV1, TRPV2, TRPV3, TRPV4, TRPM2,
TRPM4 and TRPM5 are heat activated, whereas
TRPM8 and TRPA1 are cold activated [42]. Further
investigation into TRP homologue channels may,
therefore, clarify the mechanisms underlying the
characteristic features of GI pacemaker activity. In
addition, mitochondria [43] and sulfonylurea recep-
tors (SUR) [44, 45] may also contribute to the temper-
ature- and energy-dependence of ICC pacemaking.

Cl
–

channels

Many reports have suggested that Cl– channels
carry pacemaker current in ICC. Spontaneous [Ca2+]i
oscillations would periodically activate Ca2+-activat-
ed Cl– channels if such channels exist in ICC. In
guinea-pig stomach, Dickens et al. [6] demonstrated
that ICC-MY can generate giant pacemaker poten-
tials of ~50 mV in amplitude, reaching –20 mV in the
plateau phase. This potential is close to the equilibri-
um potential of Cl– (ECl: –24 mV) estimated from the
intracellular Cl– concentration ([Cl–]i: 42 mM) meas-
ured in vas deference smooth muscle cells (i.e.,
[Cl–]o: 103 mM) [46, 47]. Measurements of [Cl–]i in
ICC will provide valuable information for the debate
over whether Cl– channels or NSCC are responsible
for the pacemaker current.

In early ICC research, Tokutomi et al. [1] recorded
oscillatory inward currents in ICC (= c-Kit-positive
interstitial cells) isolated from the murine small intes-
tine. This current showed Ca2+-dependence and was
sensitive to a Cl– channel blocker, 4-acetoamido-4-
isothiocyanat-ostilbene-2, 2´-disulfonic acid (SITS).
Since then, there has been a growing body of evi-
dence that ICC electrical activity is suppressed by
other Cl– channel blockers, such as 4, 4´-diisothio-
cyanostilbene-2, 2´-disulfonic acid (DIDS) and
anthracene-9-carboxylic acid (9-AC) [9, 20, 48, 49].
Huizinga et al. [2] demonstrated the existence of
large-conductance (maxi) chloride channels at the
single-channel level of patch-clamp recording. On
the other hand, Koh et al. [50] reported that a Cl–

channel blocker, niflumic acid, blocks NSCC in ICC.
The existence of small conductance Ca2+-activated

K+ channels (SK3 and SK4) has also been shown in
ICC of the rat GI tract [51]. In each [Ca2+]i oscillation
cycle, these channels may contribute to the repolar-
ization phase of the pacemaker potential.
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[Ca
2+

]i oscillations 

[Ca2+]i oscillations in ICC are thought to be a primary
mechanism for the generation of pacemaker poten-
tials, which may account for characteristic features of
GI pacemaker activity, such as the low voltage sensi-
tivity of the frequency. Publicover et al. [52] reported
[Ca2+]i oscillations in freshly dispersed and cultured
ICC-like cells from canine colon, although c-Kit-
immunoreactivity was unidentified. DHP Ca2+ antago-
nists suppress [Ca2+]i oscillations in these ICC-like
cells.Yamazawa and Iino [53] recorded [Ca2+]i oscilla-
tions resistant to DHP Ca2+ antagonists in ICC of the
murine small intestine. No such spontaneous [Ca2+]i
activity was observed in W/Wv mice lacking ICC.

Using cell cluster preparations from the murine
small intestine, Torihashi et al. [27] and Nakayama 
et al. [23] recorded [Ca2+]i oscillations synchronized
with spontaneous electrical and mechanical activities
(Fig. 2). These results agree well with the hypothesis
that [Ca2+]i oscillations in ICC generate pacemaker
electrical activity by periodically activating Ca2+-acti-
vated ion channels in the plasma membrane
(Scenario 1 in Fig. 3). Moreover, in guinea-pig and
mouse stomach ICC, [Ca2+]i oscillations appear to be
associated with spontaneous electrical and mechan-
ical activities [26, 54–56].

Using high time-resolution Ca2+ measurements,
Park et al. [57] recently showed that the rising phase
of [Ca2+]i oscillation in ICC follows the upstroke of the
electrical activity recorded from a near-by cell, with a
short delay (~60 ms). VGCC insensitive to DHP or
VGSC [18–20] may be responsible for the depolar-
ization preceding the [Ca2+]i rise. Localized elevation
of [Ca2+]i in the vicinity of the plasma membrane may
first cause the activation of Ca2+-activated ion chan-
nels, resulting in depolarization to trigger VGCC and
a subsequent global increase in [Ca2+]i (Scenario 2
in Fig. 3). Further investigation is necessary to eluci-
date the details of mechanisms that link [Ca2+]i oscil-
lations and pacemaker potentials and to comprehen-
sively address the cell-to-cell coupling among pace-
maker cells and smooth muscle cells [58, 59].

Ca2+ influx from the extracellular space appears to
play an essential role in ICC pacemaker [Ca2+]i activ-
ity because the removal of extracellular Ca2+ abolish-
es it [27]. NSCC may act as this Ca2+ pathway.
Applications of Ni2+ and Cd2+ (>100 µM), which com-
petitively block NSCC, suppress [Ca2+]i oscillations in

ICC [27, 57, 60]. Furthermore, SK&F96365 sup-
presses or terminates [Ca2+]i oscillations [26, 27].
SK&F96365 is often used to suppress Ca2+ influx
pathways from the extracellular space, including TRP
homologue channels, but does not block DHP-sensi-
tive VGCC [61].

ICC can express numerous receptors of neuro-
transmitters: purinoceptors, neurokinin receptors,
muscarinic receptors and prostaglandin receptors
[14, 63–66]. Furuzono et al. [67] showed dual effects
of ATP and analogues on [Ca2+]i oscillations in ICC
of the murine small intestine: excitation in the pres-
ence of TTX and inhibition in the absence of TTX. It
is suggested that NO released from nitrergic nerves
via activation of purinoceptors suppresses [Ca2+]i
oscillations in ICC, presumably through a cGMP sig-
nalling pathway, while in the presence of TTX, a
[Ca2+]i transient is evoked through the activation of
purinoceptors on the surface of ICC.

Intracellular Ca
2+

release channels

Although Ca2+ influx from the extracellular space is
likely essential to maintain [Ca2+]i oscillations in ICC,
Ca2+ release from intracellular Ca2+ stores, that is,
endoplasmic retuculum (ER), appears to make a
major contribution to the [Ca2+]i increase. Suzuki 
et al. [68] and Takano et al. [69] showed that sponta-
neous electrical and mechanical activities are great-
ly impaired in the stomach smooth muscle of mice
lacking the type-1 inositol trisphosphate receptor
(InsP3R1). Liu et al. [26] showed that among three
InsP3R isoforms InsP3R1 and InsP3R2 are predomi-
nant in ICC in the murine stomach. Aoyama et al. [62]
reported that InsP3R2 and InsP3R3 are predominant
in the small intestine. Taken together, these findings
suggest that InsP3R1 expressed in stomach ICC
plays an important role in generating pacemaker
activity on its own without using intercellular mecha-
nisms, while the role of InsP3R1 may be substituted
by InsP3R2 and/or InsP3R3 in small intestine ICC.
Therefore, it is of interest to check whether sponta-
neous activity is preserved in the small intestine of
mutant mice lacking InsP3R1.

There is an increasing body of pharmacological
evidence for the involvement of InsP3R in ICC pace-
maker activity. The applications of 2-aminoethoxy-
diphenyl borate (2-APB) and xestospongin C (Xe C),
membrane-permeable blockers for InsP3R, suppress



962 © 2007 The Authors
Journal compilation © 2007 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

or terminate ICC electrical and [Ca2+]i activities in
numerous GI preparations (Table 1) [26, 55, 57, 58,
60, 62, 70–73]. It has also been shown that the appli-
cation of heparin with a reversible permeabilization
loading procedure suppressed depolarization-
induced electrical activities reflecting ICC-IM activity
[74]. On the other hand, 2-APB affects TRP homo-
logue channels, including TRPM7 [75]. The inhibitory
effect of 2-APB on [Ca2+]i oscillations might involve
the blockage of TRPM7 because this channel report-
edly plays an essential role in generating ICC pace-
maker activity [31, 32].

Another important Ca2+ release channel is the
ryanodine receptor (RyR). Using cell cluster prepara-
tions from the murine small intestine, Aoyama et al.
[62] showed that in addition to blockers for InsP3R
and Ca2+ influx, RyR blockers and FK506, which
modulates RyR activity through FK506-binding pro-

teins (FKBP), all suppress ICC pacemaker [Ca2+]i
oscillations. RT-PCR examinations of ICC revealed a
predominant expression of RyR3 and a correspon-
ding expression pattern of FKBP isoforms (expres-
sion of both FKBP12 and FKBP12.6). Liu 
et al. [26, 56] showed essentially the same results in
murine stomach ICC. Also, the application of ryan-
odine significantly suppresses spontaneous [Ca2+]i
oscillations in ICC-like cells of gut-like organ formed
from mouse embryonic stem (ES) cells [76]. These
results suggest that the coordination of the two fami-
lies of Ca2+ release channels, that is, RyR and
InsP3R, produces ICC pacemaker [Ca2+]i activity
under the support of Ca2+ influx from the extracellu-
lar space. Furthermore, based on this hypothesis,
pacemaker-like cells have been produced by genetic
manipulations [62]. Namely, HEK293 cells which
express little RyR have yielded spontaneous [Ca2+]i

Fig. 1 The action sites of drugs on Ca2+-associated mechanisms in ICC pacemaker activity. ICC and SM in this figure represent
interstitial cells of Cajal and smooth muscle cells, respectively. For other abbreviations, see text.
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oscillations after the transfection of RyR3. This is
also true for RyR2 (Aoyama et al. unpublished obser-
vation). Mice lacking RyR3 show apparently normal
growth and reproduction [77]. In these mice, RyR2
may compensate for the role of RyR3.

In ICC-like interstitial cells of the rabbit portal vein
and urethra, Harhun et al. [78] and Johnston et al.
[79], respectively showed essentially the same phar-
macological profiles of [Ca2+]i oscillations. In generat-
ing [Ca2+]i oscillations, ICC-like cells in these tissues
appear to employ both InsP3R and RyR in addition to
Ca2+ influx pathways. On the other hand, several studies
have reported no significant effect of ryanodine on ICC
pacemaker [Ca2+]i activity of the GI tract [57, 60, 70, 80].

Gastrointestinal stromal tumours (GIST), the most
common mesenchymal tumours of the human GI
tract, are thought to derive from ICC by gain-of-func-
tion mutations of c-Kit [81]. The application of the
selective c-Kit-receptor inhibitor, imatinib mesylate,
which is used to treat advanced GIST, suppresses
myogenic activity of the human small intestine [82].
Furuzono et al. [83] reported that isolated ICC-like
tumour cells from a human duodenal GIST with the
most frequent type of gain-of-function mutation only
occasionally produced spontaneous [Ca2+]i activity.
These ICC-like GIST cells expressed InsP3R1 and
InsP3R2, but RyR2/3 were below detectable levels
(Furuzono et al., unpublished observation). The low
expression level of RyR may account for the poor
spontaneous [Ca2+]i activity in these GIST cells.
Evidence is, however, still insufficient to address how
intracellular Ca2+ release channels contribute to ICC
pacemaking. Comprehensive studies, including the
link with Ca2+ influx pathways and other intracellular
Ca2+ compartments (e.g. close association of caveo-
lae, ER and mitochondria [84, 85]) are required.

ICC-like cells in auxiliary digestive organs

ICC-like cells, that is, c-Kit-positive interstitial cells,
exist outside the musculature of the GI tract [86],
including the auxiliary organs of the GI tract.
Popescu et al. [87] reported the existence of ICC-like
cells in the human and rat pancreas. Hinescu et al.
[88] and Sun et al. [89] reported ICC-like cells in the
human and murine gall bladders, respectively. Lavoie
et al. [90] showed spontaneous [Ca2+]i activity in
ICC-like cells in the guinea-pig gall bladder and sug-
gested a role of generating spontaneous rhythmicity.
Furthermore, ICC-like cells exist in the hepatic portal

vein [91, 92], which transports nutrient molecules to
the liver and is known as a spontaneously active ves-
sel. Harhun et al. [78, 93] showed spontaneous
[Ca2+]i oscillations associated with membrane depo-
larizations in ICC-like interstitial cells of the rabbit

Fig. 2 ICC [Ca2+]i oscillations synchronized with mechanical
(A) and electrical (B) activities in cell cluster preparations iso-
lated from the muscle layer of the murine small intestine. This
figure was made by modifying Figure 2 of [44] and Figure 4 of
[27]. (A): Ca2+ images (fluo-3 fluorescence) obtained from a
cell cluster preparation with a high intensity area that could be
used to monitor mechanical activity. Panels (a) and (b) are
pseudo-colour Ca2+ images acquired at basal and peak times
of an initial oscillation cycle in normal solution, respectively.The
mechanical activity (c: movement) was estimated by tracking
the high  intensity area indicated by the arrow in (a). The time
course of [Ca2+]i oscillations (d) was measured in the square
region (red line) of the cell cluster preparation shown in (a).
After this recording, using a K+ channel opener to suppress
smooth muscle activity, we confirmed that ICC produced the
Ca2+ activity in the square region [44]. The fluorescence is
expressed relative to that at the initial basal time: Ft/F0. (B) Field
potential (a) and fluo-4 fluorescence (b) were measured simul-
taneously in a cell cluster preparation in the presence of nifedip-
ine which differentiates ICC activity by suppressing smooth
muscle activity [27].Thick and thin lines in (b) represent ICC and
non-ICC regions of a cell cluster preparation, respectively.
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Fig. 3 Plausible mechanisms linking spontaneous [Ca2+]i oscillations and pacemaker potentials in ICC.

Table 1 Inhibitory effects of numerous Ca2+-related drugs on pacemaking [Ca2+]i activity in ICC and ICC-like interstitial cells.

(+) and (-) represent an inhibitory effect and a lack of significant effect, respectively. The numbers in brackets indicate refer-

ences. Single crosses (†) indicate examinations of drugs on pacemaker potentials, not on [Ca2+]i oscillations

DHP Ca2+ blockers Mibefradil SK&F96365 2-APB Xe C Ryanodine

Murine stomach (�): [26, 56] (+): [26] (+): [26] (+): [26] (+): [56]

Murine small intestine (�): [27, 53, 57,
62, 67] 

(+): [57] (+): [27] (+): [57, 62] (+): [62, 70]
(+): [62]

(�): [57, 70]

Murine colon (+): [10]† (+): [17]†

Canine colon (+): [52] (�): [52]

Guinea-pig stomach (�): [55, 80] (+): [55, 58, 80] (�): [80]

Human small intestine (�): [60] (+): [60] (+): [60] (�): [60]

Rabbit portal vein (�): [78] (+): [78] (+): [78] (+): [78] (+): [78]

Rabbit urethra (�): [79] (+): [79] (+): [79] (+): [79]
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portal vein and also suggested the contribution of
both types of intracellular Ca2+ release channels,
that is, InsP3R and RyR. It is of great interest to
examine the similarity and dissimilarity of mecha-
nisms underlying spontaneous [Ca2+]i activities
between ICC and ICC-like cells distributed over the
entire body. Such studies will provide valuable infor-
mation for planning systematic therapies and for
developing tissue- and organ-specific drugs.

Note added in proof

Recently, two research groups reported that sponta-
neous electrical activity can be still recorded in the GI
tract of TRPC4-/- mice (Lee et al., Mol. Cells 2005; 20:
425–31; Sanders et al., Annu. Rev. Physiol. 2006; 68:
307–43). Therapic, it is likely that TRPC4 plays a role
in generating ICC pacemaker activity in parallel with
after Ca2+- perneable channels.
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