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ABSTRACT We report here the near-complete genome sequence of “Candidatus
Spirobacillus cienkowskii,” a spiral-shaped, red-pigmented uncultivated bacterial
pathogen of Daphnia spp. The genome is 2.74 Mbp in size, has a GC content of
32.1%, and contains genes associated with bacterial motility and the production of
carotenoids, which could explain the distinctive red color of hosts infected with this
pathogen.

The species “Candidatus Spirobacillus cienkowskii” is a deep-branching uncultivated
Deltaproteobacteria pathogen of freshwater daphniids, which are important mem-

bers of aquatic food webs (1). The most distinctive phenotypic characteristic associated
with its infection is the red color in the host hemolymph (2). We used high-throughput
sequencing and computational binning approaches to assemble and reconstruct the
pathogen genome, previously described only through sequences of 16S rRNA and DNA
primase �-subunit (gyrB) genes (3).

Daphnia dentifera organisms infected with “Candidatus Spirobacillus cienkowskii”
were originally collected from Dogwood Lake (38°32=37�N, 87°03=04�W; Greene-Sullivan
State Forest, IN). Infections were propagated in D. dentifera L6D9 and the “standard”
genotype collected from Dogwood Lake and a lake in Barry County, Michigan, respec-
tively. The hemolymph from 43 infected hosts was collected and pooled for DNA
extraction using the QIAamp DNA minikit (Qiagen, Germantown, MD) following man-
ufacturer instructions. Metagenomic reads were generated with the Illumina MiSeq
platform using paired-end 350-bp sequencing, and a total of 3,257,849 paired-end
reads were obtained. Low-quality reads (�100 bp and a Phred score of �30) were
filtered using Cutadapt v.1.18 (4), and the genome was assembled using IDBA-UD
v.1.1.1 (5). A binning strategy was used to reconstruct the genome by taking into
consideration the GC content and coverage of clustering contigs into individual ge-
nome populations through MaxBin v.2.0 (6) and manual curation with CheckM v.1.0.5
(7). To validate the genome reconstruction, BLASTN v.2.7.1� (8) was used to compare
nucleotide coding sequences (CDSs) to sequences of “Candidatus Spirobacillus cien-
kowskii” 16S rRNA (GenBank accession number EU220836) and gyrB (EU220837) genes
deposited in GenBank.
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Functional annotation was performed using PATRIC v.3.5.25 (9), Prokka v.1.12 (10),
and KAAS v.1.0 (11). The “Candidatus Spirobacillus cienkowskii” genome was assembled
into 126 contigs (2,739,001 bp with a GC content of 32.1%) with an N50 value of
39,228 bp. Quality control of the genome assembly indicated a near-complete genome
(91.2% completeness) without contamination (0%). Comparative analysis with available
16S rRNA and gyrB genes for “Candidatus Spirobacillus cienkowskii” showed 100%
identities with our genome bin. A total of 2,553 CDSs, 37 tRNAs, and 1 complete rRNA
operon (23S, 16S, and 5S rRNA) were detected in the genome. Of the total number of
proteins, 37% had functional assignments (961 proteins), 15% had gene ontology
assignments (402), and 46% had FIGfam assignments (1,176). Several genes associated
with phytoene production (terpenoid backbone biosynthesis), the colorless precursor
of all C40 carotenoids (12), and other genes associated with carotenoid synthesis were
detected (13). We identified genes associated with flagellar biosynthesis and assembly,
which may be used for movement into the host hemolymph or for facilitating trans-
mission to a new host.

Daphnia spp. are key members of lake food webs (14), and pathogen outbreaks
reduce the host population growth rate and density and elevate the death rate (15).
The “Candidatus Spirobacillus cienkowskii” genome will increase our knowledge of
host-pathogen interactions. The annotated genome will help microbiologists identify
conditions for isolating this ecologically important but as yet uncultivated pathogen.

Data availability. The whole-genome shotgun project of “Candidatus Spirobacillus
cienkowskii” has been deposited at DDBJ/ENA/GenBank under the accession number
QOVW00000000. The version described in this paper is version QOVW01000000. The
raw reads were deposited in the Sequence Read Archive (SRA) under the accession
number PRJNA450308.
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