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Staphylococcus aureus (Sau) strains are a main cause of disease, including nosocomial

infections which have been linked to the production of biofilms and the propagation of

antibiotic resistance strains such as methicillin-resistant Staphylococcus aureus (MRSA).

A previous study found that Streptococcus pneumoniae (Spn) strains kill planktonic

cultures of Sau strains. In this work, we have further evaluated in detail the eradication

of Sau biofilms and investigated ultrastructural interactions of the biofilmicidal effect. Spn

strain D39, which produces the competence stimulating peptide 1 (CSP1), reduced Sau

biofilms within 8 h of inoculation, while TIGR4, producing CSP2, eradicated Sau biofilms

and planktonic cells within 4 h. Differences were not attributed to pherotypes as other

Spn strains producing different pheromones eradicated Sau within 4 h. Experiments

using Transwell devices, which physically separated both species growing in the

same well, demonstrated that direct contact between Spn and Sau was required

to efficiently eradicate Sau biofilms and biofilm-released planktonic cells. Physical

contact-mediated killing of Sau was not related to production of hydrogen peroxide as an

isogenic TIGR41spxB mutant eradicated Sau bacteria within 4 h. Confocal micrographs

confirmed eradication of Sau biofilms by TIGR4 and allowed us to visualize ultrastructural

point of contacts between Sau and Spn. A time-course study further demonstrated

spatial colocalization of Spn chains and Sau tetrads as early as 30 min post-inoculation

(Pearson’s coefficient >0.72). Finally, precolonized biofilms produced by Sau strain

Newman, or MRSA strain USA300, were eradicated by mid-log phase cultures of

washed TIGR4 bacteria within 2 h post-inoculation. In conclusion, Spn strains rapidly

eradicate pre-colonized Sau aureus biofilms, including those formed by MRSA strains,

by a mechanism(s) requiring bacterium-bacterium contact, but independent from the

production of hydrogen peroxide.
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INTRODUCTION

Two important human pathogens, Streptococcus pneumoniae
(Spn) and Staphylococcus aureus (Sau) persist by forming
biofilms in the nasopharynx of healthy humans (Bogaert et al.,
2004; Regev-Yochay et al., 2004; Bakaletz, 2007; Chien et al., 2013;
Dunne et al., 2013; Shak et al., 2013, 2014; Vidal et al., 2013;
Chao et al., 2014). Spn is a common childhood commensal, but
also causes otitis media, pneumonia and severe diseases including
bacteremia, septicemia, and meningitis (Regev-Yochay et al.,
2004; Vidal et al., 2013). Spn, which displays nasopharyngeal
carriage rates of up to 90% in children, shifts to a meshed biofilm
structure which promotes its persistence in the nasopharynx,
increases resistance to antibiotics and acts as a source of
planktonic pneumococci, which infiltrate into other parts of the
respiratory system (i.e., lungs), bloodstream, and spinal fluid to
cause disease (Yarwood et al., 2004; Shak et al., 2013; Vidal et al.,
2013; Gritzfeld et al., 2014).

Sau strains, including methicillin-resistant Sau strains
(MRSA), colonize the nasopharynx, anterior nares, and skin
in 30–50% of healthy individuals, but also produce a variety of
infections involving the skin and soft tissue, the bloodstream, the
respiratory system, and the skeletal system (Regev-Yochay et al.,
2004, 2008; Yarwood et al., 2004; Chien et al., 2013; Dunne et al.,
2013; Bhattacharya et al., 2015). Given its location in healthy
individuals (i.e., skin), Sau can be easily transmitted in hospital
environments, causing a variety of nosocomial infections. Sau-
associated nosocomial infections are recognized for their strong
ability to form biofilms on abiotic surfaces such as catheters, or
indwelling devices. Once a biofilm is established, Sau tolerate
concentrations of antimicrobials that would otherwise eradicate
planktonic growth (Kiedrowski and Horswill, 2011; Bhattacharya
et al., 2015).

Epidemiological studies in children, including those from
our laboratory, have demonstrated a negative association for
nasopharyngeal carriage of Spn and Sau strains, i.e., children
carrying Spn strains in the nasopharynx are less likely to also
carry Sau (Chien et al., 2013; Dunne et al., 2013). With the recent
introduction of pneumococcal vaccines, this competition for
the nasopharyngeal niche has been more evident. For example,
a study by Bogaert et al. (2004) that included 3198 children
from the Netherlands showed that those vaccinated against Spn
experienced a decrease in carriage of Spn vaccine types with a
subsequent increase in nasopharyngeal carriage of Sau (Bogaert
et al., 2004). Similar evidences were provided by Regev-Yochay
et al. (2004) and Chien et al. (2013), in the pre-vaccine era
(Regev-Yochay et al., 2004; Chien et al., 2013).

The molecular mechanism(s) behind these epidemiological
observations has been investigated without conclusive findings.
A study by Regev-Yochay et al. (2006), for example, showed that
Spn strains (e.g., Pn20 and TIGR4) interfere with the growth
of planktonic cultures of Sau strain Newman by a mechanism
likely involving the release of H2O2 into the supernatant (Regev-
Yochay et al., 2006). Killing of Sau planktonic cultures by
Spn strains was observed after 6 h of incubation and it was
inhibited by the addition of catalase, or by incubating Sau with
Spn mutant in the spxB gene which encodes for the enzyme

producing H2O2 (i.e., Pn201spxB, or TIGR41spxB). In contrast,
studies using a neonatal rat model of colonization demonstrated
that Sau colonizes the nasal passages whether co-inoculated
along with TIGR4 or with a TIGR41spxB mutant (Margolis,
2009). Moreover, Margolis et al. (2010) showed, using a similar
neonatal rat model, that Spn strain TIGR4 coexisted in the nasal
epithelium along with Sau, whether Spn or Sau was already
colonizing the nasal passages and the other strain was introduced
(Margolis et al., 2010). The inconsistencies for the in vitro killing
vs. co-existence in animal models have not yet been resolved.

Since Sau biofilms have been linked to the persistence
of chronic infections that cannot otherwise be eradicated
with available antimicrobials (Kiedrowski and Horswill, 2011;
Bhattacharya et al., 2015), eradication of Sau biofilms has drawn
considerable interest in the last few years. In this study, we
have further investigated killing of Sau biofilms using different
approaches, including those aimed to eradicate preformed
biofilms. We have demonstrated at the ultrastructural level that
physical contact is required for efficient killing of Sau by Spn;
killing by physical contact eradicated Sau strains, including
MRSA strain USA300, within 2 h post-inoculation. In support
of these findings, washed bacteria more efficiently killed Sau
biofilms than supernatant indicating that the mechanism is more
complex than we originally thought. The molecular mechanism,
however, warrants further development as complete eradication
of Sau biofilms was rapidly achieved.

MATERIALS AND METHODS

Bacterial Strains and Culture Media
Spn and Sau strains utilized in this study are shown in Table 1.
Spn strains were cultured on blood agar plates (BAP), or BAP
with 25 µg/ml gentamicin, whereas Sau strains were grown on
salt mannitol agar (SMA) plates or Luria-Bertani agar ([LBA] 1%
tryptone [Becton- Dickinson], 0.5% yeast extract, 1% NaCl, and
1.5% agar [Becton-Dickinson]). Todd Hewitt broth containing
0.5% (w/v) yeast extract (THY) was utilized in all experiments.

Preparation of Inoculum for Experiments
Inoculum was prepared essentially as previously described (Vidal
et al., 2011). Briefly, an overnight BAP (for Spn), or LBA (for Sau),
culture was used to prepare a cell suspension in THY broth to
an OD600 of ∼0.08. This suspension was incubated at 37◦C in a
5% CO2 atmosphere until the culture reached an OD600 of ∼0.2
(early-log phase). Then glycerol was added to give a final 10%
(v/v) and stored at −80◦C until used. An aliquot of these stocks
was further diluted and plated to obtain bacterial counts (cfu/ml).

Co-incubation Experiments
Experiments were conducted using 8-well glass slide (Lab-Tek),
polystyrene 6-well plates and 24-well plates (Corning). Spn and
Sau strains were inoculated at a density of ∼1 × 106 cfu/ml
each in THY and incubated at 37◦C in a 5% CO2 atmosphere
for the indicated time. Control wells were only inoculated with
Spn or Sau. Where indicated, bovine liver catalase (Sigma) was
added to a final concentration of 1000 U/ml. Planktonic cells
were removed, diluted and platted onto BAP or BAP with
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TABLE 1 | Strains utilized in this study.

Strain Description Reference or source

D39 Avery strain, pherotype CSP1, clinical isolate capsular serotype 2 Avery et al., 1944; Lanie et al., 2007

TIGR4 Invasive clinical isolate, pherotype CSP2, capsular serotype 4 Tettelin et al., 2001

TIGR41spxB TIGR4 with an insertion within the spxB gene, spxB::kan-rpsL+ Regev-Yochay et al., 2006

SPJV01 D39 encoding pMV158GFP, TetR Vidal et al., 2011

SPJV09 TIGR4 encoding pMV158GFP, TetR Vidal et al., 2013

GA13499 Phenotype CSP1, capsular serotype 19F Kindly provided by Dr. Scott Chancey

A66.1 Phenotype CSP2, capsular serotype 3 Benton et al., 1997

S. aureus Newman NCTC 8178, ATCC 13420 Boake, 1956

S. aureus ATCC 25923 Clinical isolate, utilized as quality control strain for antimicrobial susceptibility testing Laboratory stock

S. aureus SAJV01 Strain isolated from a post-surgery knee infection in our laboratory at Emory University. Laboratory stock

S. aureus USA300 NRSA384, methicillin-resistant strain isolated from a wound in Mississippi Centers for Disease Control Prevention, 2003

gentamicin to obtain cfu/ml for Spn or onto LBA or SMA to
obtain cfu/ml of Sau. Biofilms were washed once with PBS,
mixed with with 1ml of sterile PBS and sonicated for 15 s
in a Bransonic ultrasonic water bath (Branson, Danbury, CT),
followed by extensive pipetting to remove remaining attached
biofilm bacteria. Biofilms were diluted and platted as above.

Experiments with Preformed Sau Biofilms
Sau was inoculated into a 6-well microplate and incubated at
37◦C with 5% CO2 for 4 h after which planktonic cells were
removed and biofilms were washed once with sterile PBS. THY
was added to the washed Sau biofilms and then these were
inoculated with∼1× 106 cfu/ml of the early-log phase inoculum,
prepared as described above, or with supernatants, planktonic
cells, biofilms or washed bacteria obtained from 4 h cultures
of Spn. These inoculants were prepared as follows: ∼1 × 106

cfu/ml of the early-log phase inoculumwas inoculated into 6-well
plates and incubated for 4 h. Planktonic cells were then removed,
centrifuged, and washed twice with PBS. The supernatant was
separated and filter sterilized using a 0.45µm syringe filter
(Puradisc, GE Healthcare, UK). Biofilms were harvested as
mentioned earlier and washed twice with sterile PBS. In another
set of wells, biofilms were detached by sonication, then both
biofilms and planktonic cells were collected by centrifugation,
and the pellet was washed twice with PBS. The same amount
(∼1 × 106 cfu/ml) of washed bacteria, planktonic cells, or
biofilms were inoculated into preformed Sau biofilms; an aliquot
of supernatant (100µl) was inoculated as well. Inoculated and
control cultures were incubated for 2 h at 37◦Cwith 5%CO2 after
which bacteria were counted as described.

Transwell Experiments
To physically separate Spn and Sau within the same wells, two
chambers were created by installing a Transwell filter device
(Corning, NY USA). The Transwell membrane (0.4 µM) creates
a physical barrier impermeable to bacteria, but allows passage of
small molecules between the two chambers (top and bottom).
In some experiments Spn was inoculated in the top chamber
and Sau in the bottom chamber, whereas in other experiments
bacteria were reversed, i.e., Sau in the top and Spn in the bottom.

In control wells, which did not contain the Transwell device, Spn
and Sau were inoculated together. Plates were incubated for 4 h at
37◦C in a 5% CO2 atmosphere and then planktonic and biofilm
bacteria were removed from both the top and bottom chamber
and counted.

Confocal Microscopy Studies
Spn, Sau, or Spn with Sau were inoculated (∼1 × 106 cfu/ml
each) into 8-well glass slide (Lab-Tek) containing THY and
incubated at 37◦C in a 5% CO2 atmosphere. Planktonic cells
were then removed, and biofilms were washed with sterile
PBS, after which bacteria were fixed with 2% paraformaldehyde
(PFA) for 15min at room temperature. Fixed biofilms were
then blocked with 1% BSA for 30min at 37◦C and incubated
first with a rabbit polyclonal anti-Sau antibody (4µg/ml) (Santa
Cruz, Biotechnology Inc.,) for 1 h at room temperature, followed
by PBS washes and 1-h incubation with a secondary Alexa-
555, labeled goat anti-rabbit antibody (20µg/ml) (Molecular
probes). Then the preparation was washed with sterile PBS
and incubated 30 min with rabbit raised anti-Spn antibodies
(Staten Serum Institute) that had been previously labeled
with Alexa-488 (50µg/ml) (Molecular Probes) following the
manufacturer instructions. In some experiments, Spn strains
expressed the green fluorescent protein (GFP), SPJV01 or
SPJV09. Stained preparations were finally washed two times
with PBS, mounted with ProLong Diamond Antifade mountant
with DAPI (Molecular Probes), and analyzed with an Olympus
FV1000 confocal microscope. Confocal images were analyzed
with ImageJ version 1.49k (National Institutes of Health, USA)
or The Imaris software (Bitplane, South Windsor CT).

Colocalization Analysis
The Imaris 8.2 software (Bitplane) was utilized for colocalization
analysis. Briefly, the Costes method was utilized to set up a
threshold for both the green channel and the red channel in
confocal slices of z-stacks images (Costes et al., 2004). The
Pearson’s coefficient (PC) of colocalized volume was calculated
using ranges from−1 to 1 where a PC= −1 indicates a mutually
exclusive localization of two signals, PC = 0 random overlap,
and PC = 1 indicates perfect colocalization (Costes et al., 2004).
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Counts of colocalized bacteria and free Sau bacteria was also
performed with Imaris 8.2 software.

Statistical Analysis
Statistical analysis presented in this study was conducted using
the Mann Whitney U-test and the software SigmaPlot Version
12.0 (Systat Software, Inc.).

RESULTS

Spn Strain TIGR4, but not D39, Kills Sau
Biofilm Cells
Since epidemiological reports have suggested a negative
association between Sau and Spn for nasopharyngeal
colonization, we assessed populations of biofilm cells when
strains where co-incubated on abiotic surfaces or cultures of
human pharyngeal cells. This study showed similar counts
of Sau biofilms attached to abiotic surfaces, or pharyngeal
cells, whether incubated alone or with Spn strain D39 for 4
h (Figures 1A,B). However, Sau biofilms were significantly
reduced, but not eradicated (i.e., completely killed), 8 h post-
inoculation (p = 0.03) in wells inoculated along with D39
(Figures 1A,B). Bacterial counts of Spn biofilms did not change
whether incubated alone or with Sau at 4 or 8 h post-inoculation
(Figures 1C,D). A non-statistically significant decrease of Spn
biomass was observed, however, when incubated with Sau at 4 or
8 h post-inoculation of abiotic or human cells, respectively.

Experiments with another Spn reference strain TIGR4,
and Sau strain Newman, were also conducted. Whereas, Sau
planktonic cells and biofilms reached, 4 h post-inoculation,
a bacterial density of ∼4.6 × 107 cfu/ml and ∼9.8 × 106

cfu/ml, respectively, Sau planktonic cells and biofilms were
eradicated (<50 cfu/ml) when they were incubated with strain
TIGR4 for 4 h (Figure 2A). TIGR4 planktonic cells, or biofilms,
remained unchanged whether incubated alone or with Sau for 4 h
(Figure 2B). MRSA strain USA300, Sau ATCC 25923, SAJV01,
were also challenged with TIGR4 for 4 h and eradication of both
planktonic and biofilms was similarly observed (Figures 2C,D
and not shown).

Since strain D39 produces the competence stimulating peptide
1 (CSP1) and TIGR4 produces CSP2, to further investigate if
differences in killing of Sau was due to the quorum sensing
pherotype (i.e., CSP1 or CSP2) we inoculated strains GA13499
(pherotype 1) or Spn A66.1 (pherotype 2) along with Sau
and the mixtures were incubated for 4 h. Eradication of both
Sau planktonic and Sau biofilms by both strains was observed
indicating that Sau killing does not depend on the pneumococcal
pherotype (not shown).

Direct Contact between Sau and Spn Is
Required for Killing of Sau
To investigate whether Spn biofilm cells or their supernatants
were responsible for the observed phenotype against Sau, strains
were inoculated into the same wells, but bacteria were separated
using a Transwell system device, which has a membrane with a
pore size of 0.4µm. The Transwell device allows the supernatants
to flow throughout the well, but separates bacteria inoculated

FIGURE 1 | Spn D39 reduces the population of Sau biofilms. Sau was

inoculated alone (Sau) or with Spn strain D39 (Sau+Spn) in abiotic polystyrene

plates (A,C) or human pharyngeal cells (B,D). Plates were incubated for 4 or

8 h at 37◦C. Planktonic cells were removed, biofilms were harvested, diluted

and then plated onto salt mannitol agar plates to obtain Sau biofilm counts

(cfu/ml) or blood agar plates with gentamicin to obtain Spn biofilm counts

(cfu/ml). Error bars represent the standard errors of the means, calculated

using data from at least three independent experiments. *statistical

significance (p < 0.05) in comparison to wells inoculated only with Sau.

in the top chamber from those inoculated in the bottom of
the well. Neither Sau planktonic cells (Figure 3A), nor biofilms
(Figure 3B) were killed when TIGR4 was inoculated in the
Transwell device and Sau was inoculated in the bottom of
the well (i.e., Spn/Sau). Since the Transwell membrane has a
smaller diameter than the bottom of the well, in another set
of experiments we inoculated TIGR4 in the bottom of the
well and Sau was inoculated directly in the Transwell chamber
(i.e., Sau/Spn). Once again, TIGR4 was not able to kill Sau
planktonic cells or Sau biofilms within 4 h (Figures 3A,B).
TIGR4 planktonic cells and biofilms were similar, whether
(1) coincubated with Sau (positive control), (2) inoculated
in the Transwell chamber and Sau in the bottom or (3)
in the bottom of the well when Sau was inoculated in the
Transwell chamber (Figure 3C). Experiments were conducted
using Transwell devices with different membrane areas (4.67
and 1.12 cm2) to account for variations in the volume of culture
medium obtaining similar results. Altogether, these experiments
demonstrated that physical contact is necessary for Spn to
kill Sau.
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FIGURE 2 | Spn TIGR4 eradicates Sau biofilms produced by strain

Newman and MRSA USA300. Sau strain Newman (A,B) or USA300 (C,D)

was inoculated alone or with Spn strain TIGR4 and plates were incubated for

4 h at 37◦C. Planktonic cells or biofilms were harvested, serially diluted and

plated onto salt mannitol agar plates to obtain Sau counts or blood agar plates

with gentamicin to obtain TIGR4 counts. Error bars represent the standard

errors of the means calculated using data from at least three independent

experiments. The median (cfu/ml) is shown inside the bars. *statistical

significance (p < 0.05) in comparison to wells inoculated only with Sau.

Direct Killing of Sau by Spn Does not
Require SpxB, but Is Inhibited by Catalase
Interference of planktonic cultures of Sau by Spn has been
demonstrated to occur via hydrogen peroxide, a byproduct of
the enzyme SpxB (Regev-Yochay et al., 2006). To investigate
whether the observed physical contact-mediated killing requires
hydrogen peroxide, we conducted experiments with an isogenic
TIGR41spxB mutant, which does not produce detectable levels
of hydrogen peroxide (Regev-Yochay et al., 2006). As shown
in Figure 4A, the hydrogen peroxide TIGR41spxB mutant was
able to eradicate Sau Newman strain within 4 h of incubation.
The population of the isogenic mutant was not affected by
co-incubation with Sau (Figure 4B).

We next incubated Sau and Spn in the presence of bovine
liver catalase. In comparison to co-cultures incubated without
catalase, incubation of TIGR4 wt with catalase inhibited killing
of Sau (Figure 5A). To investigate whether the inhibitory effect
of catalase was separate from its enzymatic activity against H2O2,
the isogenic TIGR41spxB mutant, which does not produce
H2O2, was also incubated with catalase and this treatment
was enough to render TIGR41spxB unable to eradicate Sau
bacteria (Figure 5A). Whereas, Spn density was similar whether
incubated alone or with Sau (Figure 5B), we noticed that in
control wells inoculated only with Sau, or Spn, and incubated in

FIGURE 3 | Efficient Killing of Sau by Spn requires direct contact.

Transwell chambers were installed into 6-well plates and THY was added.

TIGR4 was inoculated directly in the Transwell chamber and Sau in the bottom

of the well (Sp/Sau), or Sau was inoculated in the Transwell chamber and

TIGR4 in the bottom (Sau/Spn). As a control Sau was inoculated alone or with

TIGR4 (+Spn). Cultures were incubated for 4 h at 37◦C, after which planktonic

bacteria (A) or biofilms (B) were harvested from the Transwell chamber, or

from the bottom of the well, serially diluted and plated onto salt mannitol agar

plates. (C) Planktonic and biofilms were also plated onto BAP plates with

gentamicin to obtain Spn counts. Error bars represent the standard errors of

the means calculated using data from at least three independent experiments;

the median (cfu/ml) is shown inside bars. *Statistical significance (p < 0.05) in

comparison to wells inoculated with Sau.

the presence of catalase, the bacterial density of both populations,
planktonic and biofilms, significantly increased in comparison to
wells incubated without the enzyme (Figures 5A,B).

Together, these experiments demonstrate that SpxB-generated
hydrogen peroxide is not involved in the direct-killing of Sau.
These experiments also indicate that the inhibitory effect of
catalase is due to other changes induced by incubating with the
enzyme, which are separate from catalase’s enzymatic activity
against H2O2.

Physical Interaction within Biofilms
Formed by Sau and Spn
To gain insights on ultrastructural interactions between TIGR4,
or D39, and Sau, we obtained confocal micrographs. At 4 h
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FIGURE 4 | TIGR41spxB mutant eradicate Sau bacteria. Sau Newman

strain was inoculated alone or with TIGR41spxB and incubated for 4 h at

37◦C. Planktonic cells or biofilms were harvested, serially diluted and plated

onto salt mannitol agar plates to obtain Sau counts (A) or blood agar plates

with gentamicin to obtain TIGR41spxB counts (B). Error bars represent the

standard errors of the means calculated using data from at least three

independent experiments. The median (cfu/ml) is shown inside bars. *statistical

significance (p < 0.05) in comparison to wells inoculated only with Sau.

post-inoculation, control Sau biofilms were robust and covered
∼90% of the abiotic substrate (Figure 6A) whereas in wells co-
incubated with TIGR4, Sau biofilms were eradicated (Figure 6D).
The few Sau cells attached to the substratum appeared to
be in close proximity to TIGR4 bacteria suggesting physical
interaction between the two species (Figure 6F, arrows). TIGR4
biofilms remained similar whether co-incubated with Sau or
incubated alone (Figures 6B,E). Biofilms formed by Sau, when
co-incubated with D39, were reduced to ∼60% in comparison
to control wells (Figures 6G,I). D39 biofilms were similarly
observed whether incubated alone or with Sau (Figures 6C,H).

Given that TIGR4 killed Sau and MRSA strain USA300, a
time course study was conducted to evaluate physical interactions
in detail. As shown in Figures 7A–D, Sau rapidly formed
aggregates, i.e., tetrads, at 1 h post-inoculation, which continued
growing until forming a bacterial lawn 4 h later. TIGR4 formed
chains that aggregated on the bottom of the well (Figures 7E–H)
but did not produce, at this time-point, the robust bacterial lawn
observed with Sau. When incubated with TIGR4, Sau biofilms
were not produced. The few bacteria attached to the bottom were
surrounded by TIGR4 (Figures 7I–L).

Spatial Ultrastructural Colocalization
between Spn and Sau
Experiments showed above suggested that Sau and Spn
colocalize; to further confirm physical colocalization, we stained
the pneumococcal capsule and Sau capsule by fluorescence, and
confocal micrographs were analyzed using the Imaris software.
As shown in Figure 8, there was a spatial colocalization between
Sau and TIGR4 bacteria as early as 1 h post-inoculation. The
Pearson’s coefficient (PC) of colocalized volume was 0.78,
which statistically confirmed true spatial colocalization. TIGR4
surrounded Sau making contact with individual bacterium and
those Sau bacteria forming tetrads (Figures 8A–C). Removing

FIGURE 5 | Catalase inhibits Sau killing by Spn. Sau Newman strain was

inoculated either alone, with catalase, with wt strain TIGR4, with TIGR4 and

catalase or with TIGR41spxB and catalase and incubated for 4 h at 37◦C.

Planktonic cells or biofilms were harvested, serially diluted and plated onto salt

mannitol agar plates to obtain Sau counts (A) or blood agar plates with

gentamicin to obtain TIGR4 (B). Error bars represent the standard errors of the

means calculated using data from at least three independent experiments. The

median (cfu/ml) is shown inside bars. *statistical significance (p < 0.05) in

comparison to wells inoculated only with Sau.

the channel of the Spn capsule (green), or Sau capsule (red),
allowed us to better visualize specific points of contact (Figure 8,
arrows in Sau+DNA and Spn+DNA). Colocalization between
Sau and TIGR4 was also observed at 2 h post-inoculation (PC =

0.72) indicating bacteria remained joint (Figures 8D–F). Further
analysis of more than 30 confocal micrographs demonstrated
that most Sau bacteria are in contact with Spn (mean = 5.16,
median= 4), in comparison to those Sau bacteria observed alone
(mean = 1.2, median = 0.0; Figure 8M). Whereas, Spn strain
D39 did not eradicate Sau biofilms, D39 bacteria were observed
colocalizing with Sau at 1 h (PC = 0.73) or 2 h (PC = 0.89) post-
inoculation (Figures 8G–L). In most cases a long chain of Spn
made contact with tetrads or aggregates of Sau bacteria.

Pre-colonized Sau Is Eradicated by TIGR4,
but not by Strain D39
We then tested whether pre-colonized Sau biofilms could be
eradicated by Spn. To assess this, Sau was incubated for 4 h to
form biofilms, after which planktonic cells were removed. Early
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FIGURE 6 | Confocal studies of Sau coincubated with Spn strains. (A) Sau, (B) SPJV09 (TIGR4), or (C) SPJV01 (D39), or mixtures of Sau and SPJV09 (D–F) or

Sau and SPJV01 (G–I) was inoculated into an eight-well slide and incubated for 4 h at 37◦C. Biofilms were fixed with 2% PFA and stained with an anti-Sau antibody

followed by an Alexa 555-labeled anti-rabbit secondary antibody (red). Spn strains were expressing the green fluorescent protein. Preparations were analyzed by

confocal microscopy. A representative xy optical section is shown. Bar = 20µm. Gray arrows point out areas where Sau and TIGR4 are located.

log-phase cultures of D39, or TIGR4 cells, (∼1 × 106 cfu/ml)
were inoculated into preformed Sau biofilms and then incubated
for an additional 4 h period. As seen in Figure 9, pre-colonized
Sau biofilms were significantly reduced by incubating with D39,
or TIGR4. Furthermore, reduction of pre-formed Sau biofilms by
TIGR4 (∼1.5 × 103 cfu/ml) was significantly different than Sau
reduction produced by incubating with D39 (∼3.2× 105 cfu/ml).

Since biofilms releases planktonic cells into the supernatant,
viable planktonic bacteria were also counted. In control wells, Sau
planktonic cells released by preformed biofilms reached a density
of ∼1.7 × 108 cfu/ml (Figure 9B), whereas in pre-formed Sau
biofilms inoculated with D39 the population of Sau planktonic
cells was reduced, although the reduction was not statistically
significant (Figure 9B). Sau planktonic cells (<50 cfu/ml) were
eradicated in wells infected with Spn strain TIGR4 (Figure 9B).

Spn counts were obtained in order to investigate if the
observed differences in D39 and TIGR4’s ability to reduce pre-
colonized Sau biofilms and kill planktonic cells was due to
an increased population of TIGR4. Both planktonic cells and

biofilms were significantly lower in wells inoculated with TIGR4
in comparison to D39 (∼200-fold lower) confirming that an
increased population was not a factor in the killing of Sau by
TIGR4 (Figure 9C).

Spn Bacteria, but not Supernatants,
Efficiently Kill Sau Pre-colonized Biofilms
Our next experiments fractionated TIGR4 cultures into
planktonic cells, biofilms and supernatants and evaluated
killing of Sau by these fractions. Since inoculating TIGR4
with Sau at the same time eradicated Sau biofilms in 4 h,
cultures of TIGR4 were grown for 4 h and then planktonic
cells, biofilms and culture supernatant were separated and
incubated with preformed Sau biofilms. We hypothesized
that Spn from 4 h cultures (i.e., activated cultures) would kill
Sau biofilms faster and therefore preformed biofilms were
incubated for 2 h. As expected, inoculating preformed Sau
biofilms with early log-phase TIGR4 cultures reduced, but did
not eradicate, preformed biofilms within 2 h (Figure 10A).
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FIGURE 7 | Time course study of physical interaction between Sau and Spn strains. Sau (A–D), TIGR4 (E–H), or Sau and TIGR4 (I–P) were inoculated into an

eight-well slide and incubated for 1, 2, 3, or 4 h at 37◦C. Biofilms were fixed with 2% PFA and stained with an anti-Sau antibody followed by an Alexa 555-labeled

anti-rabbit secondary antibody (red) and then an anti-Spn antibody labeled with Alexa 488 (green). Bacterial DNA was stained by DAPI (blue). Micrographs were taken

by confocal microscopy. Panels show representative xy optical sections (∼0.4µm each). Bar at the right panel is valid for its corresponding horizontal panels. Panels

(I–L) show the red and green channels while panels (M–P) the red and blue channels. Bars = 10µm, except were indicated (7µm).

However, washed Spn (planktonic+biofilms), planktonic, or
biofilms harvested from 4 h cultures eradicated Sau biofilms
(Figure 10A). Sterile supernatant from this 4 h culture was
only able to reduce Sau biofilms (5.6 × 103 cfu/ml) in
comparison with the non-inoculated control (1.1 × 106

cfu/ml).
Experiments were also conducted with supernatants from 6

to 8 h cultures with similar reduction (not shown). Accordingly,
confocal micrographs showed robust preformed Sau biofilms,
4 h post-inoculation (Figure 10B), that were significantly
reduced within 30min and 1 h post-inoculation of washed
Spn (Figures 10B–D) and completely eradicated within 2
h (Figure 10E). TIGR4 bacteria, however, were not able to
recolonize the substrate once Sau biofilms were removed as
TIGR4 was only observed attached to the few Sau bacteria, but
not attached to the bottom (Figure 10E).

DISCUSSION

We have demonstrated in this study that TIGR4, and other Spn

strains, rapidly eradicated preformed Sau biofilms, including

biofilms produced by MRSA strain USA300. To kill Sau

biofilms, the pneumococcus required physical contact which
was documented by several lines of evidence including confocal
microscopy, colocalization experiments, and experiments
utilizing a Transwell system to separate both species. The
physical contact-mediated killing was very efficient as it
completely eradicated a viable lawn of Sau biofilms within 2 h
(i.e., viable counts under the limit of detection of 50 cfu/ml).

This efficient mechanism however, was not mediated by
production of H2O2, as an isogenic mutant lacking the enzyme
responsible for producing hydrogen peroxide was able to
eradicate Sau biofilms and planktonic bacteria. As shown in
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FIGURE 8 | Colocalization between Sau and Spn. Sau and TIGR4 (A–F) or Sau and D39 (G–L) were inoculated together into an eight-well slide and incubated for

1 h (A–C, G–I) or 2 h (D–F, J–L) at 37◦C. Biofilms were fixed with 2% PFA and stained with an anti-Sau antibody followed by an Alexa 555-labeled anti-rabbit

secondary antibody (red) and then an anti-Spn antibody labeled with Alexa 488 (green). Bacterial DNA was stained by DAPI (blue). Micrographs were taken by

confocal microscopy and analyzed using Imaris software. Panels show representative xy optical sections (∼0.4µm each). Bar = 10µm at right panels and is valid for

its corresponding horizontal panels. Vertical panels show specific channels. Arrows point out areas of colocalization between Sau and Spn. (M) Sau colocalized with

Spn after 1 h of co-incubation, or free Sau bacteria, were counted in 30 different micrographs. Means were plotted and error bars represent the standard errors.

(*), statistical significance (p < 0.001).
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FIGURE 9 | Spn TIGR4 kills preformed Sau biofilms. Sau was inoculated

in microtiter plates containing THY and incubated for 4 h, after which

planktonic cells were removed and fresh THY medium was added. Sau

biofilms were left uninoculated (Sau) or co-inoculated with Spn strain D39

(Sau/D39) or TIGR4 (Sau/TIGR4) and incubated for 4 h at 37◦C. Biofilms (A) or

planktonic cells (B) were harvested, serially diluted and plated onto salt

mannitol agar plates to obtain bacterial counts. (C) Dilutions were also plated

onto blood agar plates with gentamicin to obtain Spn planktonic and biofilm

counts. Error bars represent the standard errors of the means calculated using

data from at least three independent experiments; the median (cfu/ml) is

shown inside bars. Statistical significance (p < 0.05) in comparison to wells

inoculated with Sau (*), Sau/D39 (�) or D39 (#).

this work and others (Regev-Yochay et al., 2006), incubating
with catalase was enough to inhibit killing of Sau by Spn. We
further demonstrated in this study that the inhibitory effect of
catalase was separate from its enzymatic activity against hydrogen
peroxide, as incubating a TIGR4 isogenic spxB mutant, which
does not produce H2O2, with catalase inhibited killing of Sau.
Accordingly, Park et al. (2008), showed that catalase produced
by Sau strains confers some degree of protection to a challenge
with Spn; authors did not utilize, however, a hydrogen peroxide
deficient-mutant to verify this protection was directly mediated
by its enzymatic activity against H2O2, as shown in our studies
(Park et al., 2008). We hypothesize that incubating Spn with
catalase has downstream effects impacting a mechanism that
seems to be more complex than originally thought. Future
transcriptomic studies should help us to identify, if any, these
changes. Changes in bacterial densities, affected by incubating
with catalase (Figure 5B), can also be a factor, as bacterial density

FIGURE 10 | Washed TIGR4 bacteria rapidly kill preformed Sau

biofilms. (A) Sau was inoculated (Sau) in microtiter plates containing THY and

incubated for 4 h, after which planktonic cells were removed and fresh THY

medium was added. Another set of wells were inoculated with TIGR4 and

incubated for 4 h at 37◦C. Planktonic cells, biofilms, or supernatants from this

TIGR4 4 h culture were separated as specified in Material and Methods.

Preformed Sau biofilms were left uninoculated (Sau), or inoculated with

∼1 × 106 cfu/ml of an early-log phase culture of planktonic TIGR4 cells

(+Spn), or 4 h cultures of washed bacteria (+Plank/Bio), washed planktonic

bacteria (+Plank), washed biofilms (+Bios) or supernatant (+Sup) and

incubated for 2 h at 37◦C. Cultures were harvested, serially diluted and plated

onto salt mannitol agar plates to obtain Sau (cfu/ml). Error bars represent the

standard errors of the means calculated using data from at least three

independent experiments. Statistical significance in comparison to wells

inoculated with (*, p < 0.004) Sau or (�, p < 0.001) +Plank/Bio. (B–E) Sau

was inoculated into an eight-well slide and incubated for 4 h at 37◦C. Sau

Biofilms were challenged with 4 h cultures of washed TIGR4 bacteria and

incubated for 30min (B), 1 h (C), 1.5 h (D), and 2 h (E). At the end of

incubation, biofilms were fixed with 2% PFA and stained with an anti-Sau

antibody followed by an Alexa 555-labeled anti-rabbit secondary antibody (red)

and then an anti-Spn antibody labeled with Alexa 488 (green). DNA was

stained with DAPI. Preparations were analyzed by confocal microscopy. A

representative xy optical section is shown. Bar = 20µm.
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ratios favoring the pneumococcus are required to eradicate Sau
bacteria (discussed below).

Sau strains, including MRSA strains, were the second most
common pathogen associated to nosocomial infections in 2011
in the USA accounting for 10.7% of all cases (Magill et al.,
2014). In the study by Magill et al. (2014), conducted by the
Centers for Disease Control and Prevention (CDC), it was
estimated that there were ∼721,800 nosocomial infections in
2011. Biofilm-related, device-associated infections, (i.e., central-
catheter–associated bloodstream infection, catheter-associated
urinary tract infection, and ventilator-associated pneumonia),
and surgical-site infections accounted for >47% of those cases
(Magill et al., 2014). The majority of Sau nosocomial infections
were related to formation of biofilms, i.e., catheter–associated
bacteremia. Due to this, efforts are in place to eradicate Sau
biofilms and thus decrease hospital-acquired infections and Sau
biofilm-related disease.

A number of approaches, other than antibiotics, are now
being tested to prevent, or once stablished to eradicate Sau
biofilms. Prevention involves the development of new materials
that prevent attachment, antibacterial coating, and vaccines
(Bhattacharya et al., 2015). Treatment of established Sau biofilms
includes matrix degrading enzymes, dispersal triggering agents,
small-molecule inhibitors, targeting regulatory molecules, and
surgical removal of the focus of infection. Although promising,
no single treatment has proven effective to those suffering Sau
biofilm disease. Whereas, comparisons were not made with
the above mentioned approaches, studies within this work
demonstrated complete removal of preformed Sau biofilms
within 2 h of incubation with Spn strains TIGR4, A66.1
and GA13499. These observations certainly warrant further
investigations and development.

Spn strains can produce two different quorum sensing
pheromones, CSP1 and CSP2 (Pestova et al., 1996). The
pheromones control competence for transformation (Håvarstein
et al., 1995), biofilm formation (Vidal et al., 2013) and lysis
of other pneumococci when incubated together, known as
fratricide (Steinmoen et al., 2003; Guiral et al., 2005). As
shown in our experiments, killing of Sau biofilms was not
directly related to the production of a specific quorum sensing
pheromone. The possibility exists, however, that a quorum
sensing mediated mechanism regulates killing of Sau as our
experiments with washed Spn bacteria, mid-log phase (4 h)
cultures, killed more rapidly in comparison to early-log phase
Spn cultures. Experiments are under way in our laboratories to
address the potential role, if any, of quorum sensing in direct
killing of Sau biofilms.

A mechanism mediated by the production and release of
H2O2 has been demonstrated for planktonic cultures, and culture
supernatants, of Sau strains (Regev-Yochay et al., 2006, 2008).
Accordingly, in our study we also observed killing of Sau strains
by culture supernatants of Spn (Figure 10), but this was not as
efficient as killing of Sau by Spn bacteria. Hydrogen peroxide is
a byproduct of the aerobic metabolism produced by pyruvate
oxidase, SpxB. Production of H2O2 has been proposed as the
main driver of the negative association between Spn and Sau, as
observed in carriage studies (Regev-Yochay et al., 2006, 2008).

There is, however, a significant proportion of cocolonization
events observed in children (Chien et al., 2013; Dunne et al.,
2013). Decreased Spn-mediated killing of some Sau strains was
not a factor for the observed cocolonization events, as studies
by Regev-Yochay et al. (2008) demonstrated similar bactericidal
effect of Sau strains isolated from children co-colonized with
pneumococcal strains vs. those only colonized by Sau (Regev-
Yochay et al., 2008). Further studies using a neonatal rat model
of colonization showed that Spn and Sau can cohabit the nasal
passages (Margolis et al., 2010) and that Sau co-colonization rates
with Spn TIGR4 wt were similar to those of its isogenic spxB
mutant (Margolis, 2009). Perhaps levels of H2O2 in the animal
model vs. those obtained in broth cultures are not comparable,
which may explain the differences in cocolonization. To our
knowledge, levels of H2O2 produced by Spn in the human
nasopharynx or nasal passages in animal models have not been
determined. Production of H2O2 by Spn appears not to be the
factor allowing contact-mediated killing of Sau given that, in
our study an isogenic spxB mutant was still able to eradicate
Sau bacteria. Another streptococci, S. gordonii, produces levels
of H2O2 comparable to TIGR4, but is unable to kill Sau (Regev-
Yochay et al., 2006). Other lines of evidence indicate that H2O2

produced by streptococci induces Sau lethal prophages (Selva
et al., 2009).

In our study with biofilms, and those conducted with
planktonic cultures, killing of Sau required a minimum Spn
inoculum of ∼1 × 106 cfu/ml to kill the same amount of
inoculated Sau bacteria; a reduced Spn challenge, for example∼1
× 105 cfu/ml, will not kill a density of ∼1 × 106 cfu/ml of Sau.
Physical contact, which we observed in our studies was required
for efficient killing, may be a limiting factor for the Spn-Sau
required ratio. Another possibility is that a bacterial threshold is
required to activate, i.e., by quorum sensing, an efficient killing
mechanism which may include the production of enough H2O2.
The need of a bacterial threshold observed in in vitro studies may
provide an explanation for the cocolonization of Spn and Sau in
animal models. For example, in the classic study byMargolis et al.
(2010), authors demonstrated cocolonization of<104 cfu of both
species, Spn and Sau, in the nasal passages of animals. Perhaps
this limited amount of bacteria does not allow for both to reach
physical interaction in the nasal microenvironment.

Studies in our laboratory have also recently investigated
nasopharyngeal bacterial densities in Tanzanian children
cocolonized, or not, with Spn and/or Sau. We, as others in
previous studies, demonstrated a negative association for
children colonized only with Spn vs. those colonized by both
Spn and Sau. Moreover, our study also showed a statistically
significant reduction (p = 0.03) of Sau density in those children
cocolonized with Spn (∼1.5 × 104 cfu/ml) vs. those colonized
only by Sau (∼5.2 ×104 cfu/ml). As per the in vitro situation
shown in Figures 2, 6 of the current study, nasopharyngeal
density of Spn strains in Tanzanian children did not change,
whether or not the host was cocolonized with Sau, ∼1.5 ×

106 cfu/ml vs. ∼1.7 × 106 cfu/ml, respectively (Chochua et al.,
unpublished data; Wu et al., unpublished data).

In conclusion, Spn rapidly eradicates preformed Sau
biofilms, including those formed by MRSA strain USA300. The
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mechanism requires physical contact and a bacterial threshold.
Killing of Sau by Spn was not mediated by production of
hydrogen peroxide, but it was inhibited by catalase through a
mechanism independent of catalase’s enzymatic activity against
hydrogen peroxide.
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