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Summary 
The physiological functions of the mouse telomeric major histocompatibility complex (MHC) 
class I molecules, including Hmt, are unknown. Hmt presents a polymorphic, N-formylated 
peptide encoded by the mitochondrial gene ND1 forming the cell surface maternally transmitted 
antigen (Mta). Because the N-formyl moiety is required for Hmt binding, we proposed that 
Hmt may function generally in presentation of N-formylated antigens. This hypothesis was validated 
by a competitive binding assay, demonstrating that synthetic N-formyl peptides from other 
mitochondrial genes also bound Hmt. Bacteria similarly initiate protein synthesis with N-formy- 
lmethionine; indeed, we established that Hmt can also present prokaryotic peptides in an 
N-formyl-dependent manner. These results indicate biochemical specialization of this MHC- 
peptide interaction and suggest a unique role for Hmt in prokaryotic host defenses. 

M ouse MHC class I genes are classified into two groups, 
the polymorphic H-2 K, D, and L genes, located in 

the centromeric segment of the H-2 complex (1, 2), and the 
more numerous and less polymorphic "nonclassical" telomeric 
genes encoded in the H-2 Q, T, and M (formerly Qa-Tla- 
Hmt) regions (2). While products of the former are known 
to bind and present antigens to CD8 + T cells (3), the func- 
tion(s) of the latter genes are unknown (4). These nonclas- 
sical MHC class I genes could provide a repository of genetic 
diversity available to the H-2 K, D, and L regions through 
gene conversion or could be evolutionary remnants devoid 
of function (1, 3). Alternatively, their products could play 
a role in differentiation, immune regulation, or antigen pre- 
sentation (5). Computer-aided modeling suggested that the 
structure of the telomeric class I molecules resembles that 
of HLA-A2, including a possible peptide binding site (6). 
Two such molecules, Qa-1 (7) and Hint (8-10), can present 
synthetic peptides to T cells, and several nonclassical MHC 
molecules can stimulate alloreactive MHC class I response 
(11, 12). However, these observations did not suggest a specific 
physiological role for the nonclassical MHC class I molecules. 

We previously demonstrated that the product of one of 
these genes, Hmt, presents an N-formylated, mitochondri- 
ally encoded peptide (designated Mtf) to antigen-specific CTL, 
thereby forming the maternally transmitted antigen (Mta) 
(8). Mtf itself derives from the NH2 terminus of the 
mitochondrially encoded NADH dehydrogenase subunit 1 

(ND1) (8-10). The alleles of Mtf (o~, 3, 7, and 8) that ac- 
count for the polymorphism of Mta (designated a, b, c, and 
d) differ at codon 6 of NDI (10). The most common allelic 
product, Mtf% contains isoleucine in position six, while 
Mtf~ contains alanine. When bound to Hmt and 32- 
microglobulin these two peptides are recognized by Mta a- 
and Mtab-specific CTLs, respectively. Moreover, the exoge- 
nous addition of synthetic Mtf ~ to cells expressing Hint and 
endogenous Mtf0 sensitizes them to lysis by Mtaa-specific 
CTLs (8, 9). 

The exclusive presentation of Mtf by Hmt and the failure 
to detect other examples of Hmt-restriction suggested that 
unique biochemical properties of mitochondrially encoded 
peptides might favor presentation by Hmt (8, 13). Most ob- 
viously, mitochondrial, but not cytoplasmic, protein synthesis 
is initiated with N-formylmethionine (14). Indeed, N-formy- 
lated ND1 synthetic peptides, but not N-acetylated or non- 
substituted analogs, were shown to bind to Hint (8, 9). Inas- 
much as bacteria also initiate protein synthesis with N-formy- 
lmethionine, it further seemed plausible that Hmt might func- 
tion in selective presentation of N-formyl-peptides derived 
from prokaryotic organisms. 

Materials and Methods 
Peptide Synthesis. Peptides in Table 1 were synthesized by solid- 

phase on a peptide synthesizer (430A; Applied Biosystems, Foster 
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City, CA). As described previously (8) peptides were assayed for 
purity by reverse-phase HPLC and amino acid analysis (Pico Tag 
system; Waters Associates, Milford, MA); several peptides were also 
analyzed by NH2-terminal amino acid sequence analysis (477A 
Protein Sequencing System; Applied Biosystems). 

Cytotoxic T Lympkocytes. CTL clone 1D3 specific for Mta ~ was 
generated as described (8) by immunizing Mta b (NZB 9 x BALB/c 
o') F1 mice with BALB/c (Mta a) spleen cells. Restimulation in 
vitro and maintenance were as described earlier (8). 

Competition Assay. Target cells of the WEHI-105.7 NZB thy- 
moma (H-2 d, Mta b) were labeled with SlCr, washed four times, 
and incubated for 75 rain at 37~ with increasing concentrations 
of the indicated peptides in the presence of 50 nM fNDll-12. 
Target cells were washed twice before incubation with Mta ~- 
specific CTL clone 1D3 in a 4-h SlCr release assay, using an 
effector to target (E/T) cell ratio of 20:1. Percent specific lysis was 
calculated as described previously (8). 

Results and Discussion 

To examine binding of diverse peptides to Hmt  we estab- 
lished a peptide competition assay. Whereas a six amino acid 
formyl peptide derived from ND1 (fNDll-6; Table 1) defined 
the minimum sequence for sensitization of target cells for 

Mta-specific lysis (8), a formylated five amino acid ND1 pep- 
tide (fNDlt-s) efficiently competed for Hint  binding. Con- 
sequently, fNDll-s blocked target cell sensitization (Fig. 1) 
by such sensitizing peptides as fNDll-12. The competition 
by fND11-s could be reversed by increasing concentrations 
of antigenic peptide. This pattern of inhibition was seen with 
all Mta-specific CTLs tested. Neither nonsubstituted nor 
N-acetylated NBll-5 blocked target cell lysis (Table 1), con- 
firming the N-formyl requirement for Hmt  binding. These 
results argue for competitive occupancy of a single binding 
site by both sensitizing and blocking peptides. 

To test the hypothesis that Hmt  could bind NH2-terminal 
bacterial peptides, we first mediated ND1 peptides with a 
positively-charged lysine residue to simulate typical prokaryotic 
signal peptides (15). Despite the introduction of this charged 
residue, such peptides also efficiently blocked Mta-specific cy- 
tolysis (Fig. 2, A). To evaluate whether an N-formyl group 
was a general requirement for Hmt-peptide interactions or 
only reflected the peculiarities of ND1 and its analogs, we 
examined whether other synthetic mitochondrial peptides 
could block fNDll-12 induced lysis. One such peptide, 
fND21-12 (Fig. 2 B), did not inhibit. In contrast, fND41-12 
and fND51-12 peptides efficiently competed for binding of 

Table 1. Synthetic Peptides Used in Competition Assays 

Peptide designation Sequence ICs0 

Mitochondrial peptides 
ND11_s t 
NDll-6 
NDl1_12 
NDIH2/K2 
NDIH2/z3 
ND21-12 
ND41-12 
ND51-12 

Nonmitochondrial peptides 
E. coli amp-C /~-Lactamase (Amp-C) II 
B. cereus bla-z 3-Lactamase (Bla-z) 
E. coli ribosomal protein L25 (L25) 
V. haweyi alkanal monooxygenase (VHAM) 
V. anguillarum membrane associated protein (VAMAP) 
C. nephridii thioredoxin C-2 (CNTC) 

/~M* 

M F F I N  <0.2 
M F F I N I  NAS 
MFFINILTLLVP NA 
MKFINILTLLVP <2 
MFKINILTLLVP <2 
MNPITLAIIYFT >20 
MLKIILPSLMLL <3 
MKVINIFTTSIL  <2 

MFKTTLCALLIT <6 
M F V L N K F F  <0.1 
M F T I N A E V  <3 
M K F G N F L L  >20 
M F K S T L N I A V  >20 
M M F K F A L Y F I  >20 

* ICs0: The formyl peptide concentration required for 50% inhibition of target lysis of cells sensitized with 50 nM of fNDlt_n. Calculated ICs0 
are representative of three or more independent experiments. The nonsubstituted and N-acetylated analogs of all peptides listed except ND21-12 were 
also tested and the IC50 of each was >20/zM. 
* Convention for mitochondrial peptides: NDll_s designates a nonsubstituted pentameric peptide of ND1 spanning residues 1 to 5; fND11_s and 
AcNDli_s are formylated and acetylated derivatives, respectively. ND11-12/K2 is a 12-mer ND1 peptide modified by substitution of lysine in position 
2. ND21q2 denotes the NH2-terminal 12-mer peptide of the NADH dehydrogenase subunit 2, etc. 
S NA: not applicable. Sensitizing peptides. 
Ir Designations of nonmitochondrial peptides. These sequence data are from the GenBank database; accession numbers of the precursor proteins are: 
Amp-C:A01007; Bla-Z:A27755; L25:R5EC25; VAHM:A22613; VAMAP:A29928; and CNTC:A29797. 
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Mta,-specific CTL clone 1D3 in a 4-h SlCr release assay, using an effector 
to target (E/T) call ratio of 20:1. 

fNDll-12 to Hint with an ICs0 of 1-3 #M (Fig. 2, C, and 
D). Significantly, neither acetylated nor unmodified forms 
of ND41-12 or ND51-12 peptides blocked Mta-specific cytol- 
ysis. Preliminary experiments indicate that substitution of 
phenylalanine for proline in position 3 of fND21-12 similarly 
converts this peptide to an effective competitor. 

Finally, we examined whether Hmt could bind naturally 
occurring non-mitochondrial peptides in an N-formyl depen- 
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Figure 2. ND1 analogs and mitochondrially-encoded peptides other than 
ND1 bind to Hint. Increasing concentrations of the indicated peptides 
were added with 50 nM fNDll-12 to 51Cr-labeled WEHI-105.7 target cells 
for 75 rain. Target cells were incubated with Mtaa-specific clone 1D3 at 
a 20:1 E/T ratio. (A) NDll-lz/K2 and ND11_12/K3. (B) ND21-12. (C) 
ND41q2. (D) ND51q2. 
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Figure 3. Prokaryotic N-formylated peptides compete for binding to 
Hint. SlCr-release competition assay was performed as described in Fig. 
2. Peptide-pulsed WEHI 105.7 target cells (Mta b) were incubated with 
Mtaa-specific CTL clone 1D3 at an E/T ratio of 20:1. fND11-s and 
AcNDlm-s were used as positive and negative controls, respectively. (A) 
Bla-z. (B) Amp-C. (C) L25. (D) CNTC and VHAM. 

dent fashion. Six synthetic peptides were chosen based on 
partial sequence similarity (25-50% including the first posi- 
tion) to ND1, ND4 or ND5 peptides. NH2-terminal pep- 
tides of Escherichia coli amp-C 3-1actamase, E. coli ribosomal 
protein L25 and Bacillus cereus bla-z 3-1actamase (Table 1) 
blocked Mtaa-specific target cell lysis, exhibiting N-formyl 
dependent competitive binding to Hint (Fig. 3). Thus, Hmt 
binds a variety of formyl peptides including certain bacterial 
signal sequences. 

The N-formyl group may be necessary, but it is not suf~dent 
for Hmt binding; three other N-formylated prokaryotic pep- 
tides did not block Mta-specific lysis. The signal sequences 
from Corynebacterium nephridii thioredoxin C-2 (CNTC), Vibrio 
anguillarum membrane associated protein (VAMAP) and 
V. harveyi alkanal monooxygenase (VHAM) (Table 1), did 
not block Mta~-specific target cell lysis (Fig. 3 and Table 1). 
Thus, as expected, we conclude that the binding cleft of Hmt 
contains important contact points other than those interacting 
with the formyl group. Although the Hmt-binding peptides 
in this study have no apparent motif or secondary structure, 
such might be inferred after a larger number of binding pep- 
tides has been investigated (9). 

Hmt appears not to accommodate the extra methyl group 
of the N-acetyl moiety, suggesting a tight formyl-peptide 
binding pocket within the peptide-binding cleft of Hint. These 
results are thus consistent with suggestions by Schumacher 
et al. (16) that peptide termini are tightly associated with 
the cleft of class I molecules. This pocket in Hmt seems to 
be evolutionarily conserved: Mta-specific CTLs reactive with 
the Mus musculus domesticus Mtf'* peptide are capable of 
lysing cells derived from murid species as distantly related 
as M. caroli and M. dunni ("o16-20 million yr divergence time) 
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(13). Thus it is likely that both the peptide-binding cleft and 
the T cell receptor interface of Hmt have maintained critical 
structures required for antigen-presentation to T cells. Mta a- 
specific CTL, like typical H-2KDL-restricted CTL, express 
or~f3 (9, 17) (TCR), rather than the 3'/5 TCR that have been 
associated with some CTL responses restricted by telomeric 
H-2 molecules (7, 11, 12). It remains to be established whether 
the V~ or VO segments used by the receptors are diverse or 
limited. 

The immune system must balance the need to present for- 
eign antigen with the need to avoid autoimmunity. Through 
a binding preference for N-formyl peptides, Hint may em- 
ploy an immunological strategy distinct from the generalist 
strategy of the H-2 KDL antigens. By focusing on N-formyl 
termini, Hint may selectively present peptides derived from 
prokaryotic parasites (8, 13) while ignoring the vast majority 
of self antigens; this leaves only the autoimmune response 
to mitochondrial antigens to be handled by clonal deletion 

or suppression. As prokaryotic N-formylated peptides associate 
in vitro with Hmt, it may be possible to detect an Hmt- 
restricted CTL response by mice immunized with such pep- 
tides or infected with intracellular pathogens. Alternatively, 
but not exclusively, Hmt may subserve important nonim- 
munological functions. These could include transport from 
the cytoplasm to the exterior of the cell of hydrophobic for- 
mylated mitochondrial signal peptides, cleaved after insertion 
through the mitochondrial membrane. 

Other nonclassical MHC molecules may, like Hmt, dis- 
play a greater specialization of peptide binding than do the 
classical MHC molecules. As stable surface expression of class 
I MHC molecules appears to require peptide binding (9), selec- 
tive binding could explain why the telomeric MHC mole- 
cules are poorly represented on the cell surface. Such special- 
ization could similarly explain the limited polymorphism of 
nonclassical MHC molecules. 
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