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ABSTRACT

Current microRNA target predictions are based on
sequence information and empirically derived rules
but do not make use of the expression of
microRNAs and their targets. This study aimed to
improve microRNA target predictions in a given bio-
logical context, using in silico predictions,
microRNA and mRNA expression. We used target
prediction tools to produce lists of predicted
targets and used a gene set test designed to
detect consistent effects of microRNAs on the
joint expression of multiple targets. In a single
test, association between microRNA expression
and target gene set expression as well as the con-
tribution of the individual target genes on the asso-
ciation are determined. The strongest negatively
associated mRNAs as measured by the test
were prioritized. We applied our integration
method to a well-defined muscle differentiation
model. Validation of our predictions in C2C12 cells
confirmed predicted targets of known as well as
novel muscle-related microRNAs. We further
studied associations between microRNA–mRNA
pairs in human prostate cancer, finding some pairs
that have been recently experimentally validated by
others. Using the same study, we showed the
advantages of the global test over Pearson cor-
relation and lasso. We conclude that our integ-
rated approach successfully identifies regulated
microRNAs and their targets.

INTRODUCTION

Many algorithms have been developed for microRNA
(miRNA) target prediction (1–6). Most of the prediction
algorithms are based on sequence information and empir-
ically derived rules, e.g. sequence alignment information,
conservation of sequence regions between species and/or
free energy calculation of the miRNA–mRNA complex
(7). Other methods use a combination of information
together with a classifier like support vector machines
(8,9) or hidden Markov models (10). So far, the lists of
predicted targets generated by different prediction tools
poorly overlap with the small number of validated
targets (11). Recently, several authors suggested to inte-
grate expression profiles from both miRNA and mRNA
with in silico target predictions to reduce the number of
false positives and increase the number of biologically
relevant targets, e.g. (12–14) or see the review of
Muniategui et al. (15) and references therein.
However, the proposed methods have important limita-

tions. miRNAs are often ‘fine-tuners’ of mRNA expres-
sion (16), leading to weak individual associations between
miRNA with mRNA expression profiles. This means that
methods based on pairwise correlations of miRNA and
mRNA expressions (17–19) have low power to find indi-
vidual associations, which is further reduced by a large
multiple testing problem. Other methods first test for dif-
ferential miRNA and mRNA expression and subsequently
test for enrichment of differentially expressed targets
(20–22), or after differential expression analysis, a meta
analysis-like approach is used (12). These approaches
rely on arbitrary thresholds in the separate analyses and
do not measure association between the expression data
sets. Other disadvantages of enrichment methods, such as
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Fisher’s exact test or GSEA (23), have been discussed else-
where (24,25), and better alternatives, including the global
test, have been proposed (26–28).
Methods based on penalized regression, such as lasso,

have also been proposed (13,29). Such methods focus on
representation of the outcome variable using the
covariates, but do not lead to a significance test of asso-
ciation. Engelmann (13) has proposed to estimate signifi-
cance by using resampling. In contrast, the global test
directly leads to an association test, without the need of
computationally intensive resampling. Previously, we used
the global test in the integrated analysis of DNA copy
number and gene expression (30). We showed that a
global test-based integration model is robust and sensitive
to identify sets of genes whose expression is affected by
copy number. Here, we propose to use the global test (26)
for the integration of miRNA and mRNA expression by
testing whether expression of predicted targets is related to
the miRNA expression. Because the predicted mRNA
targets of each miRNA are tested together, the multiple
testing problem is largely reduced. Also, the power to
detect weak associations is increased. Furthermore,
within the same model the influence of the individual
mRNA targets on the test statistic is available for
further prioritization of the targets.
We applied our integrated analysis approach to two

mammalian data sets. Firstly, we used a well-defined
muscle differentiation model in which we experimentally
validated novel predicted miRNA targets. Secondly, we
used the miRNA and mRNA expression profiles of a
large study on prostate cancer to study whether predicted
miRNA–mRNA pairs overlap with validated pairs.
Finally, our quantitative comparison showed the advan-
tages of the global test for integrated analysis of miRNA
and mRNA expression data.

MATERIALS AND METHODS

C2C12 expression data

miRNA and mRNA microarray expression profiles on a
time course of C2C12 cell differentiation were obtained
from two previously described studies (20,31). mRNA ex-
pression was measured using Agilent’s one-color 4� 44
whole mouse genome oligo arrays. The locked-nucleic
acid technology from miRCURY was used for the
miRNA expression profiling. Data sets are publicly avail-
able from GEO (32) as series GSE19968 and GSE9449.
miRNA expression profiles were obtained from

proliferating myoblasts (60–70% confluence), at conflu-
ence (100%), 1, 2 and 4 days after induction of differen-
tiation (20), whereas the mRNA expression profiles were
obtained from the myoblasts stage, start of differentiation,
24 h after the start of differentiation and from myotubes
(96 h after start of differentiation) (31). To match the data
as well as possible miRNA expression time point ‘2 days
after induction of differentiation’ was removed. The
miRNA array probes represented 339 mouse miRNAs.
The mRNA probe identifiers were mapped to 21 202
unique Entrez identifiers. Mappings were based on data
provided by Entrez Gene ftp://ftp.ncbi.nlm.nih.gov/gene/

DATA, with a date stamp from the source of 14
September 2011.

Prostate cancer expression data

Matched miRNA and mRNA expression profiles (33) for
140 samples (112 tumor, 28 normal) were collected from
GEO (32) as series GSE21036 and GSE21034. miRNA
expression profiles were obtained using Agilent miRNA
V2 arrays. Whole-transcript and exon-level expression
data were obtained using Affymetrix Human Exon 1.0
ST. In our integrated analysis, we used the whole-tran-
script data. Gene bank accession numbers were converted
to 20 035 unique entrez identifiers. The miRNA expression
data contained 373 unique miRNAs. Mappings were
based on data provided by Entrez Gene ftp://ftp.ncbi.
nlm.nih.gov/gene/DATA, with a date stamp from the
source of 4 September 2012.

Collecting predicted and validated targets

We selected three commonly used tools for target predic-
tion: TargetScan version 6.1 (6), microCosm version 5
(formerly miRBase Targets) (5) and PITA version from
2007 (4). The processed data of all three prediction tools
were stored in a local SQLite (34) database enabling fast
querying of the data.

We selected three databases containing validated
targets: Tarbase version 5c (35), miRecords version
November 25, 2010 (36) and miRTarBase release 3.5
(37). The union of these databases was used, with filtering
to (i) exclude those pairs of which mRNA or miRNA were
not tested on the arrays and (ii) exclude pairs that were not
in the predicted data used to build the gene sets. Because
validated databases in general do no contain specific in-
formation on the biological context, we also used the
manually obtained list of prostate-specific miRNA–
mRNA pairs of Lu et al. (29).

Pseudo code: Integrated Analysis

Input:

Xp�n matrix of mRNA expression profiles
Yq�n matrix of miRNA expression profiles
Wq�p incidence matrix relating miRNAs to mRNAs

Output:

P-values: q� 1 vector of P-values for the miRNAs
direction and strength of the individual target asso-
ciation extracted from gtObject

for each miRNA i do
{
y <- Y[i,] ##miRNA expression profile
w <- W[i,] ##predicted targets
Xw <- X[w,] ##mRNA expression profiles
gtObject <- gt(y � Xw) ##globaltest-
function

}
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Integrated analysis

We propose an integrated analysis of miRNA and mRNA
expression based on the global test (see Pseudo code
above). The global test is a generalization for testing the
global null hypothesis of a linear (or generalized linear)
regression model H0 : �1 ¼ �2 ¼ � � � ¼ �p ¼ 0 when the
number of features exceeds the number of samples
(p >> n).

In our integrated analysis, the linear model with only an
intercept is tested against the alternative model y ¼ X�.
Here yn�1 represents the expression profile of a certain
miRNA and Xn�p the expression profiles of the predicted
mRNA targets for that miRNA. The number of targets p
is generally larger than the number of samples n. For more
details about the technicalities of the method, see section
‘Integrated analysis method’ in the Supplementary
Material.

A useful interpretation of the global test for the linear
model is as a sum of squared covariances between
predictors and responses [see section 5 of (26)].
Furthermore, because the global test test-statistic is a
sum of test-statistics of the single targets, ranking of the
targets is included in the test. Also, target prediction
scores are easily incorporated in the global test by using
a weighted sum, see e.g. Jelier et al. (38).

Reporter plasmids construction

Parts of 250–500 nucleotides of the 30 untranslated regions
(UTR) of the selected target genes containing the miRNA
recognition sites were amplified by PCR (for primer
sequences see Supplementary Table S1) from oligo dT-
primed cDNA derived from C2C12 proliferating muscle
precursor cells. The resulting amplified fragments were
cloned into pGEM-T easy (Promega), sequence verified
and subsequently cloned into pMIR-REPORT
(Invitrogen).

Transfection and luciferase measurement

C2C12 muscle precursor cells were cultured in Dulbecco’s
Medium (without phenol red) supplemented with 10%
fetal bovine serum, 1% penicillin/streptomycin, 2%
Glutamax and 1% glucose (all from Gibco-BRL) using
plates that were pre-coated with purified bovine dermal
collagen (Vitrogen100; Cohesion). At 70% confluency,
the cells were harvested and plated in a microclear
96-wells plate at 5� 103 cells per well in penicillin/strepto-
mycin free medium. After 24 h, the cells were transfected
with 100 ng pMIR-REPORT 30 UTR, 10 ng Renilla-Luc
(Promega) and 100 nM miRNA using DharmaFECT Duo
Transfection Reagent (Thermo scientific) according to the
manufacturer’s protocol. Synthetic miRNAs were
obtained from Thermo scientific. All transfections were
done at least in triplo. After 24 h, luciferase activity was
measured for both luciferase and renilla constructs using
the Dual-Glo �Luciferase Assay System (Promega).

Luciferase assay analysis

The luciferase assay was performed using three 96-wells
plates. On each plate, the background for both luciferase

and renilla luminescence was measured in wells only con-
taining the C2C12 cells. The median value per plate was
used for a background subtraction to correct plate effects.
For further analysis, the ratios between the background-
corrected luciferase and renilla intensities were used. For
each cloned 30 UTR target, a one-sided two-sample
Wilcoxon rank-sum test was performed between between
the transfections including the miRNA for which a
binding site was predicted and the other transfections.

Software

R-2.14.1 (39) was used together with the following
packages: globaltest, 5.8.1, (40), org.Mm.eg.db, 2.6.4,
(41), RSQLite, 0.11.1, (34), DBI, 0.2.5, (42),
AnnotationDbi, 1.16.19, (43), GEOquery, 2.21.9, (44),
directlabels, 2.6, (45), VennDiagram, 1.5.1, (46) and
lattice, 0.20-6, (47). Our approach is wrapped-up in a
package called miRNAmRNA, 1.0.0, available from
www.humgen.nl/MicroarrayAnalysisGroup.html.

RESULTS

Integrated analysis of miRNA and mRNA expression

For our integrated approach, we generated overlapping
lists of in silico predicted targets by TargetScan,
microCosm and PITA. These tools were selected based
on partly complementary prediction algorithms and
support for multiple organisms. For each miRNA,
mRNA expression profiles were extracted for the
overlapping targets predicted by all three databases. The
size of the gene sets varied between 1 and 157 predicted
targets.
Of the 339 mouse miRNAs assayed, 208 had at least one

predicted target by all three prediction tools. We ranked
the miRNAs based on the strength of association with the
collective expression profiles of the predicted mRNA
targets using the global test (Table 1).
Although we did not, a priori, select for miRNAs that

were differentially regulated during C2C12 cell differenti-
ation, the miRNAs mmu-miR-133a and mmu-miR-26a,
which are known to be upregulated during muscle differ-
entiation (20,48,49), were ranked among the top 20. This
was expected, as the global test models the expression of
miRNAs as a function of the expression of the predicted
targets, and statistically significant associations require
some level of regulation of the miRNA under the tested
experimental conditions. Figure 1 shows the expression of
the top 20 associated miRNAs during muscle cell differ-
entiation. Among the identified miRNAs highly associated
to target gene expression in differentiating C2C12 cells,
several have been related to muscle in literature e.g.
miR-133a, miR-26a, miR-24 and miR-486 (50). To
validate our integrated approach, we selected two known
myomirs, mmu-miR-133a (49) and mmu-miR-26a (20),
and an miRNA predicted by our approach to be
involved in C2C12 cell differentiation, mmu-miR-22.
Similar to mmu-miR-133a and mmu-miR-26a, mmu-
miR-22 is upregulated during differentiation of C2C12
cells (Figure 1). Four of five most negatively associated
target genes of miR-22 are involved in cytoskeleton
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reorganization, which is a process occurring during
myoblast differentiation (51).
For each of these three miRNAs, we selected mRNAs

for validation from the top 10 targets most strongly and
negatively associated mRNAs with the miRNA expression

according to global test (Supplementary Tables S2–S4).
As positive controls, two known targets for mmu-miR-
26a Epha2 and Ezh2 were included, although they
ranked lower than the top 10 in our result
(Supplementary Table S1). For mmu-miR-133a, the
known target Whsc2 (48) was included as positive control.

Validation experiments

The 30 untranslated regions (UTR) of 11 top-ranked
mRNA targets were cloned behind luciferase reporters
(Supplementary Table S1). The UTRs of Arfip2 and
Fbxl19 contained predicted binding sites for multiple
tested miRNAs (Figure 2). Co-transfection experiments
with synthetic mmu-miR-133a, mmu-miR-26a and mmu-
miR-22 were performed to evaluate the effect of specific
miRNA binding on luciferase protein activity (Figure 3).
The three top negatively associated targets—Wasf1, Arpc5
and Nr3c1—were indeed regulated by mmu-miR-22,
which we predicted to be involved in C2C12 cell differen-
tiation (Figure 3 upper row). Whsc2, a known target for
mmu-miR-133a, was clearly downregulated by the target-
ing miRNA. Also the predicted targets Foxc1, Ptbp2 and
Arfip2 showed significant downregulation by mmu-miR-
133a (Figure 3 middle row). For mmu-miR-26a, both
known targets Epha2 and Ezh2 and predicted target
Thrap3 showed significant downregulation (Figure 3
bottom row).

The 30 UTR of Fbxl19 contained two predicted binding
sites for mmu-miR-26a and one for mmu-miR-22
(Figure 2A). Indeed, mmu-miR-22 reduced the luciferase
activity, 1.7-fold, mmu-miR-26a (two sites) 2.4-fold and
their combination 2.6-fold (Figure 4A). The gene Arfip2 is
predicted to be regulated by both mmu-miR-133a and
mmu-miR-22. Target predictions that were made using
an older version of TargetScan Nov 2011 did not
identify Arfip2 as a predicted target for mmu-miR-22.
Therefore, initially primers were only designed around
the binding site of mmu-miR-133a. However, it turned
out that the binding site for mmu-miR-22 was included
as well (Figure 2B). Both miRNAs downregulated Arfip2
with P-values < 0:05 (Figure 4B).

This proof-of-principle study shows that the integrated
analysis of in silico predicted targets with miRNA and
mRNA expression profiles identified muscle-related
miRNAs and their target genes.

Prostate cancer

Our integrated analysis approach has other generic
features. For example, reversing the model, to test the as-
sociation between the expression of one mRNA with its
set of potentially regulating miRNAs as proposed by
(13,29), is easily accomplished. Furthermore, target pre-
diction tools do not show much overlap in their predic-
tions and there could be added value in using the partial
overlap between prediction tools. This option is often im-
plemented in miRNA functional annotation tools (53). To
show these two additional features, we used the human
prostate cancer data described by (33).

Integrated analysis using the original model with the
predicted targets from the strict overlap between

Table 1. Overview of mouse miRNAs that show the strongest associ-

ation with gene expression of their predicted target sets

miRNA P-valuea Number of targetsb Regulationc

miR-134 0.00366 5 up
miR-20a 0.00677 134 down
miR-500 0.01090 23 up
miR-133a 0.01230 49 up
let-7c 0.01614 86 up
miR-24 0.02212 47 up
miR-346 0.02681 4 down
miR-93 0.03190 124 down
miR-701 0.03250 1 down
miR-299 0.03305 8 up
miR-15b 0.03308 100 down
miR-486 0.03409 13 up
miR-32 0.03616 120 down
miR-26a 0.03693 76 up
miR-495 0.05060 48 up
miR-467a 0.05228 34 down
miR-543 0.05705 55 down
miR-33 0.06556 20 down
miR-150 0.06703 17 up
miR-22 0.07198 41 up

aP-values are calculated using an asymptotic distribution for the global
test test statistic.
bmRNAs in the gene set, the intersecting predictions between
TargetScan, microCosm and PITA.
cIndicates direction of change in miRNA expression during C2C12 dif-
ferentiation, comparing differentiated versus proliferating myoblasts.
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Figure 1. miRNA expression profiles of the top 20 that show the highest
association with gene expression of their target sets. The normalized log2
ratio compares the expression from proliferating myoblasts (60–70% con-
fluence), at confluence (100%), 1 and 4 days after induction of differen-
tiation to a pool of proliferating myoblasts (20).
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Figure 3. Validation of miRNA–mRNA target pairs by co-transfection of luciferase 30 UTR reporter constructs and synthetic miRNAs in C2C12
cells. Luciferase activities in cells transfected with the miRNA targeting the cloned 30 UTR are depicted in color: top row: mmu-miR-22 in green+,
middle row mmu-miR-133a in red 4 and bottom row mmu-miR-26a in dark blue� . Points reflect independent biological replicates (n=3 per
condition). Note that the y-axis scale of each panel is different, reflecting differences in baseline activity of the luciferase UTR reporters. P-values
reported at the top of each panel are the results from a one-sided two-sample Wilcoxon rank sum tests for each luciferase 30 UTR reporter between
the miRNA for which a binding site was predicted and the non-binding miRNAs.

Figure 2. (A) Part of the 30 UTR of Fbxl19 taken from the UCSC browser [assembly July 2007 (NCBI37/mm9)]. The black boxes indicate BLAT
(52) alignment of the forward and reverse primers used to PCR-amplify a fragment to insert in the luciferase construct. In green are the seed-regions
for predicted miRNAs by TargetScan. [Note that miR-141/200 ranked lower than the top 20 respectively, 48, 155, 194, 209 for miRNAs mmu-miR-
200a (0.2), mmu-miR-141 (0.7), mmu-miR-200c (0.9) and mmu-miR-200b (0.9), with global test P-value between brackets.] (B) Part of the 30 UTR
of Arfip2 taken from the UCSC browser. The black boxes indicate BLAT alignment of the forward and reverse primers used to PCR-amplify
a fragment to insert in the luciferase construct. In green are the seed-regions for predicted miRNAs by TargetScan. The red box is the seed-region
for mmu-miR-22 manually added, as the older version of TargetScan used to find overlapping targets did not predicted Arfip2 as a target for
mmu-miR-22.
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TargetScan, microCosm and PITA as a set, resulted in 175
significant miRNAs associated with the corresponding
predicted targets (FDR < 0:01). Keeping the strongest
associated targets for each miRNA (FDR < 0:01)
resulted in 1732 significant miRNA–mRNA pairs
(Supplementary Tables S5 and S6). Of these significant
pairs, 47 have been validated (Supplementary Figure
S1A and Supplementary Table S5). Integrated analysis
using the reverse model with miRNA sets yielded 961 sig-
nificant mRNAs containing a total of 1653 significant
miRNA–mRNA pairs (using the same thresholds as
before), with 203 unique miRNAs (Supplementary Table
S7). The overlap with the previous analysis is 170 and
1486, miRNAs and miRNA–mRNA pairs, respectively
(Supplementary Figure S2A and Supplementary Table
S5). Out of 10 prostate cancer-specific miRNA–mRNA
pairs described by Lu et al. (29) that we could predict,
four pairs overlapped with our results: hsa-miR-
100:SMARCA5, hsa-miR-101:EZH2, hsa-miR-
125b:BAK1 and hsa-miR-141:ZEB2. Both miR-141 and
the oncomir miR-125b ranked high in our list, respectively
21 and 10, and the targets respectively at 5 and 1 within
each list. Recently, these miRNAs have been described
to play an important role in prostate cancer
development (54).
There was increased overlap of associated pairs with

validated pairs when the integrated analysis was per-
formed using partial overlap between target prediction
tools (Supplementary Figures S1C, D, and S2B and
Supplementary Tables S5, S8 and S9), increasing from 4
to 18 for the original model and 4 to 19 for the reversed
model. However, also the number of validated pairs that
did not overlap with our predictions increased. Compared

with all associations, there was a slight increase in the
proportion of validated pairs among the negatively
associated pairs.

Quantitative comparison between different methods

Approaches recently proposed to jointly analyse miRNA
and target mRNAs have used Pearson correlation and
lasso (13,14). In addition to a qualitative comparison
summarized in Supplementary Table S10, we performed
a comprehensive quantitative comparison between these
methods and the global test, illustrated with the prostate
cancer data set (see section ‘Prioritization of microRNAs
and their targets: quantitative comparison of global test,
correlation and lasso’ of the Supplementary Material). We
showed that the global test yields better prioritization of
miRNAs by taking all of their targets into account to
produce a P-value (Figure 5). In contrast, lasso aims at
sparsity, so may ignore target mRNAs with relatively
large association with the miRNA under study. Pearson
correlation only yields results per pair, so objective priori-
tization of relevant miRNAs would involve stricter
multiple testing correction, and thus less power.

Using subsampling, we found that miRNA selections by
the global test and by Pearson correlation yield relatively
the same sensitivity, but the global test’s specificity is
much better, with the Pearson correlation including
many more false positives than expected (Supplementary
Figures S4A and B). In terms of miRNA–mRNA pairs,
Pearson correlation and global test yield virtually the same
selection (Supplementary Figure S4C). Lasso does keep
false discoveries under control (Supplementary Figure
S4D) in the selection of miRNA–mRNA pairs; however,
its sparsity is not helpful to find all relevant miRNA–
mRNA pairs (Figure 5). These results strengthen the
choice of the global test for our approach for integrated
analysis of miRNA and mRNA expression data.

Using prediction scores

Most tools assign a prediction score for miRNA–mRNA
interaction, which could be used in a weighted global test
(38). However, the scores from different tools reflect dif-
ferent aspects of miRNA–mRNA interaction, have differ-
ent ranges and distributions and generally are not
correlated (55). Therefore, combining prediction scores
of multiple tools to a single score is not trivial. We
included combined weights using rank, max and uniform
scaling approaches and conducted the integrated analysis
of miRNA and mRNA expression. Using the weighted
global test with the combined prediction scores resulted
in slightly different P-values and ranking of predicted
targets but did not improve the predictions of known
targets (data not shown).

DISCUSSION

We integrated target prediction information with miRNA
and mRNA expression data to prioritize miRNAs and
associated targets in a specific biological context.
Essentially, each miRNA was tested for association with
expression levels of a set of predicted mRNA targets using
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Figure 4. Validation of miRNA–mRNA target pairs by co-transfection
in C2C12 cells for those 30 UTRs that were predicted to have multiple
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the global test (26). Our results show that the global test is
better suited for integrated analysis of miRNA and
mRNA expression data, compared with either Pearson
correlation or lasso-based approaches.

Our systematic approach enables the identification
of miRNAs that are strongly associated with a set of
target-gene expressions in the biological condition of
interest. Within the same model, the influences of the in-
dividual mRNA targets on the test statistic are available.
The most highly negatively associated target genes were
prioritized for experimental validation. We used a
luciferase reporter assay in C2C12 cells and confirmed
all of our predictions. We also showed that multiple
miRNAs targeting the same gene can be detected and
may act synergistically, as has been reported before (56).

We compared our results with those of Wong et al. (20)
on C2C12 miRNA expression. Wong et al. used stringent
P-value and fold-change cutoffs resulting in six
potential miRNAs involved in C2C12 muscle cell differ-
entiation, namely mmu-miR-133a/133b, mml-miR-133a
(mml=Macaca mulatta), mmu-miR-206, mmu-miR-
26a, mmu-miR-422b upregulated and mmu-miR-222
downregulated. Subsequently, these were matched to dif-
ferentially expressed mRNAs previously reported (57).
Three identified mRNAs were downregulated and were
targets predicted by three tools (PicTar, TargetScan and
miRanda) for two upregulated miRNAs. Two mRNAs,
Ezh2 and Epha2, were validated as targets for mmu-
miR-26a, and Gja1 as target for mmu-miR-206. This
approach relies on arbitrary thresholds in the separate
analyses and does not take into account association
between the expression data sets. The separate analyses

also require a meaningful grouping of samples, leading
to a short list of differentially expressed miRNAs and
mRNAs. This leads to a too strict approach, as differential
expression (and grouping) need not occur for miRNA
regulation of mRNA expression. Therefore, the power
to detect miRNA–mRNA pairs is lower. Indeed, we con-
firmed Wong’s results, and found several more targets that
were confirmed by validation experiments, showing the
superior power of the method.
Our method does not require grouping of samples, as

no shortlist of miRNAs or mRNAs is needed. It is most
powerful when the same biological samples are used for
obtaining the miRNA and mRNA expression profiles,
which was not the case for the C2C12 data we have
used here. In addition, the small sample size resulted in
P-values for both miRNAs and mRNAs that were not
extremely significant, although still yielding successfully
validated effects.
miRNA and mRNA expression associations can only

be found if the mRNA is degraded after being targeted,
so some associations that affect translation only are
missed. If protein abundance data were used instead of
mRNA, however, our integrated approach could be used
and all associations would be detectable.
Since the review paper of (15), new methods have been

proposed for the integrated analysis of miRNA and
mRNA expression data with in silico predicted targets
using gene sets, e.g. (12–14). Although the methods of
(12–14) use in silico target predictions to define sets of
mRNAs or miRNAs in their models, there are substantial
differences between these methods and our method, both
in the type of hypothesis tested and the computational
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Figure 5. Comparison of global test, correlation and lasso for the prioritization of miRNAs and their targets. The x-axis represents the global test
z-score (global test statistic transformed to z-scores) for each miRNA. The miRNAs are ordered according to the global test statistic, with increasing
significance from left to right, and the vertical line separates not significant (left) from significant (right) associations, all according to the global test.
The vertical stacks of points represent the global test statistics separately for each target, colored according to significance (black if significant, i.e.
P-value< 0.001 after multiple testing correction using Benjamini–Hochberg’s FDR; grey otherwise). The size of each point reflects the absolute
correlation coefficient. Red squares indicate miRNA–mRNA pairs selected by lasso, so that in each vertical column of squares the red ones represent
mRNA targets with a non-zero lasso-regression coefficient.
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approach (an overview is given in Supplementary Table
S10).
Artmann proposed a supervised method that separately

tests for differentially expressed miRNAs between two
conditions and whether the corresponding set of predicted
targets is differentially expressed between these conditions.
The resulting P-values are combined using a meta-analysis
approach giving a ranked list of miRNAs that are simul-
taneously differentially expressed between the conditions
and associated with the corresponding predicted targets.
In contrast, our approach directly tests the association
between miRNA and mRNA expression without taking
a grouping variable into account, so there is no need for
a meta-analysis approach to combine P-values, which
could lead to power loss. The method by Bossel Ben-
Moshe et al. is based on the Pearson correlation
between the miRNA expression profile and the expression
profiles of the predicted targets. They use a strategy which
is closely related to gene set enrichment analysis (GSEA)
(23) to calculate the enrichment of the top ranked in silico
predicted pairs, based on the prediction scores. We have
shown that our method is comparable with Pearson cor-
relation per pair, but yields better prioritization of
miRNAs. Prediction scores can also be easily incorporated
in our method, but these did not improve the predictions
of known targets in our examples. The approach of
Engelmann et al. is based on the penalized linear regres-
sion algorithm, lasso (58), for selection of the miRNAs
that best predict the target expression, used before in the
context miRNA–mRNA prediction also by (29). We have
shown that this is not ideal for finding all miRNA–mRNA
pairs in any context (Supplementary Material).
Other differences between these approaches seem more

arbitrary, such as the choice of the database(s) containing
target predictions or the use of partial or strict overlap
between databases. Our integrated approach is generic:
either miRNAs or mRNAs can be used as a set, the
decision of using partial or strict overlap is left to the
user, and adding target predictions from other tools is
straightforward. In addition, one could use all genes as
potential targets for a miRNA to discover novel or non-
canonical targets. Other advantages of our method are
that given a miRNA expression profile and the expression
profiles of the corresponding predicted targets, a single
P-value indicates the strength of association of the
miRNA expression with the expression of the predicted
targets. Therefore, separate tests for differentially
expressed miRNAs and mRNAs or computationally in-
tensive resampling to obtain P-values are not necessary.
Furthermore, the predicted targets are ordered automat-
ically by strength and direction of their association.
Because the number of miRNAs is much smaller than
the number of mRNAs, the multiple testing problem is
less severe. Finally, the number of targets predicted for a
single miRNA is larger than the number of miRNAs that
target the same mRNA (on average), increasing the power
of the global test to detect multiple moderate and consist-
ent associations.
In summary, we present an integrated approach for

adding biological relevance to miRNA target predictions
by taking into account expression of both miRNA and

mRNA. Our method uses the global test to detect consist-
ent effects across multiple genes. A single test identifies
miRNAs with strong association to their predicted
target gene set expression as well as the most relevant
miRNA–mRNA regulatory interactions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–10, Supplementary Figures 1–4
and Supplementary methods.
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