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Abstract: Hexamethylene bisacetamide-inducible protein 1 (HEXIM1) is best known as the 

inhibitor of positive transcription elongation factor b (P-TEFb), which controls transcription 

elongation of RNA polymerase II and Tat transactivation of human immunodeficiency virus. 

Besides P-TEFb, several proteins have been identified as HEXIM1 binding proteins. It is 

noteworthy that more than half of the HEXIM1 binding partners are involved in cancers. P53 

and two key regulators of the p53 pathway, nucleophosmin (NPM) and human double 

minute-2 protein (HDM2), are among the factors identified. This review will focus on the 

functional importance of the interactions between HEXIM1 and p53/NPM/HDM2. NPM and 

the cytoplasmic mutant of NPM, NPMc+, were found to regulate P-TEFb activity and RNA 

polymerase II transcription through the interaction with HEXIM1. Importantly, more than 

one-third of acute myeloid leukemia (AML) patients carry NPMc+, suggesting the 

involvement of HEXIM1 in tumorigenesis of AML. HDM2 was found to ubiquitinate 

HEXIM1. The HDM2-mediated ubiquitination of HEXIM1 did not lead to protein degradation 

of HEXIM1 but enhanced its inhibitory activity on P-TEFb. Recently, HEXIM1 was 

identified as a novel positive regulator of p53. HEXIM1 prevented p53 ubiquitination by 

competing with HDM2 in binding to p53. Taken together, the new evidence suggests a role 

of HEXIM1 in regulating the p53 pathway and tumorigenesis. 
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1. Introduction 

Hexamethylene bisacetamide-inducible protein 1 (HEXIM1) was initially identified in 1999 by 

Kusuhara, et al. from vascular smooth muscle cells treated with hexamethylene bisacetamide 

(HMBA), an inhibitor of proliferation [1]. In the same year, Ghatpande, et al. cloned the HEXIM1 

cDNA from the presumptive heart-forming regions of chicken embryos and named it cardiac lineage 

protein-1 (CLP-1) [2]. The HEXIM1/CLP-1 knockout mice were embryonic-lethal and exhibited 

phenotypes of cardiac hypertrophy [3,4]. HEXIM1 was also identified as a binding protein of estrogen 

receptor  (ER) from a yeast two-hybrid screen using a MCF7 breast cancer cell cDNA library [5]. 

Estrogen was found to down-regulate HEXIM1 expression at both protein and mRNA levels. Because 

of this observation, HEXIM1 was also named as estrogen down-regulated gene 1 (EDG1) [5]. In 2003, 

research groups led by Olivier Bensaude and Qiang Zhou revealed a major biological function of 

HEXIM1. They demonstrated that HEXIM1 associated with positive transcription elongation factor b 

(P-TEFb) and inhibited its activity [6,7]. 

P-TEFb was identified and purified by David Price’s group based on its sensitivity to 5,6-dichloro-

1-beta-D-ribofuranosylbenzimidazole (DRB), which inhibited RNA polymerase II (RNAP II) 

transcription at the elongation stage [8,9]. P-TEFb is a protein complex composed of cyclin-dependent 

kinase 9 (CDK9) and a cyclin partner (i.e., cyclin T1, T2a, T2b, or K) with cyclin T1 being the 

predominant CDK9-associated cyclin [9–11]. P-TEFb phosphorylates the C-terminal domain of the 

largest subunit of RNAP II and allows the polymerase to enter the elongation phase [9,12,13]. 

Treatment of cells with flavopiridol, most potent and selective P-TEFb inhibiting compound, blocked 

60–70% of RNAP II transcription as detected by nuclear run-on assays [14,15]. This pivotal finding 

clearly demonstrates that most of cellular genes are regulated by P-TEFb at the elongation stage. 

Furthermore, three genome-wide studies using ChIP-on-chip assays found that RNAP II occupied the 

promoters of most protein-coding genes in Drosophila and human embryonic stem cells without 

entering into productive elongation [16–18]. Such genomic distribution of poised RNAP II molecules 

re-confirms the significance of P-TEFb in gene expression. Transcription of many viruses is also under 

the control of P-TEFb. The best-studied regulation of viral transcription is Tat transactivation of 

human immunodeficiency virus (HIV). The HIV transactivator, Tat, recruits P-TEFb to the viral 

promoter through the interaction with cyclin T1, resulting in the generation of full-length viral 

transcripts [19,20]. A compound screening was carried out in search for the inhibitors of HIV Tat 

transactivation. Surprisingly, all the compounds identified were P-TEFb inhibitors, indicating an 

essential role of P-TEFb in controlling HIV transcription [21]. 

Having an estimated molecular mass of 150 kD, the P-TEFb complex consisting of CDK9/cyclin T1 

was shown to exhibit kinase activity [9]. It was later reported by several groups that the CDK9-containing 

protein complex with a larger molecular mass was isolated through glycerol gradient sedimentation, 

shedding lights that two different forms of P-TEFb existed in cells [22,23]. Initially, it was unknown 

what caused the enzymatic inhibition of P-TEFb within the large complex [24,25]. Soon after, both 

7SK small nuclear RNA (snRNA) and HEXIM1 were identified and established as the new subunits of 

the large P-TEFb complex [6,7,24,25]. The 7SK snRNA-bound HEXIM1 exerted an inhibitory 

function on P-TEFb, while neither 7SK nor HEXIM1 alone instigate any effects [7,26]. It has been 

proposed that association with 7SK snRNA induces the conformational change of HEXIM1 protein 
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and makes the cyclin T binding domain of HEXIM1 more accessible for P-TEFb binding [26]. In 

addition, a methylphosphate capping enzyme MEPCE and a La related protein LARP7 were identified 

as 7SK snRNA binding proteins [27–29]. A model for the regulatory mechanism of the P-TEFb 

protein complexes by HEXIM1 is summarized in Figure 1. 

Figure 1. Two P-TEFb complexes are found in cells. The small P-TEFb complex, composed 

of cyclin T1 and CDK9, is the active form of P-TEFb. The kinase activity of P-TEFb is 

inhibited when P-TEFb interacts with HEXIM1 and 7SK snRNA to form the large P-TEFb 

complex. Two other components of the large complex, MEPCE and LARP7, have been 

recently identified. 

 

HEXIM1 contains several functional domains. The N-terminus of HEXIM1, amino acids (a.a.) 1–150, 

has been characterized as a self-inhibitory domain (ID). Deletion of the ID enhances the inhibitory 

effects of HEXIM1 on P-TEFb activity [7,30]. The region between a.a. 150–180 of HEXIM1, which 

includes a stretch of basic residues, is referred to as the basic region (BR). The BR contains the binding 

motif for 7SK snRNA, KHRR (a.a. 152–155). When the KHRR sequence is replaced by ILAA, the 

mutant HEXIM1 protein fails to interact with 7SK snRNA and the formation of the large P-TEFb 

complex is disrupted [26]. The P-TEFb binding motif, PYNT (a.a. 202–205), is located between the 

BR and acidic region (AR, a.a. 210–250). In the absence of 7SK snRNA, the AR can interact with the 

adjacent BR. Since the P-TEFb binding motif is located between the BR and AR, the BR-AR 

interaction may establish an auto-inhibitory conformation which prevents the association between 

HEXIM1 and P-TEFb [31]. When 7SK snRNA binds to the BR, the BR-AR interaction is disrupted 
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and the PYNT motif becomes accessible for P-TEFb binding [31]. HEXIM1 can form a homodimer or 

a heterodimer with a HEXIM1-related protein, HEXIM2, through the dimerization domain (DD) at the 

C-terminus of HEXIM1 [30,32,33].  

Besides P-TEFb, several HEXIM1 binding proteins have been identified. HEXIM1 binds to histone 

deacetylases (HDACs) along with MyoD, indicating a role in regulating skeletal muscle cell 

differentiation [34]. Interaction between Importin α, HEXIM1, and cyclin T1 has been reported. This 

finding suggests a possible mechanism for HEXIM1/Importin α-mediated nucleo-cytoplasmic transport 

of cyclin T1 since no nuclear localization signals are present in cyclin T1 [35]. ER is present in more 

than half of breast tumors and therefore, this receptor has been the most widely targeted protein in 

breast cancer therapy [36,37]. HEXIM1 competes with cyclin T1 in binding to ERα. When associated 

with HEXIM1, the transcriptional activity of ERα is inhibited, suggesting a role of HEXIM1 in breast 

cancer [38]. It has been shown that HEXIM1 directly interacts with the p65 subunit of NF-B and 

inhibits the transcriptional activity of NF-B [39]. In an earlier report, NF-B was shown to recruit P-TEFb 

through the interaction with the p65 subunit, resulting in activation of NF-B-dependent transcription [40]. 

These three-way interactions create an inevitable competition between HEXIM1 and P-TEFb in 

regulating the activity of NF-B. Shimizu et al., demonstrated that HEXIM1 associated with the 

glucocorticoid receptor (GR) in the absence of 7SK snRNA and P-TEFb and regulated the GR-mediated 

gene expression [41]. The significance of this study is to reveal the involvement of HEXIM1 in the  

P-TEFb-independent bioprocesses. 

Our recent studies demonstrated the functional correlation between HEXIM1 and the p53 signaling 

pathway. We identified p53 as well as two important regulators of p53, nucleophosmin (NPM) and 

human double minute-2 protein (HDM2), as the novel HEXIM1 binding proteins. In this review, we 

will summarize our findings and discuss the role of HEXIM1 in cancer. 

2. p53 and Its Regulators, HDM2 and NPM 

p53 is a tumor suppressor protein which regulates cell cycle and prevents cancer genesis. As such, 

p53 has been described as “the guardian of the genome” because of its role in conserving stability by 

preventing genome mutation [42]. The human p53 protein consists of 393 amino acids with five major 

functional domains: transactivation (TA), proline-rich (PR), DNA-binding (DBD), oligomerization (OLI), 

and negative regulation (NEG) domains [43]. 

The N-terminal TA domain, containing amino acids (a.a.) 1–42, recruits the basal transcriptional 

machinery, such as the TATA box binding protein (TBP) and TBP-associated factors, to activate the 

expression of p53 target genes [44,45]. The TA domain is followed by the PR region (a.a. 63–97), 

which is required for p53-mediated apoptosis and suppressing tumour cell growth [46,47]. The 

sequence-specific DBD is located within the central part of p53 (a.a. 102–292). Most mutations that 

deactivate p53 in cancer usually occur within the DBD and destroy the ability of p53 binding to its 

target DNA sequences [48]. The tetramerization of p53 takes place in the OLI domain (a.a. 323–356). 

Beside its importance for DNA binding, the OLI domain is also responsible for protein-protein interactions, 

post-translational modifications, and protein degradation of p53 [49]. Likewise, the NEG domain 

located at the C-terminus of p53 (a.a. 360–393) is involved in its own degradation. Holding major 

ubiquitination sites for HDM2, the ubiquitinated p53 is directed to proteosomal degradation [50–55].  
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Many regulators of p53 have been identified. Here we only focus on HDM2 and NPM, two 

HEXIM1 binding proteins. HDM2 (or MDM2, the mouse homolog), the best-known p53 regulator, is 

an E3 ubiquitin ligase that targets itself and p53 for protein degradation by the proteasome [56,57]. On 

the contrary, NPM functions as a positive regulator of p53 in the ARF-dependent and -independent 

manners. ARF, a tumor suppressor, binds to MDM2 and promotes rapid degradation of MDM2, 

resulting in p53 stabilization and accumulation [58]. In the ARF-dependent pathway, NPM associates 

with ARF in high-molecular-weight complexes. NPM stabilizes ARF by retarding its turnover and 

leads to p53 activation [59,60]. NPM is also found to interact with HDM2 directly and protect p53 

from the HDM2-mediated degradation in an ARF-independent fashion [61]. Interestingly, both HDM2 

and NPM are also involved in regulation of P-TEFb activity through modulating HEXIM1. In the 

following chapters, we will describe the involvement of NPM and HDM2 in regulating p53 in greater 

detail and discuss the functional interactions between NPM, HDM2, and P-TEFb/HEXIM1. 

3. NPM and NPMc+ Regulate P-TEFb Activity through the Interaction with HEXIM1 

NPM (also known as B23, numatrin, or NO38) encoded by the NPM1 gene is an abundant 

multifunctional phosphoprotein that mainly resides in nucleoli. It is required for several cellular 

processes such as ribosome biogenesis, cell proliferation, and transformation [62–64]. Apart from 

functioning as a histone chaperone protein in the formation of nucleosome, NPM is also involved in 

centrosome duplication [65,66]. 

The connection of NPM to cancer and the p53 pathway has extensively been demonstrated. 

However, it is still debatable whether NPM function as a tumor suppressor or an oncogene. As 

mentioned earlier, NPM not only stabilizes p53 through antagonizing HDM2 [61], but also associates 

and stabilizes ARF within the nucleolus, resulting in induction of p53 [67,68]. Such positive regulation 

of p53 has been depicted in UV-exposed cells where NPM gets up-regulated and transiently translocated 

from nucleolus to nucleoplasm where it interacts with HDM2 [69]. Moreover, NPM also interacts directly 

with p53 to enhance the stability and transcriptional activation of p53 [70]. NPM is haploinsufficient for its 

function which denotes NPM
+/−

 cells to have a significant degree of genomic instability, resulting in an 

increased susceptibility to oncogene transformation [71]. The tumor suppressing function of NPM is 

suggested based on these data. On the contrary, the elevated NPM level is often observed in several 

tumor cells such as gastric, colon, ovarian and prostate cancer, bladder, breast cancers [72–77]. Recent 

studies have reported that overexpression of NPM promotes cell survival, inhibits apoptosis, and induces 

the migration and invasion of cancer cells [78–80], supporting a role of NPM as an oncogene. Taken 

together, all these contradicting discoveries clearly demonstrate that NPM plays an important role in 

tumorigenesis, either as a tumor suppressor, an oncogene, or both. 

NPM1 is one of the most frequently mutated genes in acute myeloid leukemia (AML). About 35% 

of AML patients carrying NPMc+, the cytoplasmic-mislocated mutant form of NPM [81]. The NPMc+ 

mutation is caused by an insertion of four nucleotides at the exon 12 of NPM1 gene [82]. As a result, 

nucleolar localization signal (NLS) which located at the C-terminal of wild type NPM protein is 

disrupted and an additional nuclear export signal (NES) is inserted at the C-terminal of mutant NPM 

protein [83,84]. Therefore, the mutant NPMc+ protein is localized in the cytoplasm instead of nucleoli. 
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A distinct expression profile was observed in AML bearing the NPMc+ mutation, raising the possible 

connection between NPMc+ and transcriptional regulation [85]. 

In our laboratory, we identified NPM and NPMc+ as novel HEXIM1-binding proteins [86].  

The functional interactions between HEXIM1 and NPM/NPMc+ are summarized in Figure 2. 

Overexpression of NPM induced the proteasome-mediated degradation of HEXIM1 [86]. Since 

HEXIM1 is required to form the large P-TEFb complex and block kinase activity of P-TEFb, a decrease 

in the level of HEXIM1 would influence the equilibrium between small and large P-TEFb complexes, 

leading to activation of the P-TEFb-dependent transcription (Figure 2). Using a green fluorescent 

protein (GFP) tagged NPMc+ fusion protein, we found that NPMc+ associated with HEXIM1 and 

sequestered a portion of HEXIM1 in the cytoplasm [86]. As a transcription factor, HEXIM1 is present 

in nuclei, where it regulates RNAP II transcription and P-TEFb activity. Therefore, mislocalization of 

HEXIM1 in the cytoplasm would decrease the formation of the large/inactive P-TEFb complexes and 

thereby results in higher RNAP II transcription (Figure 2). 

To determine the physiological importance of our findings, we analyzed the level and sub-cellular 

distribution of HEXIM1 in an AML cell line carrying the NPMc+ mutation (i.e., AML3 cell line). 

Compared to a wild-type NPM AML cell line, AML2, lower HEXIM1 protein level was detected in 

AML3 cells [87]. In addition, cytoplasmic localization of HEXIM1 was only observed in AML3 cells, 

but not in AML2 cells [86]. As expected, an increase in P-TEFb-mediated transcription was detected in 

AML3 cells [86]. Our results suggest the potential involvement of HEXIM1/P-TEFb in the 

tumorigenesis of AML bearing the NPMc+ mutation. 

Figure 2. NPM binds to HEXIM1 and mediates the proteasome-dependent degradation of 

HEXIM1, which favors the release of the small P-TEFb (i.e., CDK9/cyclin T1) from the 

HEXIM1-containing large P-TEFb complexes. The cytoplasmic NPM mutant, NPMc+, 

associates and misallocates a portion of HEXIM1 in cytoplasm, resulting in decreases in 

the formation of large P-TEFb complexes and activation of RNAP II transcription. 
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4. HDM2 Regulates P-TEFb Activity through the Ubiquitination of HEXIM1 

MDM2 (or HDM2, the human homolog) is a well-studied negative regulator of p53 protein. The 

wild type p53 in unstressed cells appears to be an unstable protein with a very short half life due to 

MDM2-mediated proteasome degradation [56,57]. The N-terminus of MDM2 interacts with N-terminal 

transactivation domain of p53 and effectively blocks p53-mediated transactivation [88,89]. In addition, 

MDM2 carries the p53 specific E3 ubiquitin ligase within the C-terminal RING finger domain [57,90]. 

Upon interaction with p53, MDM2 E3 ligase, along with p300/CBP (CREB-binding protein) co-activator 

proteins, polyubiquitinates p53 in the nucleus [91–93]. This crucial step which only occurs in the 

nucleus would be a pre-requisite for subsequent 26S proteasome degradation [94]. MDM2 RING 

finger domain, but not the leucine-rich nuclear export signal (NES), is important for the relocalization of 

p53 out of the nucleus into the cytoplasm for proteasome degradation [95,96]. However, 26S proteasome 

is present in both the nucleus and the cytoplasmic compartment [97]. In parallel to cytoplasmic 

compartment, the nucleus proteasome also contributed to MDM2-mediated p53 degradation pathway.  

Many strategies have been formulated to disrupt the MDM2-p53 interaction as the anti-cancer 

approaches. Chene and co-workers designed a synthetic peptide based on the X-ray structure of p53 

co-crystallizing with HDM2 [98]. When used with tumor cells that overexpress HDM2, this peptide 

induced the death of these tumor cells by apoptosis [98]. Nutlin-3 is a small compound that mimics the 

interaction of p53 protein and potently competes out p53 from MDM2. Importantly, treatment with 

nutlin-3 also stimulates a dose-dependent increase in the expression level of p21 and anti-proliferative 

activities across different cell lines carrying wide type p53 [99]. Similarly, another small molecule, RITA 

(reactivation of p53 and induction of tumor cell apoptosis), binds directly to p53. It induces a 

conformational change in p53 and abolishes p53-HDM2 interaction to activate p53 [100]. Additionally, 

the application of antibodies against MDM2 was proposed. Microinjection of an antibody specifically 

targeting against the p53 binding domain of MDM2 effectively disrupts the MDM2-p53 complex 

formation to increase p53-dependent transcription activation [101]. The ARF protein, which is 

introduced formerly, plays a significant role as a tumor suppressor that blocks the MDM2-dependent p53 

degradation. An ARF synthetic peptide was designed to imitate the N-terminal domain of ARF. Acting 

like ARF, this synthetic peptide was shown to bind directly onto the central acidic domain of MDM2, 

inhibit MDM2-dependent ubiquitination and protect p53 from ubiquitination-mediated proteasome 

degradation [102]. 

Since we have established HEXIM1 to have a connection with NPM and NPM in turn also interacts 

with HDM2, such close associations allow us to anticipate HEXIM1 as a new substrate for HDM2. 

Indeed, HDM2 ubiquitinates the lysine residues located within the BR of HEXIM1; however, the 

ubiquitination of HEXIM1 by HDM2 does not lead to proteasome degradation pathway [103]. To 

investigate the impact of ubiquitination on HEXIM1’s function, we generated the HEXIM1-ubiquitin 

fusion protein and examined its effect on P-TEFb-dependent transcription. Compared to the wild-type 

HEXIM1, the ubiquitinated HEXIM1 exhibited stronger inhibition on P-TEFb activity, suggesting a 

role of HDM2 in P-TEFb regulation [103]. On the other hand, the possible involvement of HEXIM1 in 

the p53 pathway is suggested. As a new binding protein and an enzymatic substrate of HDM2, 

HEXIM1 may have an impact on the p53 stability mediated through HDM2. It would be worthwhile to 
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design a series of synthetic peptides based on the amino acid sequences of HEXIM1 BR and evaluate 

their effects on p53 activation. 

5. HEXIM1 Stabilizes p53 through the Protein-Protein Interaction with p53 

In the late 1980s, several discoveries have well defined p53 to be an anti-oncogenic protein. Studies 

have shown that cells lacking p53 progressively become tumors during excessive unregulated genomic 

mutations [50,52,104]. Henceforth, stabilizing p53 has been a focus as a potential remedy for  

cancers [50–53,104–109]. Of the many studies on positive regulators of p53, several are relevant to our 

discussion of HEXIM1. For instance, in 1998, An et al. identified hypoxia-inducible factor 1alpha 

(HIF-α) as p53 interacting counterpart. Under hypoxia condition, HIF-α becomes activated to stabilize 

and transactivate p53 [110,111]. Shortly after, Yuan and co-workers determined that the N-terminal 

region of p53 interacted with p300/CBP. Through p53-p300/CBP interaction, the p53 C-terminal domain 

gets acetylated and mediates p53 transactivation as well [112]. Herpesvirus-associated ubiquitin-specific 

protease (HAUSP) has been found to associate with and deubiquitinate p53, which is crucial for tumor 

suppression function [53,107]. The von Hippel-Lindau tumor suppressor protein (pVHL) was later 

found to directly interact with p53 and p300 acetylation ensued upon genotoxic stress. Moreover, 

acetylation thwarts the nuclear-export of p53 preventing it from HDM2 proteasome degradation and 

ultimately stabilizes p53 to execute cell arrest or apoptosis [108,112].  

In our recent study, we demonstrated that HEXIM1 interacted directly with p53 protein via  

co-immunoprecipitation and GST pull-down assays [113]. It is through the discovery of NPM-HEXIM1 

and HDM2-HEXIM1 interactions in which we chanced upon p53 to be a new partnering candidate for 

HEXIM1. The involvement of HEXIM1 in regulation of p53 activation is summarized in Figure 3. It is 

noteworthy that p53 interacts with the “free” HEXIM1 rather than the HEXIM1 present in the large 

inactive P-TEFb complex [113]. Domain study demonstrated that HEXIM1 BR (basic region) in 

cooperation with the C-terminus of HEXIM1 was required for sufficient p53 binding. Interestingly, we 

unraveled the NEG (negative regulation) domain of p53 was essential to interact with HEXIM1 [113]. 

With reference to Figure 4, the NEG domain consists of various lysine residues which have been  

well-established as the HDM2 ubiquitination sites [50–55]. Since these ubiquitination sites resided in 

the HEXIM1 binding domain of p53, we reckoned that HEXIM1 occupancy to the NEG domain might 

hinder the p53-HDM2 interaction and thereby block the ubiquitination of p53 (Figure 4). As expected, 

overexpression of HEXIM1 disrupts the interaction between HDM2 and p53 resulting in stabilization of 

p53 and activation of p53 downstream targets (such as PUMA and p21) in various cancer cell lines [113]. 

This finding further verify that HEXIM1 might compete with HDM2 in binding to p53 at the same site 

(Figure 3) [113]. Previously, we also detected the association between HDM2 and HEXIM1, resulting 

in ubiquitination of HEXIM1 [103]. This HEXIM1-HDM2 interaction may protect a portion of p53 

from being associated with and ubiquitinated by HDM2, and indirectly contribute to the stability of 

p53 (Figure 3). 
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Figure 3. Treatments with UV radiation, flavopiridol, DRB, roscovitine, actinomycin D, and 

doxorubicin, etoposide, and nutlin-3 increase the HEXIM1-p53 interaction and lead to 

induction of p53. UV, flavopiridol, DRB, roscovitine, and actinomycin D treatments can 

release more “free” HEXIM1 from the large P-TEFb complexes and may further enhance the 

association between p53 and HEXIM1. HEXIM1 not only competes with HDM2 in binding to 

p53, but also interacts with HDM2, resulting in activation of p53. The HDM2-ubiquitinated 

HEXIM1, which is not degraded through the proteasome-mediated pathway, exerts 

stronger inhibition on P-TEFb activity. 
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Figure 4. The NEG domain of p53 contains the lysine residues targeted by HDM2 for 

ubiquitination and degradation of p53. Domain study of p53 reveals that the NEG domain 

is essential for the association between HEXIM1 and p53 [113]. It is proposed that 

HEXIM1 binds and stabilizes p53 protein by blocking the ubiquitination of p53 by HDM2. 

 

Remarkably, treatments with UV radiation, CDK inhibiting (flavopiridol, DRB, roscovitine), 

transcription inhibiting (actinomycin D), and p53 inducing compounds (doxorubicin, etoposide, nutlin-3) 

not only increase p53 levels [54,105,113], but also enhance the protein-protein interactions between 

HEXIM1 and p53 (Figure 3) [113]. UV, flavopiridol, DRB, roscovitine, and actinomycin D treatments 

disrupt the formation of large P-TEFb complexes, resulting in releasing more HEXIM1 from the large 

P-TEFb complexes. Such treatments should increase the pool of “free” HEXIM1 in cells and may 

contribute to the increased p53-HEXIM1 interaction (Figure 3). However, treatment with doxorubicin, 

etoposide, and nutlin-3, which has no effects on the formation of large P-TEFb complexes, enhances the 

p53-HEXIM1 association as well (Figure 3) [113]. This observation indicates that cells should have 

plenty of the “free” HEXIM1 to interact with p53 upon the stimulation [6,114]. Unlike doxorubicin and 

etoposide (topoisomerase II inhibitors), treatment with camptothecin, an topoisomerase I inhibitor and a 
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p53 inducing compound, dissociates large P-TEFb complexes [115]. Although these three compounds 

affect p53 induction in a similar way, they may utilize different mechanisms to influence other 

biological processes. While the mechanism for the camptothecin-mediated disruption of large P-TEFb 

complexes remains unknown, it is worthwhile to determine the role of HEXIM1 in p53 activation 

induced by camptothecin. Importantly, HEXIM1 knockdown cells would not respond to treatment of 

p53 inducing reagents (i.e., flavopiridol and doxorubicin) and did not up-regulate the expression of p53 

downstream targets. This unmistakably emphasizes the significance of HEXIM1 in p53 activation 

following these treatments [113]. 

Claudio et al. found that P-TEFb bound to the C-terminal domain (a.a. 361–393) of p53 and 

phosphorylated p53 at serine 392 [116]. In another report, Radhakrishnan and co-worker adopted the 

mass spectrometry technique to demonstrate that CDK9 phosphorylated p53 at Ser-33 and Ser-392 [117]. 

Phosphorylation of Ser33, Ser315, and Ser392 enhances the DNA binding ability and induces 

transactivation of p53 [118–120]. Overexpression of HEXIM1 was found to maintain the 

phosphorylation of p53 at Ser-33 and Ser-392, and activate the expression of p53 downstream targets, 

p21 and PUMA [113]. The p53-P-TEFb and p53-HEXIM1 interactions may be two independent events. 

It is possible that P-TEFb may phosphorylate p53 first. After dissociating with P-TEFb, the 

phosphorylated p53 binds to HEXIM1, which further stabilizes the phosphorylation of p53 at Ser-33 and 

Ser-392. Although it has not been determined in our report whether P-TEFb actually participates in p53 

phosphorylation, nevertheless, there is a likelihood that other kinases are involving [109,121,122].  

6. Conclusions 

Both p53 and P-TEFb are essential cellular regulators. Generally, p53 is involved in all adult 

cancers with about 50% of the cancer patients acquiring p53 mutations while the other half is due to 

the suppression of p53 functions [104]. P-TEFb regulates most transcription by RNAP II and its kinase 

activity is tightly guarded by HEXIM1. Our studies in the past few years establish the functional 

connection between these two important pathways. NPM and HDM2 regulate P-TEFb activity through 

the modulation of HEXIM1, while HEXIM1 induces p53 activation by enhancing its stability. The 

novel discovery of HEXIM1 in regulating p53 suggests a molecular mechanism for p53 activation 

induced by anti-cancer drugs/compounds through the interaction with HEXIM1. HEXIM2, a protein 

sharing extensive homology at the central and C-terminal regions of HEXIM1, exhibits similar 

functions in regulating P-TEFb activity [30,32,33]. It is noteworthy that the central and C-terminal 

domains of HEXIM1 are required for the interaction with p53 [113]. Future investigation is required to 

examine the involvement of HEXIM2 in the p53 pathway. These discoveries will impart better 

understanding on the molecular actions of p53-inducing agents which may lead to potential new 

strategies development for cancer therapy. 
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