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Incorporating chemical sub-
structures and protein evolutionary 
information for inferring drug-
target interactions
Lei Wang   1,2,4*, Zhu-Hong You2,4*, Li-Ping Li2, Xin Yan3* & Wei Zhang1

Accumulating evidence has shown that drug-target interactions (DTIs) play a crucial role in the process 
of genomic drug discovery. Although biological experimental technology has made great progress, 
the identification of DTIs is still very time-consuming and expensive nowadays. Hence it is urgent to 
develop in silico model as a supplement to the biological experiments to predict the potential DTIs. 
In this work, a new model is designed to predict DTIs by incorporating chemical sub-structures and 
protein evolutionary information. Specifically, we first use Position-Specific Scoring Matrix (PSSM) 
to convert the protein sequence into the numerical descriptor containing biological evolutionary 
information, then use Discrete Cosine Transform (DCT) algorithm to extract the hidden features and 
integrate them with the chemical sub-structures descriptor, and finally utilize Rotation Forest (RF) 
classifier to accurately predict whether there is interaction between the drug and the target protein. 
In the 5-fold cross-validation (CV) experiment, the average accuracy of the proposed model on the 
benchmark datasets of Enzymes, Ion Channels, GPCRs and Nuclear Receptors reached 0.9140, 0.8919, 
0.8724 and 0.8111, respectively. In order to fully evaluate the performance of the proposed model, we 
compare it with different feature extraction model, classifier model, and other state-of-the-art models. 
Furthermore, we also implemented case studies. As a result, 8 of the top 10 drug-target pairs with the 
highest prediction score were confirmed by related databases. These excellent results indicate that 
the proposed model has outstanding ability in predicting DTIs and can provide reliable candidates for 
biological experiments.

Drugs can regulate the physiological function of the human body, to provide guarantee for disease prevention, 
treatment and other aspects. More importantly, the discovery and identification of drug targets is the source of 
drug research, which plays a key role in the success of drug development. The complexity of the etiologies of most 
diseases leading to disease-related genes or proteins may be potential drug targets, but because of target specific-
ity, robustness of biological networks and other factors, the number of newly developed drugs does not rapidly 
increase with the development of proteomics and chemical genomics. So far, only a small number of targets in 
the human genome, in which the total number of pharmacological interest is about 6000 to 8000, have been 
confirmed to be associated with approved drugs1–4. As the experiment-based method having the disadvantage of 
high cost, time consuming and limitations of small-scale in identifying drug-target interactions, researchers try 
to mine drug-related targets in the whole genome using computational-based methods5–11.

At present, researchers have designed many computational-based models to analyze and predict drug-target 
interactions (DTIs)12–18. For example, Yamanishi et al. designed a model based on statistical algorithm to pre-
dict potential DTIs, which makes full use of chemical structure and genomic sequence information. In case of 
unnecessary to know the 3D structure information of the protein, the DTIs is formalized as the bipartite graph19. 
He et al. proposed a novel clustering model CNMMA, which uses the edge structure and multi-modality attrib-
utes associated with vertices to discover network clusters, and obtains an optimal latent matrix to represent the 
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cluster membership for each vertex in the network20. Xia et al. designed semi-supervised model called NetLapRLS 
which combines the information of the known drug-protein interaction network with genomic sequence data 
and chemical structure. In this model, the final result is predicted by the combination of the classifiers, and the 
method has achieved good performance because of utilizing the integrate information and unlabeled data21. He 
et al. proposed an effective model CCPMVFGC to calculate the degree of contextual correlation between pair-
wise vertex features. This model can learn a shared latent space from multi-view features, and use it to construct 
the interrelationship between pairs of vertices22. Hu et al. designed a novel GraphSE method to learning for 
patterns among drug side-effects (SEs), among drug sub-structures, and between multiple drug substructures 
and the SEs. This method can construct an attribute graph for each SE, which can effectively predict whether a 
drug will lead to a certain SE23. Chen et al. classified the current prediction model of drug-target interaction into 
network-based method and machine learning-based method and so on. In particular, they analyzed the super-
vised and semi-supervised methods in the adoption of negative samples in machine learning-based method24. 
Cao et al. proposed a new model for predicting DTIs which combines the protein information encoded by phys-
icochemical and biochemical properties with drug molecules structures information encoded by MACCS sub-
structure fingerings25. Chen et al. proposed the NRWRH model to identify DTIs based on the assumption that the 
framework of Random Walk and similar drugs target are often similar for the target protein26.

Under the premise of the theory that the interaction among drug and target protein depends largely on the 
chemical sub-structures of drug compound and the structure of target protein sequence11,27–29, we design a new 
in silico model to predict DTIs. Compared with the proposed methods, we introduce a protein sequence transfor-
mation method which can carry the information of biological evolution. In this method, the frequency of amino 
acid occurrences at different positions in multiple sequence comparisons is counted, and the conservative regions 
related to sequence evolution are found according to their probability distribution. Thus, similar parts between 
different sequences are found to infer their structural and functional similarities. The descriptors extracted by 
this method can not only reflect the position information of amino acids in the sequence, but also reflect the 
effects of mutations in amino acid sites during sequence evolution. Specifically, we firstly transform the protein 
sequence into numerical matrix that carries the information of biological evolution. Secondly, using Discrete 
Cosine Transform algorithm to extract its feature and combined with the corresponding chemical sub-structures 
as the feature vector. Finally, the Rotation Forest classifier is used to accurately predict the potential DTIs. We 
evaluate our model on Enzymes, Ion Channels, GPCRs and Nuclear Receptors datasets by the 5-fold CV method. 
Moreover, we compared the proposed model with the different feature extraction and classifiers models on the 
benchmark datasets. In the case study, the top 10 drug-target pairs with the highest predictive score were con-
firmed by SuperTarget database. Outstanding results show that the proposed model can effectively predict the 
relationship between drugs and targets, and can provide accurate candidates for biological experiments. The 
workflow of the proposed model is shown in Fig. 1.

Materials and methods
Benchmark datasets.  In this work, the data for all DTIs were collected from DrugBank, SuperTarget, 
BRENDA, and KEGG BRITE by Yamanishi et al.19. These data is divided into four datasets including Enzymes, Ion 
Channels, GPCRs and Nuclear Receptors. The Enzymes dataset contains 445 drugs, 664 target proteins, and experi-
mentally verified 2926 pairs of DTIs; The Ion Channels dataset contains 210 drugs, 204 target proteins, and experi-
mentally verified 1476 pairs of DTIs; The GPCRs dataset contains 223 drugs, 95 target proteins, and experimentally 
verified 635 pairs of DTIs; The Nuclear Receptors dataset contains 54 drugs, 26 target proteins, and experimentally 
verified 90 pairs of DTIs. We take these known drug-target interactions as benchmark data and implement our 
experiments on this basis. The statistical information of drug target interaction is shown in Table 1.

If the drug molecules and target proteins are regarded as nodes and the relationship between them is regarded 
as edges, we can build a network representing DTIs. After connecting the nodes representing the interaction of 
known drug targets, it can be seen that this network is sparse. In experiments, all pairs with drug-target interac-
tions are considered to be positive samples, otherwise they are considered as negative samples. Take the GPCRs 
dataset for example, there are only 635 known DTIs but have 223 × 95 = 21185 edges in the network. It can be 
seen that the number (e.g. 21185-635 = 20550) of negative pairs is noticeably more than that of positive ones, 
which is about 97% of the sample space. Therefore, we use the down sampling algorithm to extract samples from 
unrelated drug-target pairs to construct the negative sample set. The number of these pairs is the same as that of 
the positive samples. Theoretically, these negative samples may contain drug-target pairs that have not been veri-
fied by experiments. However, from a probabilistic and statistical perspective, in such a large ratio of differences, 
the number of actual interaction pairs used as negative samples can be ignored.

Drug molecular characterization.  Studies show that molecular fingerprint of chemical sub-structures 
information can effectively characterize drug molecular information30–32. Therefore, molecular fingerprints are 
used herein to encode drug compounds in this paper. Specifically, this method encodes each molecular sub-
structure as fingerprint and maps it into a corresponding Boolean vector. For a specific molecule, if it contains 
a molecular substructure, assign a value to 1 in the corresponding bit of the vector, otherwise 0. Although this 
method divides the molecule into individual fragments, it still retains the entire structure of the drug molecule. 
The ingenuity of this design is that it does not need the reasonable 3D conformation of molecules, so it will not 
accumulate errors from the description of molecular structure. In experiment, we adopt the chemical structure of 
the fingerprints set derived from the PubChem System. This drug fingerprint stores 881 molecular substructures, 
so the drug molecular descriptor used in this paper is an 881-dimensional vector.

Numerical characterization of protein sequences.  Protein sequences are usually stored in the form of 
letters, in which the number of letters is 20, representing 20 amino acids. In order to facilitate the processing of 
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machine learning algorithm, we use Position-Specific Scoring Matrix (PSSM) to transform it into a numerical 
matrix33,34. The advantage of this strategy is that it can extract the biological evolutionary information carried in 
the protein sequence, which is conducive to deep mining. Suppose ρ= = = { }PSSM i L and j: 1 1 20i j,

, 
which is a matrix of L × 20. The number of L represents the length of the protein sequence, and the number of 20 
indicates the kind of amino acids. So the PSSM can be expressed as:
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Figure 1.  The workflow of the proposed model to predict potential drug-target interactions.

Statistics Enzyme
Ion 
Channel GPCR

Nuclear 
Receptor

No. of drugs 445 210 223 54

No. of target proteins 664 204 95 26

No. of drug-target interactions 2926 1476 635 90

Table 1.  Statistics for the drug-target interactions.
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here 
i j,  means that the probability of the ith residue being mutated into type j during the procession of evolution-

ary in the protein from multiple sequence alignments.
In this work, one of the most effective and frequently-used application Position-Specific Iterated BLAST 

(PSI-BLAST) was used to generate PSSM. To achieve broad and high homologous sequences, its parameters 
e-value is set to 0.001, iteration is set to 3. Since all items in the SwissProt database have been strictly audited by 
experts, we use it as the comparison database for generating PSSM matrix in this work.

Feature extraction.  Feature extraction is one of the important steps in model construction. Effective fea-
ture descriptors can not only extract important information, but also can improve the performance of predictive 
model in predicting DTIs35. In this work, the Discrete Cosine Transform (DCT) is introduced to extract the fea-
tures of the information representing the protein sequence from the PSSM. Due to the advantages of minimizing 
reconstruction errors and packing most of the information to a minimum of coefficients, the DCT only loses very 
little information during processing. The formula as follow:
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∈ ×f x y P( , ) N M represents the PSSM matrix of N × 20 dimensions. After optimization, we selected the first 400 
coefficients as the final feature descriptor representing the protein sequence.

Classification prediction.  In this work, we introduce Rotation Forest (RF) as a classifier for predicting 
DTIs. RF is a successful classifier proposed by Rodriguez et al.36. The basic idea of RF is to simultaneously build 
accurate and robust differential ensemble classifiers37–39. When the algorithm executes, RF first randomly divides 
the sample set, and then uses the transformation method to transform the subset to increase the difference 
between the subsets. Finally, the transformed subset is used to select samples to train different base classifiers.

Assume S denotes the sample set, = …X x x x( , , , )n
T

1 2  is the data and = …Y y y y( , , , )n
T

1 2  is the labels. Thus, 
the sample can be represented by x y{ , }i i . The forest is formed by L decision trees …T T T, , , L1 2 . The algorithm can 
be described as follows:

Inputs:  Labeled training sample set S; 
Unlabeled test sample ;

        The number of decision trees L; 
The number of subsets K; 

Outputs: The label of the test sample 
1: Initialization : Use the bootstrap algorithm to extract 75% of the features from the training 

sample set  and build a new training set 
2: For i=1, 2, …, K: 
3:    Use the PCA algorithm to generate the coefficient matrix 
4:    Rotate the coefficient matrix  to construct the sparse rotation matrix 
5: Each decision tree  independently judges the test sample  category  

6: Output the label of  through an integrated strategy: ( ) = ∑ )

Algorithm.  : The rotation forest classifier of the proposed model.
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The sparse rotation matrix Ri can be expressed as follows:
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where r, i k
C
,
( )k  represents the coefficient in the matrix, Ri

r represents the matrix obtained after reordering.
In order to improve the performance of the model, we use the grid search method to optimize the parameters 

K and L of RF. Under different parameters, the accuracy of RF generation is shown in Fig. 2. As can be seen from 
the figure, with the increase of K, the value of accuracy gradually increased; with the increase of L, the value 
increases rapidly, then increases slowly, and finally decreases slightly. Considering the accuracy and time con-
sumption, we finally chose the most suitable parameters of this experiment for k = 21 and L = 42.

Results and Discussion
Evaluation criteria.  In this work, the evaluation criteria accuracy (Accu.), sensitivity (Sen.), precision 
(Prec.), and Matthews correlation coefficient (MCC) are utilized to estimate the performance of our model, and 
its formula is as follows:

. =
+

+ + +
Accu TP TN

TP TN FP FN (6)

. =
+

Sen TP
TP FN (7)

. =
+

Prec TP
TP FP (8)

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( ) (9)

here TP, FP, TN and FN represent true positive, false positive, true negative and false negative, respectively. 
Furthermore, the Receiver Operating Characteristic (ROC)40 curve and the area under the curve (AUC) were 
also utilized to estimate the performance of the proposed model.

Figure 2.  Accuracy surface obtained of rotation forest for optimizing parameter K and L.

Dataset Evaluation Criteria Accu. Prec. Sen. MCC AUC

Enzymes
Average 0.9140 0.9202 0.9070 0.8428 0.9088

Standard Deviation 0.0075 0.0139 0.0225 0.0125 0.0116

Ion Channels
Average 0.8919 0.8928 0.8899 0.7836 0.8925

Standard Deviation 0.0107 0.0188 0.0166 0.0237 0.0140

GPCRs
Average 0.8724 0.8799 0.8632 0.7454 0.8673

Standard Deviation 0.0066 0.0337 0.0272 0.0134 0.0181

Nuclear Receptors
Average 0.8111 0.8040 0.8346 0.6328 0.7993

Standard Deviation 0.0412 0.0944 0.1160 0.0817 0.0593

Table 2.  Average 5-fold CV results obtained by our model on four benchmark datasets.
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Assessment of prediction ability.  To be comparable, our classifier uses the same parameters when exe-
cuted on four benchmark datasets. In experiment, the performance of our model is verified utilizing 5-fold 
cross-validation. This has the advantage of not only testing the model’s stability, but also avoiding over-fitting. 
Specifically, the whole dataset is split into five independent and equal-sized subsets, one of which serves as the 
test set and the remaining four as the training set. In the implementation, each take a different subset of the test 
set, loop 5 times.

The prediction results of our model on benchmark datasets are summarized in Table 2. We obtained the 
average results of Accu., Prec., Sen., MCC and AUC of 0.9140, 0.9202, 0.9070, 0.8428 and 0.9088 when predicting 
drug-target interactions on Enzymes dataset. Their standard deviations are 0.0075, 0.0139, 0.0225, 0.0125 and 
0.0116, respectively. We yielded the average evaluation criteria of 0.8919, 0.8928, 0.8899, 0.7836 and 0.8925 and 
their standard deviations are 0.0107, 0.0188, 0.0166, 0.0237 and 0.0140 when predicting drug-target interactions 
on Ion Channels dataset. In GPCRs dataset, we achieved the average results of Accu., Prec., Sen., MCC and AUC 
of 0.8724, 0.8799, 0.8632, 0.7454, 0.8673 and the standard deviations of 0.0066, 0.0337, 0.0272, 0.0134, 0.0181, 
respectively. We obtained the average evaluation criteria of 0.8111, 0.8040, 0.8346, 0.6328, 0.7993 and the stand-
ard deviations of 0.0412, 0.0944, 0.1160, 0.0817 and 0.0593 when predicting drug-target interactions on Nuclear 
Receptors dataset. The detailed results of 5-fold cross-validation on these four benchmark datasets can be seen in 
tables S1–S4 of the supplementary materials. Figures 3–6 show the ROC curves obtained by our model on those 
four benchmark datasets.

Comparison with Pseudo-AAC model and support vector machine model.  In order to verify 
more clearly whether the DCT feature extraction algorithm and RF classifier can improve the performance of 
the model, we compare the proposed model with Pseudo-AAC model and SVM model. Specifically, we keep the 
other parts of the model unchanged, and only use Pseudo-AAC algorithm or SVM classifier to replace the feature 
extraction algorithm and classifier in the proposed model, and experiment in the same dataset.

The Pseudo-AAC algorithm can effectively extract the hydrophobic information in the protein sequence, 
but it does not retain the biological evolution information. Given a protein sequence S, the general form of 
Pseudo-AAC proposed by Chou et al.41 is defined as:

Φ Φ Φ Φ= 



µ S , , , , , , (10)L
T

1 2

Figure 3.  ROC curves performed by the proposed method on Enzymes dataset.

Figure 4.  ROC curves performed by the proposed method on Ion Channels dataset.
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here L is the length of the protein sequence, Fi is the normalized frequency of the amino acid in the protein, w is 
the weighting factor, and λj is the j-tier sequence correlation factor.

Table 3 summarizes the 5-fold CV results obtained by the Pseudo-AAC model on four benchmark datasets. 
It can be seen from the table that the Pseudo-AAC model has achieved the accuracy of 0.8450, 0.8296, 0.7425, 
0.7000, precision of 0.8536, 0.8267, 0.7463, 0.6836, sensitivity of 0.8335, 0.8354, 0.7342, 0.7396, MCC of 0.6905, 
0.6596, 0.4846, 0.3982, and AUC of 0.8435, 0.8314, 0.7531, 0.7259. Table 4 lists the 5-fold CV results obtained 
by the SVM model on four benchmark datasets. From the table we can see that the SVM model has achieved 
the accuracy of 0.8518, 0.8492, 0.7803, 0.6778, precision of 0.8479, 0.8499, 0.7753, 0.6726, sensitivity of 0.8578, 
0.8492, 0.7944, 0.6905, MCC of 0.7040, 0.6984, 0.5640, 0.3605, and AUC of 0.8512, 0.8489, 0.7800, 0.6665.

In order to facilitate the comparison, we present the results generated by the three models on the benchmark 
datasets in the form of histogram. From Fig. 7 we can see that the proposed model achieved the optimal results in 
all four datasets. In terms of accuracy, the proposed model is 0.0690 and 0.0622 higher than Pseudo-AAC model 
and SVM model respectively on Enzymes dataset, 0.0623 and 0.0427 on Ion Channels data set, 0.1299 and 0.0921 
on GPCRs data set, 0.1111 and 0.1333 on Nuclear Receptors data set. The results show that the proposed model can 
predict the potential drug-target relationship more accurately than other models. In terms of AUC, the proposed 

Dataset Evaluation Criteria Accu. Prec. Sen. MCC AUC

Enzymes
Average 0.8450 0.8536 0.8335 0.6905 0.8435

Standard Deviation 0.0085 0.0203 0.0120 0.0174 0.0140

Ion Channels
Average 0.8296 0.8267 0.8354 0.6596 0.8314

Standard Deviation 0.0141 0.0182 0.0269 0.0286 0.0135

GPCRs
Average 0.7425 0.7463 0.7342 0.4846 0.7531

Standard Deviation 0.0299 0.0321 0.0350 0.0588 0.0215

Nuclear Receptors
Average 0.7000 0.6836 0.7396 0.3982 0.7259

Standard Deviation 0.0362 0.0714 0.0702 0.0826 0.0564

Table 3.  Average 5-fold CV results obtained by Pseudo-AAC model on four benchmark datasets.

Dataset Evaluation Criteria Accu. Prec. Sen. MCC AUC

Enzymes
Average 0.8518 0.8479 0.8578 0.7040 0.8512

Standard Deviation 0.0085 0.0184 0.0147 0.0168 0.0104

Ion Channels
Average 0.8492 0.8499 0.8492 0.6984 0.8489

Standard Deviation 0.0139 0.0230 0.0108 0.0279 0.0154

GPCRs
Average 0.7803 0.7753 0.7944 0.5640 0.7800

Standard Deviation 0.0218 0.0495 0.0425 0.0432 0.0339

Nuclear Receptors
Average 0.6778 0.6726 0.6905 0.3605 0.6665

Standard Deviation 0.0421 0.0787 0.1151 0.0786 0.0718

Table 4.  Average 5-fold CV results obtained by SVM model on four benchmark datasets.

Figure 5.  ROC curves performed by the proposed method on GPCRs dataset.
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model is 0.0653 and 0.0576 higher than Pseudo-AAC model and SVM model respectively on Enzymes dataset, 
0.0611 and 0.0436 on Ion Channels data set, 0.1142 and 0.0873 on GPCRs data set, 0.0734 and 0.1328 on Nuclear 
Receptors data set. The results show that the proposed model has better overall performance than other models.

The excellent performance of the proposed model is mainly attributed to the following three points: (a) the model 
uses protein sequence characterization with biological evolution information and drug molecular characterization 
with molecular fingerprint information. This strategy can enrich the expression of drug target data information; (b) 
the DCT algorithm used in the model can effectively extract the hidden features in the drug-target data, and only 
lose a little information in the process of processing; c) the RF classifier used in the model can accurately and quickly 
classify drug-target data, thereby greatly improving the performance of the model.

Comparison with state-of-the-art models.  So far, there have been many state-of-the-art models to 
predict drug-target interactions and achieved good results. To fully evaluate the performance of the proposed 
model, we compare it with these state-of-the-art models on the benchmark datasets. Table 5 lists the values of 
AUC achieved by different models. It can be observed that the results obtained by our model have a significant 
improvement on benchmark datasets except Nuclear Receptors dataset. In the Enzymes, Ion Channels and GPCRs 
datasets, our model achieved the highest score, improving 0.0458, 0.0935, and 0.0003, respectively, over the next 
highest model. In the Nuclear Receptor dataset, our model achieved the third highest score, but it was also only 
0.0567 lower than the highest SIMCOMP model.

To further compare the performance of the proposed models, we evaluated the comparison results of 
Table 5 using statistical test. We make a hypothesis that there is no significant difference between our model and 
other models at 95% confidence level. If the P-value is lower than 0.05, we can believe that there are significant 

Dataset Our model MLCLE42 KBMF2K43
AM-
PSSM44 SIMCOMP34

Enzymes 0.9088 0.842 0.832 0.843 0.863

Ion Channels 0.8925 0.795 0.799 0.722 0.776

GPCRs 0.8673 0.850 0.857 0.839 0.867

Nuclear Receptors 0.7993 0.790 0.824 0.767 0.856

Table 5.  Comparison of other excellent models and the proposed model on four benchmark datasets in terms 
of the AUC.

Drug ID Drug Name
Taregt 
Protein ID Target Protein Name

Validation 
Source

D00049 Nikotinsaeure hsa 8843 G109B_HUMAN SuperTarget

D00348 Isotretinoino hsa6256 RXRA_HUMAN SuperTarget

D00437 Nifedipine Monohydrochloride hsa1559 CP2C9_HUMAN SuperTarget

D00139 Xanthotoxine hsa1543 CP1A1_HUMAN SuperTarget

D00585 Mifepristone hsa2099 ESR1_HUMAN SuperTarget

D00951 Medroxyprogesteroneacetate hsa2099 ESR1_HUMAN SuperTarget

D02340 Loxapinsuccinate hsa1812 DRD1_HUMAN SuperTarget

D00900 Monomethylhydrazine hsa1020 CDK5_HUMAN N/A

D03365 Transdermal Nicotine hsa1137 ACHA4_HUMAN SuperTarget

D00448 Methylphosphonothiolate hsa10720 UDB11_HUMAN N/A

Table 6.  Details of the top 10 drug-target pairs with the highest predicted scores.

Figure 6.  ROC curves performed by the proposed method on Nuclear Receptors dataset.
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difference between the proposed model and other comparison models. As a result, we obtained the P-value of 
0.044. These results show that the proposed model is significantly more competitive than other models and can 
effectively predict potential drug-target protein interactions.

Case studies.  In order to further evaluate the prediction ability of the proposed model for potential DTIs, 
we conducted the case studies. We train the model with all the positive samples in the benchmark datasets as the 
training set, and predict the score of the unknown associated drug-target pairs. For the top 10 drug-target pairs 
with the highest predicted scores, we put them into the SuperTarget database for verification. Table 6 summarizes 
the details of the top 10 drug-target pairs with the highest predicted scores. It can be seen from the table that 8 
new drug-target pairs have been confirmed by the SuperTarget database. The results of case studies show that the 
proposed model can effectively predict the unknown association of drug-target pairs, and provide reliable can-
didates for biological experiments. It is worth noting that although the remaining two drug-target pairs have not 
been confirmed at present, the possibility of an association between them cannot be denied.

Conclusion
In this work, based on the assumption that the relationship between drugs and targets is largely influenced by 
the drug molecular structure and protein amino acid sequence, we proposed a novel model to predict DTIs 
by fusing protein sequence information and molecular fingerprint information. To improve the performance 
of the proposed model, we introduce the biological evolution information in the process of extracting protein 
features, and consider the excellent classifier in the process of feature classification. In the experiment, the pro-
posed model was validated on four benchmark datasets including Enzymes, Ion Channels, GPCRs and Nuclear 
Receptors. Furthermore, we also compared with the different feature extraction model, classifier model and other 
state-of-the-art models. In the case study, 8 of the top 10 drug-target pairs predicted by our model were confirmed 
by relevant databases. These excellent results show that the proposed model is very suitable for predicting DTIs 
and can be an effective tool for providing reliable candidates for biological experiments. In the next research, we 
will focus on the feature extraction algorithm to further improve the performance of the model.

Received: 14 January 2020; Accepted: 12 March 2020;
Published: xx xx xxxx

Figure 7.  Comparison of experimental results of three models on the benchmark datasets. (a) The results of 
three models on Enzymes dataset using 5-flod CV. (b) The results of three models on Ion Channels dataset using 
5-flod CV. (c) The results of three models on GPCRs dataset using 5-flod CV. (d) The results of three models on 
Nuclear Receptors dataset using 5-flod CV.

https://doi.org/10.1038/s41598-020-62891-2


1 0Scientific Reports |         (2020) 10:6641  | https://doi.org/10.1038/s41598-020-62891-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
	 1.	 Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. Opinion - How many drug targets are there? Nature Reviews Drug Discovery 5, 

993–996, https://doi.org/10.1038/nrd2199 (2006).
	 2.	 Rigden, D. J., Fernández-Suárez, X. M. & Galperin, M. Y. The 2016 database issue of Nucleic Acids Research and an updated 

molecular biology database collection. Nucleic acids research 44, D1–D6 (2015).
	 3.	 Ezzat, A., Zhao, P., Wu, M., Li, X. L. & Kwoh, C. K. Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization. 

IEEE/ACM Transactions on Computational Biology &. Bioinformatics PP, 646–656 (2017).
	 4.	 Wang, L., You, Z.-H., Huang, D.-S. & Zhou, F. Combining High Speed ELM Learning with a Deep Convolutional Neural Network 

Feature Encoding for Predicting Protein-RNA Interactions. IEEE/ACM transactions on computational biology and bioinformatics 1, 
1–1 (2018).

	 5.	 Gao, Z. G. et al. Ens-PPI: A Novel Ensemble Classifier for Predicting the Interactions of Proteins Using Autocovariance 
Transformation from PSSM. Biomed Research International, 8, https://doi.org/10.1155/2016/4563524 (2016).

	 6.	 Wang, L. et al. An ensemble approach for large-scale identification of protein-protein interactions using the alignments of multiple 
sequences. Oncotarget 8, 5149 (2017).

	 7.	 Yasuo, N., Nakashima, Y. & Sekijima, M. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2018.
	 8.	 Xia, L.-Y., Yang, Z.-Y., Zhang, H. & Liang, Y. Improved Prediction of Drug-Target Interactions Using Self-Paced Learning with 

Collaborative Matrix Factorization. Journal of Chemical Information and Modeling 59 (2019).
	 9.	 Coelho, E. D., Arrais, J. P. & Oliveira, J. L. Computational discovery of putative leads for drug repositioning through drug-target 

interaction prediction. PLoS computational biology 12, e1005219 (2016).
	10.	 Peska, L., Buza, K. & Koller, J. Drug-Target Interaction Prediction: a Bayesian Ranking Approach. Comput Methods Programs 

Biomed 152, 15–21 (2017).
	11.	 Wang, L. et al. In International Symposium on Bioinformatics Research and Applications. 46–58 (Springer).
	12.	 Mousavian, Z., Khakabimamaghani, S., Kavousi, K. & Masoudi-Nejad, A. Drug–target interaction prediction from PSSM based 

evolutionary information. Journal of pharmacological and toxicological methods 78, 42–51 (2016).
	13.	 Shaikh, N., Sharma, M. & Garg, P. An improved approach for predicting drug-target interaction: Proteochemometrics to molecular 

docking. Molecular Biosystems 12 (2016).
	14.	 Rayhan, F. et al. iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. 

Scientific reports 7, 17731 (2017).
	15.	 Vilar, S. et al. Computational drug target screening through protein interaction profiles. Scientific reports 6, 36969 (2016).
	16.	 Wang, L. et al. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein 

Sequence Information. Current Protein & Peptide Science 19, 445–454, https://doi.org/10.2174/1389203718666161114111656 
(2018).

	17.	 Peón, A., Naulaerts, S. & Ballester, P. J. Predicting the reliability of drug-target interaction predictions with maximum coverage of 
target space. Scientific reports 7, 3820 (2017).

	18.	 Chen, H. & Zhang, Z. A Semi-Supervised Method for Drug-Target Interaction Prediction with Consistency in Networks. Plos One 
8, https://doi.org/10.1371/journal.pone.0062975 (2013).

	19.	 Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. & Kanehisa, M. Prediction of drug-target interaction networks from the 
integration of chemical and genomic spaces. Bioinformatics 24, I232–I240, https://doi.org/10.1093/bioinformatics/btn162 (2008).

	20.	 He, T., Chan, K. C. & Yang, L. In IEEE/WIC/ACM International Conference on Web Intelligence (WI). 401–406 (IEEE). 2018
	21.	 Xia, Z., Wu, L.-Y., Zhou, X. & Wong, S. T. C. Semi-supervised drug-protein interaction prediction from heterogeneous biological 

spaces. Bmc Systems Biology 4, https://doi.org/10.1186/1752-0509-4-s2-s6 (2010).
	22.	 He, T., Liu, Y., Ko, T. H., Chan, K. C. & Ong, Y.-S. Contextual Correlation Preserving Multiview Featured Graph Clustering. IEEE 

transactions on cybernetics 1–1 (2019).
	23.	 Hu, P. et al. In IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 1163–1169 (IEEE). 2018
	24.	 Chen, X. et al. Drug–target interaction prediction: databases, web servers and computational models. Briefings in bioinformatics 17, 

696–712 (2016).
	25.	 Cao, D.-S. et al. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures. Analytica 

Chimica Acta 752, 1–10, https://doi.org/10.1016/j.aca.2012.09.021 (2012).
	26.	 Chen, X. & Yan, G.-Y. NRWRH for Drug Target Prediction. Computational Systems Biology 13, 219–226 (2010).
	27.	 Zhang, W., Chen, Y. & Li, D. Drug-Target Interaction Prediction through Label Propagation with Linear Neighborhood Information. 

Molecules 22, 2056 (2017).
	28.	 Zong, N., Kim, H., Ngo, V. & Harismendy, O. Deep Mining Heterogeneous Networks of Biomedical Linked Data to Predict Novel 

Drug-Target Associations. Bioinformatics 33 (2017).
	29.	 Wang, L. et al. LMTRDA: Using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of 

sequences and similarities. PLoS computational biology 15, e1006865 (2019).
	30.	 Wu, Z. et al. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and 

drug repositioning. Briefings in Bioinformatics 18, 333–347 (2017).
	31.	 Peng, L., Liao, B., Zhu, W., Li, Z. & Li, K. Predicting Drug-Target Interactions With Multi-Information Fusion. IEEE Journal of 

Biomedical & Health Informatics 21, 561–572 (2017).
	32.	 Ezzat, A., Wu, M., Li, X. L. & Kwoh, C. K. Drug-Target Interaction Prediction using Ensemble Learning and Dimensionality 

Reduction. Methods 129, 81 (2017).
	33.	 Wang, L., Wang, H.-F., Liu, S.-R., Yan, X. & Song, K.-J. Predicting Protein-Protein Interactions from Matrix-Based Protein Sequence 

Using Convolution Neural Network and Feature-Selective Rotation Forest. Scientific reports 9, 9848 (2019).
	34.	 Öztürk, H., Ozkirimli, E. & Özgür, A. A comparative study of SMILES-based compound similarity functions for drug-target 

interaction prediction. BMC Bioinformatics 17, 1–11 (2016).
	35.	 Wang, L. et al. Using Two-dimensional Principal Component Analysis and Rotation Forest for Prediction of Protein-Protein 

Interactions. Scientific reports 8, 12874, https://doi.org/10.1038/s41598-018-30694-1 (2018).
	36.	 Rodriguez, J. J. & Kuncheva, L. I. Rotation forest: A new classifier ensemble method. Ieee Transactions on Pattern Analysis and 

Machine Intelligence 28, 1619–1630, https://doi.org/10.1109/tpami.2006.211 (2006).
	37.	 Wang, L. et al. Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from 

position-specific scoring matrix and ensemble classifier. Journal Of Theoretical Biology 418, 105–110, https://doi.org/10.1016/j.
jtbi.2017.01.003 (2017).

	38.	 Xia, J., Du, P., He, X. & Chanussot, J. Hyperspectral remote sensing image classification based on rotation forest. IEEE Geoscience 
and Remote Sensing Letters 11, 239–243 (2013).

	39.	 Lu, H., Meng, Y., Yan, K. & Gao, Z. Kernel principal component analysis combining rotation forest method for linearly inseparable 
data. Cognitive Systems Research 53, 111–122 (2019).

	40.	 Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian journal of 
internal medicine 4, 627 (2013).

	41.	 Chou, K. C. Some remarks on protein attribute prediction and pseudo amino acid composition. Journal of Theoretical Biology 273, 
236–247, https://doi.org/10.1016/j.jtbi.2010.12.024 (2011).

https://doi.org/10.1038/s41598-020-62891-2
https://doi.org/10.1038/nrd2199
https://doi.org/10.1155/2016/4563524
https://doi.org/10.2174/1389203718666161114111656
https://doi.org/10.1371/journal.pone.0062975
https://doi.org/10.1093/bioinformatics/btn162
https://doi.org/10.1186/1752-0509-4-s2-s6
https://doi.org/10.1016/j.aca.2012.09.021
https://doi.org/10.1038/s41598-018-30694-1
https://doi.org/10.1109/tpami.2006.211
https://doi.org/10.1016/j.jtbi.2017.01.003
https://doi.org/10.1016/j.jtbi.2017.01.003
https://doi.org/10.1016/j.jtbi.2010.12.024


1 1Scientific Reports |         (2020) 10:6641  | https://doi.org/10.1038/s41598-020-62891-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

	42.	 Pliakos, K., Vens, C. & Tsoumakas, G. Predicting drug-target interactions with multi-label classification and label partitioning. 
IEEE/ACM transactions on computational biology and bioinformatics (2019).

	43.	 Gonen, M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. 
Bioinformatics 28, 2304–2310, https://doi.org/10.1093/bioinformatics/bts360 (2012).

	44.	 Mousavian, Z., Khakabimamaghani, S., Kavousi, K. & Masoudi-Nejad, A. Drug-Target Interaction Prediction from PSSM based 
Evolutionary Information. J Pharmacol Toxicol Methods 78, 42–51 (2015).

Acknowledgements
The authors would like to thank all anonymous reviewers for their constructive advices. This work is supported 
in part by the National Natural Science Foundation of China, under Grants 61702444, 61572506, in part by 
the Pioneer Hundred Talents Program of Chinese Academy of Sciences, in part by the Chinese Postdoctoral 
Science Foundation, under Grant 2019M653804, in part by the West Light Foundation of The Chinese Academy 
of Sciences, under Grant 2018-XBQNXZ-B-008.

Author contributions
L.W. and Z.Y. conceived the algorithm, carried out the analyses, prepared the data sets, carried out experiments, 
and wrote the manuscript. X.Y., L.L. and W.Z. designed, performed and analyzed experiments and wrote the 
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-62891-2.
Correspondence and requests for materials should be addressed to L.W., Z.-H.Y. or X.Y.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-62891-2
https://doi.org/10.1093/bioinformatics/bts360
https://doi.org/10.1038/s41598-020-63181-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions

	Materials and methods

	Benchmark datasets. 
	Drug molecular characterization. 
	Numerical characterization of protein sequences. 
	Feature extraction. 
	Classification prediction. 

	Results and Discussion

	Evaluation criteria. 
	Assessment of prediction ability. 
	Comparison with Pseudo-AAC model and support vector machine model. 
	Comparison with state-of-the-art models. 
	Case studies. 

	Conclusion

	Acknowledgements

	Figure 1 The workflow of the proposed model to predict potential drug-target interactions.
	Algorithm : The rotation forest classifier of the proposed model.
	Figure 2 Accuracy surface obtained of rotation forest for optimizing parameter K and L.
	Figure 3 ROC curves performed by the proposed method on Enzymes dataset.
	Figure 4 ROC curves performed by the proposed method on Ion Channels dataset.
	Figure 5 ROC curves performed by the proposed method on GPCRs dataset.
	Figure 6 ROC curves performed by the proposed method on Nuclear Receptors dataset.
	Figure 7 Comparison of experimental results of three models on the benchmark datasets.
	Table 1 Statistics for the drug-target interactions.
	Table 2 Average 5-fold CV results obtained by our model on four benchmark datasets.
	Table 3 Average 5-fold CV results obtained by Pseudo-AAC model on four benchmark datasets.
	Table 4 Average 5-fold CV results obtained by SVM model on four benchmark datasets.
	Table 5 Comparison of other excellent models and the proposed model on four benchmark datasets in terms of the AUC.
	Table 6 Details of the top 10 drug-target pairs with the highest predicted scores.




