Article

Amplification, Inference, and the Manifestation of Objective
Classical Information

Michael Zwolak

check for
updates

Citation: Zwolak, M. Amplification,
Inference, and the Manifestation of
Objective Classical Information.
Entropy 2022, 24, 781. https://
doi.org/10.3390 /24060781

Academic Editor: Ronnie Kosloff

Received: 13 March 2022
Accepted: 23 May 2022
Published: 1 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division,
Physical Measurement Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA; mpz@nist.gov

Abstract: Our everyday reality is characterized by objective information—information that is selected
and amplified by the environment that interacts with quantum systems. Many observers can accu-
rately infer that information indirectly by making measurements on fragments of the environment.
The correlations between the system, S, and a fragment, F, of the environment, &, is often quantified
by the quantum mutual information, or the Holevo quantity, which bounds the classical information
about S transmittable by a quantum channel F. The latter is a quantum mutual information but
of a classical-quantum state where measurement has selected outcomes on S. The measurement
generically reflects the influence of the remaining environment, £/, but can also reflect hypothetical
questions to deduce the structure of SF correlations. Recently, Touil et al. examined a different
Holevo quantity, one from a quantum-classical state (a quantum S to a measured F). As shown here,
this quantity upper bounds any accessible classical information about S in F and can yield a tighter
bound than the typical Holevo quantity. When good decoherence is present—when the remaining
environment, £/ F, has effectively measured the pointer states of S—this accessibility bound is the
accessible information. For the specific model of Touil et al., the accessible information is related to
the error probability for optimal detection and, thus, has the same behavior as the quantum Chernoff
bound. The latter reflects amplification and provides a universal approach, as well as a single-shot
framework, to quantify records of the missing, classical information about S.

Keywords: quantum-to-classical transition; quantum Darwinism; decoherence; amplification;
inference; Holevo; quantum Chernoff bound

1. Introduction

The emergence of objective, classical information from quantum systems is due to
amplification: Many pieces of the environment—e.g., many photons—each interact with
a quantum system and acquire an imprint of certain states, the pointer states. This is the
process by which select information becomes redundant and accessible to many different
observers. The framework, where the environment decoheres systems and acts as a com-
munication channel for the resulting information, is known as quantum Darwinism [1-20].
It is the pointer states that survive the interaction with the environment and create “copies”
of themselves from which observers can infer the pointer state of the system. This process
has been seen experimentally in both natural [21] and engineered [22,23] settings, and both
theory and practical calculations are steadily progressing [24-38].

Within this framework, one primary question concerns the information available
within an environment fragment as its size increases. This allows one to quantify redun-
dancy: If small fragments F of the environment £ all contain the same information about
the system S, then that information is available to many observers. Given a global state,
pse, the accessible information

Iacc(HS) = max I(HS : H]:) (1)
I
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can quantify the amount of information an observer learns about Ils (a positive operator-
valued measure, a POVM, on &) by making a measurement I1r on only F. The quantity
I(T1g : I1x) is the classical mutual information computed from the joint probability distri-
bution from outcomes of I and ITx. The POVM Ilg has elements 75 that generate an

ensemble { (ps, PF|s ) } of outcomes s with probability ps = trgemsps¢ and conditional

states p s = trse/FTspse/ ps = trse/F\/Tspse/Ts/ ps on F (i.e., assuming the POVM
acts on only S and an auxiliary system but F is not directly affected). Allowing I1s to be
arbitrary, the accessible information, Equation (1), depicts a situation where some auxiliary
system A, perhaps a special observer or another part of the environment, has access directly
only to S, makes a measurement Ils, and holds a record of the outcome s, leaving a joint
state (after tracing out the now irrelevant §)

Y psls)als| @ pps- )

An observer O then wants to predict the outcome s by making measurements only on
F, e.g., correlations are generated between A and O but indirectly from separate mea-
surements on S and F, for which Equation (1) quantifies this capability. One could then
maximize the accessible information over all Ils to see what quantity the observer can
learn most about. This allows one to quantify the structure of correlations between S and
F induced by, e.g., a decohering interaction between them.

Within the context of physical processes that give rise to quantum Darwinism, I1g
is not arbitrary, however. For redundant information to be present, there must be at least
two records of some information, which, when decoherence is the main interaction, will be
the pointer information. Hence, there must be an F that almost, to a degree we want to
quantify, makes a measurement of the pointer states. At the same time, the remaining part
of the environment, £/ F, has already made an effective measurement for all intents and
purposes, to a degree that we can retroactively validate. This entails that the correlations
are effectively of the form of Equation (2) but with A = £/F or S and IIg = ITg (the
pointer observable),

T
S

where § labels the pointer states (see Refs. [39,40] for a discussion of pointer states). This
form is a consequence of “branching” [3] and appears in the good decoherence limit
of purely decohering models, which will be extensively discussed below. Here, it is
sufficient to note that the state, Equation (3), is the most relevant to quantum Darwinism.
It makes little difference if one treats the A as £/F or as just the fully decohered, or
directly measured, S, even when F is extremely large in absolute terms. Only for “global”
questions, where F is some sizable fraction of the environment, does it matter. Since the
environment is huge for most problems of everyday interest, such as photon scattering,
F can be very large—even asymptotically large—without concern for this. However,
Equation (3) does drop exponentially small corrections in the size of £/ and one can not
formally take the asymptotic limit of F without first doing so in £. The degree to which
asymptotic approximations work thus relies on the balance sheet—how well records are
kept in the environment components compared to £’s absolute size. Ref. [14] has dealt with
retaining corrections to Equation (3). Hereon, I treat the auxiliary system A as if it were S.

)8l ®prs, ©)

2. Results

With states of the form in Equation (3), the mutual information between A = S and F
is the Holevo quantity

x(ls: F) =H <Z P§P}'§> - ZP@H(Pﬂg) =Hr — ZP@Hf\gz 4)
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where H(p) = —trplog, p is the von Neumann entropy for the state p. This quantity upper
bounds the capacity of F to transmit pointer state information (the variable § is encoded in
the conditional states p ;). Moreover, for an important class of interactions—purely deco-
hering Hamiltonians with independent environment components—the quantum Chernoff
bound determines the behavior of the optimal measurement on F to extract ﬁg and, thus,
is related to the accessible information, Equation (1) with ITg = Ils. One can generalize
Equation (4) by allowing one to maximize over measurements on the system,

~

xX(§:F) = nﬁaxx(ﬂg : F), (5)
S

where, when good decoherence has taken place, [T = ITs maximizes the Holevo quan-
tity [14]. The good decoherence limit is when £/ F is sufficient to decohere the system and,
thus, the SF state is exactly of the form in Equation (3) [10,14]. Here, I employ the notation
A of Touil et al. [38] to indicate that the Holevo quantity is maximized over measurements
on A, see also the next equation.

Touil et al. [38] examined an alternative Holevo quantity with the measurement on
the fragment side,

x(S:F) —nﬁaxx(S:H]:)—nIlTaX[HS—prHSfl, (6)
F F 7

where the maximization is over all POVMs I1r and f labels the outcomes of ITr and
py their probabilities. In that work, they compute the quantum mutual information, the
Holevo quantity in Equation (4), and the alternative Holevo quantity in Equation (6) for
a “c-maybe” model of decoherence of S by £, a model that falls into the class of purely
decohering models (see below). They analytically found x (S : F ) by making use of the
Koashi-Winter monogamy relation [41] and showed all the mutual information quantities
above that approach the missing information, Hg, with a similar dependence on .F.

If one were to interpret this alternative Holevo quantity, Equation (6), in the typical way,
then it would bound the channel capacity of S to transmit information about (the optimal)
ITr. One important observation, however, is that, in the good decoherence limit—when
the S state is of the form in Equation (3)—x(S : I1x) lower bounds x (Ils : F) for any
I17 by the data processing inequality since s is already measured on S by £/ F. In this
limit, x (S : F ) is the actual accessible pointer information.

For an arbitrary SF state, however, there is no strict relation of x (Il : F) or x (S : F)
with x(S : T1z) or x(S : F ). In that case, the Holevo quantities with measurements on the
F side can not upper or lower bound quantities with S side measurements. For a particular
state with a given inequality between F and S side measurements, one can swap S and F
in the state psr—it is arbitrary after all—and reverse the inequality. Instead, the inequality

X(S:F) > Lee(Ils) (7)

holds for any I1s. The measurement on the two sides of the inequality is generically dif-
ferent—the measurement that maximizes )((S v ) is not the measurement, H*f, that
maximizes I(Ils : IIx) to get the accessible information, Equation (1). The proof of
Equation (7) is straightforward,

x(S:F) =maxx(S : IIx)
Iy

> x(S: 1%)

= xX(MS : 1T%)
> x(Is : IT%)
= lae(Ils),
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where the system M is adjoined in a product state with ps 7 and a unitary on MS makes a
measurement I1s. The fourth line follows from data processing.

Equation (7) is an accessibility bound. Any information about S (i.e., that can be
extracted by a direct POVM on S) can, at best, have x (S v ) amount of shared information
with F. Then, as already noted, if the good decoherence limit is reached, that bound

becomes equality,
Good Decoherence

X(S : ‘;E) = Iacc(ﬁS)/ (8)

for the pointer information. This follows from the form of the state in Equation (3). To
determine x (S : F) for this state, an apparatus makes a measurement I1x and records
the outcome, leaving a joint system-apparatus state }; r ps[$) (3| @ p | f) (f|- Thisis a
classical-classical state that yields, after maximizing over I1r, both x (S  F ), Equation (6),
and the accessible information, Equation (1). This makes X(S : F ) desirable in the context
of quantum Darwinism: It not only is a better bound on the accessible information in the
good decoherence limit—the main limit of interest for quantum Darwinism—but it is the
actual accessible information.

To proceed further—to compute the accessible information and the associated re-
dundancy—we need to specify a model or class of models that provide the global states
of interest. The everyday photon environment has a particular structure where inde-
pendent environment components (photons) scatter off objects, acquire an imprint of
the state, and transmit that information onward, interacting little with each other in the
process [11,12,16,42—44]. This structure is captured by purely decohering Hamiltonians by
independent environment components. I will consider this general class here. Under this
evolution, the quantum Chernoff bound (QCB) provides a universal lower bound to the
accessible information and the associated redundancy. The quantum Chernoff result is also
meaningful on its own as a single-shot result, quantifying how well an individual observer
(with the best measurement apparatus) can learn the pointer state of S indirectly from F.

Pure decoherence occurs when environments select, but do not perturb, the pointer
states of S. When the environment components do so independently, the Hamiltonian is of
the form

te e
H=Hs+Tls ) Yi+ ) O )
k=1 k=1
with [ITs, Hs] = 0 and the initial state
te
p(0) = ps(0) ® | Q) pk(0) |- (10)
k=1

Here, k specifies a component of the environment & of size ’€. The operators, Y and (),
are arbitrary. This class of models contains the c-maybe model of Touil et al. [38]. That
model has TTg = 0-]0)(0| +1-|1)(1] and exp[:Y,t] = sina|0) (0| + cosa(]0) (1| + [1)(0]) —
sina|1) (1] for all k, where a is the angle of rotation of the “target” environment bit after a
time ¢. Note that all the coupling frequencies (i.e., the energy scales divided by the reduced
Planck’s constant) are absorbed into the definition of the operators Hg, Yi , and (), while
I's is dimensionless. All other operators are 0. The collection of operators act similarly to
those in the controlled NOT gate. They only swap as well, only a bit more lazily, as here a
is any number, so it is called c-maybe.

Starting from the initial product state, Equation (10), and evolving for some time under
the Hamiltonian, Equation (9), one can obtain the conditional states that appear in the
Holevo quantity, Equation (4),

oris = & pwis- (11)
keF
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Due to the structure of the evolution, these are product states over the components of the
environment fragment. However, they need not be identically distributed (that is, they
need not be fully i.i.d.—independently and identically distributed—states).

The structure, Equation (11), is a manifestation of amplification. The pointer states
§ leave an imprint on the environment components, of which there are many. Observers
intercepting those environment components can then make a measurement to infer the
pointer state. This is the setting of quantum hypothesis testing. For instance, in the binary
case with two pointer states 3 = 0 or 1, one wants to decide whether the fragment state
is p jo or p F;; with a minimum average probability of error, Po = ps—otrIl r1p 710 +
ps=1trll 7)op 7|1. This is based on a POVM measurement, I1, composed of two positive
operators I1 r|g and I1 7y (with I1 7o + 117y = I) that indicate the occurrence of “0” or
“1”, respectively. The first contribution to this average error is when the actual state is
p F|o, with a priori probability of occurring ps—o (where I explicitly show § = 0 to connect
to Equation (3)) but the measurement yielded the incorrect outcome I1 |;. Similarly for
the second contribution. Moreover, when amplification occurs, i.e., the conditional states
are of the form in Equation (11), one is specifically interested in how the error probability
behaves as the fragment size grows. This is the setting of the QCB.

To employ the QCB, one makes use of a two-sided measurement. The firstis on S,
putting it into its pointer states (i.e., x(Ils : ) now provides the mutual information
between S and F). This reflects the action of £/F and is the good decoherence limit—, i.e.,
%€ — oo provided S and & have interacted for some finite time under the evolution given
by Equations (9) and (10). This also requires that the coupling strength to the environment
components do not depend on ‘€. The second is on F to access the pointer state. By Fano’s
inequality [45,46],

x(Ils : F) > L (Ils) > Hs — h(P.) — P.In[D — 1], (12)

where P, is the error probability for extracting information about a (sub)space of pointer
states (of dimension D) from a measurement on F. One could replace the left hand
side of this inequality with x(S:F) > x(Ils:F). Here, I use the binary entropy,
h(x) = —xlog, x — (1 —x)log,(1 — x). The QCB upper bound, P; > P, gives a second
inequality

Iacc(ﬁS) > Hg — h(Pe> - Peln[D - 1] > Hg _h(P;) - Pe*ln[D - ”/ (13)

which is partway to the final QCB result [16,19].

The QCB upper bounds the error probability, PX > P,, for both the D = 2 case [47-49]
or the D > 2 cases [50]. There is no fundamental difference between these cases, it is only
the closest two states that determine the asymptotic decay of P, when D > 2. I will restrict
to D = 2 from hereon to make a correspondence with Touil et al. [38]. The error probability
(bound) is

*x : c,1—c c 1—c
P = min pip; kl;[Ttr[pkupkp] (14)

For pure S€ states in the purely decohering scenario, Equations (9) and (10), ¢ can be any

value between 0 and 1 within the generalized overlap contribution, tr [pckllp}(‘;c} , and it

2
will give the exact overlap ’ (Wrnl¥rp) ’ = |7x|* (which is also the decoherence factor 7y,

squared for this case of pure states). Touil et al. [38] consider the homogeneous case where
Y = 7 for all k, which I will also consider (see Refs. [16,19] for inhomogeneous results).
For pure states, therefore, only the prefactor needs optimizing over c as the generalized

overlap gives |’y\2jf for all 0 < ¢ < 1 and with %F the number of components in F. The
prefactor is optimal at one of the two boundaries (c = 0 or ¢ = 1), giving

. #
Py = min(py, po] 7> (15)
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I use a slightly different notation here than Ref. [38] to keep the correspondence with prior
work. Opposed to pure states, for mixed S& states within the pure decohering scenario,

Equations (9) and (10), the error probability (bound) is \/p1p2 [ [ke £ tr [plk{fp%ﬂ for both
spin and photon models [16,19] (i.e., c = 1/2 is optimal). Either prefactor, min[p;, p»] or
\/P1pP2, will give a bound for the pure state case. Letting the prefactor to be just some C,
the QCB result for pure, homogeneous S€ is

Tace (ﬁS) > Hgs — h<ch’|2n}-) = XQCB/ (16)

where I stress that this is a classical-classical information about random variable § (pointer
states on &) with measurement outcomes on F. If we want general S states, but still
the pure decoherence model, Equations (9) and (10), we have exactly the same form

as Equation (16) but the decoherence factor (the pure state overlap) is replaced by the

generalized measure of overlap, tr [p}{‘/ fplk‘/ 22} , see Ref. [19] for these expressions in terms of

generic angles (between conditional states) and lengths on the Bloch sphere for spins and
Ref. [16] for photons.

The QCB is a universal result. The bound Equation (14) is true for all models of pure
decoherence by independent spins or the standard photon model, all dimensions in between
(qutrits, qudits, etc.), inhomogeneous models, pure and mixed S¢& states, and ones with
individual self-Hamiltonians on €. The only stipulation for Equation (14) and the lower
bound Hg — H(Py) is that one is distinguishing within a two-dimensional subspace of S
pointer states. For higher dimensional subspaces, the number of pointer states, D, appears
in Equation (13) and the exponent in the decay of P} requires a pair-wise minimization of
the generalized overlap over conditional states (as well as a different prefactor outside of
the exponential).

The most important aspect of the compact form, Equation (16), and its generalization
to higher D, is that the right hand side reflects actual, inferable information about the
pointer states that the observer can retrieve by interaction with just F in a single shot.
Moreover, while the QCB is traditionally cast as an asymptotic result, we have not actually
used any asymptotic limits to obtain Equation (16). Both of these aspects—single shot and
finite /—provide a natural setting for our world, where observers are “agents” within
these regimes. One can then ask questions about resources of observers (for instance, global
versus local measurements on F subcomponents [51] or the ability to perform coherent
measurements [52]) that further refine the results but do not change the fundamental
framework of single-shot, finite F inference.

Let us return to the c-maybe model and the Holevo quantities. Touil et al. [38] present
results for the quantum mutual information, X(S : F),and x(S : F ). In the good decoher-
ence limit, the latter two are

X(S:F) = —%logz[mpz(l—lvlﬁ)}

—\/ 1—4p1pa(1— 17*) Arctanh, W 1= 4pipa(1- |v|2tf)] (17)

and

Y 1 f :
X(S: F) = Hs + 5 108, [ prpal7*7 | + /1= apapafy "7 Arctanh, {\/ 1—4pipay ] (18)

in the form as they appear in their main text but using the notation here (Equations (17)
and (20) in Ref. [38]). Rewriting these in terms of binary entropy gives

x(S:F) :hﬁ <1+\/1—4p1p2(1—|’)f|2t}-)>], (19)
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corresponding to the good decoherence expressions in Ref. [10], and

x(S:F) :HS—hB(“F\/1—4P1P2|’Y|2tf>} (20)

We see that Equations (16) and (20) have a similar structure. Indeed, in the good decoher-
ence limit and for pure conditional states, the accessible information,
which is equivalent to Equation (18) or Equation (20), is equal to Hgs — h(F).
Here, P, = %(1 — tr‘ P1P 7|1 — P2p 2| ) is the optimal error probability, which is given
by the Helstrom measurement [53], for single shot state discrimination of the conditional
fragment states [54-56]. This is not true for mixed or for higher dimensional pointer
subspaces [57-60]. It can be verified in this case by a direct computation of the error
probability from the optimal measurement for the pure conditional states. For p s pure,
the trace distance in the Helstrom expression just requires diagonalizing an operator in a
two-dimensional subspace, giving

1
P = 2(1 —\1 —4p1pzrvlz”f> @1)

(this readily generalizes to the inhomogeneous case: The factor |’y|2tjT just needs to be
replaced by [Tre 7| vk \2). This result makes no use of the fact that the environment com-
ponents were spins, and thus it is directly applicable to (pure state) photon scattering off
an object in a two dimensional superposition, more directly supporting the connection
discussed in Touil et al. [38] and extending it to x (S : F ) in the good decoherence limit.
Moreover, as with the QCB result, the form of the accessible information for pure S& states,
Hg — h(P,), with the optimal P, from Equation (21) holds regardless of the environment
components. They can be spins, qudits, or photons. Furthermore, the connection with
hypothesis testing allows for even more general statements about models that are not
purely decohering. For instance, for projection-valued measurements and pure S¢ states,
one obtains the same accessible information, Hg — h(P,), but the error probability just has
the overlap between the conditional fragment states, which can behave in a manner that is
not exponentially decaying with iF.

While specific to the case of D = 2 and pure S€ states evolving under Equations (9)
and (10), the connection provides a window into the behavior of different ways to quantify
correlations. The alternate Holevo quantity, x (S : F ), becomes the inferable information in
this specific setting. However, inferable information has a universal form that goes beyond
this specific setting of dimensionality and purity.

Redundancy. The decay to the classical plateau—the missing information Hg about
the system—for the quantities in Equations (16), (19) and (20), all are controlled by the F-

induced decoherence factor, ,Yzﬁ]-“ Ultimately, though, we are interested in the redundancy
of information. This requires introducing a control, the information deficit §, which reflects
the fact that one can not generally obtain perfect knowledge from a finite-size fragment F.
This is typically taken as

X(F) > Hs(1-9), (22)

where X' (F) is some mutual information (quantum mutual information, Holevo, acces-
sible information, etc.). This is the form I will employ here. However, both the form
of the QCB and the form of x(S : F) (in the good decoherence limit) suggest employ-
ing the information deficit as an entropic quantity when thresholding entropic measures
of information,

X(F) > Hs — H[J]. (23)

This allows ¢ to be a factor reflecting distinguishability of conditional states and allows for
non-asymptotic computations to proceed for the redundancy (it removes the transcendental
form of the equations). I will not use this in what follows.
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The approach to the plateau and the redundancy (to within §) have simple asymp-
totic results regardless of quantity used to compute them. The decay exponent to the
plateau, ¢, of some information theoretic quantity X' (F), such as Equations (19) and (20), or
Equation (16), is

1
¢ = lim o In[Hs — X(F)] (24)

For the pure, homogeneous c-maybe model, all three decay to the plateau with exponent

¢ =—In|y[” (25)

That is universality in a nutshell. Moreover, the exponent is the leading order of the redun-
dancy,

ie € olnfyf

Ro =175 =% g 26)
This is the essence of the QCB: The exponent—the quantum Chernoff information, {gcp,
or its inhomogeneous counterpart, {ocg—controls the redundancy, see Refs. [16,19] for
additional discussion and results. For the pure c-maybe model, this exponent is the same
whether using Equations (19) and (20), or Equation (16). The quantum mutual information
also yields the same decay and redundancy in the good decoherence limit, as it is the
same as x (S : F) from Equation (19). In order to apply Equation (24) for the quantum
mutual information, one needs %€ — co. As already mentioned previously, though, this will
entail good decoherence provided some finite interaction between S and £ components
has taken place. In the end, all the information theoretic quantities provide the same decay
and redundancy, which the asymptotic calculation, Equation (24), makes apparent in a
non-empirical manner.

Figure 1 shows the approach to the plateau for the three information measures. The
quantity X(S‘ : F) is a weaker bound to the accessible information. Yet, the separation be-
tween the decay curves is unimportant for passing the threshold in Equation (22): x (S : F)
passes it sooner than the other quantities, but this only gives a relative correction to
Equation (26) that goes to zero asymptotically (7 and — In é have to simultaneously go to
infinity), albeit weakly as 1/ Iné. To clarify this statement, let R; = R§ 4 R}, with R§ from
the right hand side of Equation (26) and R} the corrections. The relative correction, R}/ RS
decaysas 1/Iné for x(S: F) and asIn(In1/8)/Iné for x (S : F) and Xpcp as § — co. In
other words, R ~ 1/(In 6)? asymptotically. The very weak prefactor, In(In1/6), for the

latter two cases is due to the presence of 4F in the prefactor in Equations (28) and (29). The
leading order contribution to the decay for x (S : F) is

pip2log, 22 2

27
p2 —p1 @
or with a prefactor of 1/2In2 when p; = py = 1/2. For x(S : F), the decay is
e _of i
p1p2log, [|’Y| Zf} Eld (28)
pip2
and, for the QCB result,
e ot #
Clogy | =71 || (29)

with C = min[py, p2] or \/p1p2 depending on whether we take the pure state result or
generically take the mixed state bound. These forms show the same exponential decay but
the latter two have a weak dependence of the prefactor on “F.
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Figure 1. Approach to the plateau. Information measures X versus fragment size F for p; = 1/4
and v = 7/8. All three quantities, ¥ = Xcp (green line), x (S : ) (orange line), and x (S : F) (blue
line), rapidly rise to the classical plateau, Hg, as the fragment size “F increases. The quantum mutual
information, I(S : F) (not shown), is equivalent to x (S : F) when good decoherence is present. The
QCB result, Xocp, lower bounds the other two, but is close to X(S  F ) The inset shows the decay to
the plateau. All three measures decay with the same exponent. The x (S : F) does, though, deviate
from the other two quantities, as the latter two have a prefactor that depends on “F (both with the
same functional form). This offset does not influence the redundancy asymptotically (i.e., as a relative
correction, it itself decays).

3. Conclusions

Quantum Darwinism clarifies the role of the proliferation of information in the
quantum-to-classical transition. Here, I examined the quantity introduced by Touil et al. [38],
)((S  F ), where an (optimal) measurement is made on the fragment, reminiscent of the
quantum Chernoff bound. It provides an appealing approach to finding the redundancy
of information, as it is an accessibility bound that becomes the accessible information in
the limit of good decoherence. For the special case of a pure S¢ state, the accessible infor-
mation is directly related to the optimal error probability for distinguishing conditional
states on the environment (i.e., hypothesis testing or inference), of which an exact expres-
sion (including the prefactor) can be computed. Moreover, this connection immediately
generalizes the result to any pure, D = 2 model (spin environments, qudit environments,
photon environments, etc.) and to inhomogeneous environments (including ones with
self-Hamiltonians, as in Equation (9)). That decay, as expected, has the same exponent as
the QCB, as the QCB promises (and only promises) to yield the right asymptotic decay, not
the prefactor. Asymptotic analysis provides a non-empirical way to show that all quantities
give the same redundancy—due to the same exponent—to leading order (and that correc-
tions are small) and makes the universality of the plateau approach manifest. Since the
QCB applies more generally, its universal bound should further help shed light on future
results that yield exact entropic quantities or alternative bounds. Its importance—the QCB’s
importance—goes beyond this, however, as it provides a single shot, finite 7 framework
for understanding how we observers learn in a quantum Universe.
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