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Heterogeneity in coronary heart 
disease risk
Cristoforo Simonetto1*, Susanne Rospleszcz2,3,4, Jan Christian Kaiser1 & Kyoji Furukawa5

There is large inter-individual heterogeneity in risk of coronary heart disease (CHD). Risk factors 
traditionally used in primary risk assessment only partially explain this heterogeneity. Residual, 
unobserved heterogeneity leads to age-related attenuation of hazard rates and underestimation of 
hazard ratios. Its magnitude is unknown. Therefore, we aimed to estimate a lower and an approximate 
upper bound. Heterogeneity was parametrized by a log-normal distribution with shape parameter σ. 
Analysis was based on published data. From concordance indices of studies including traditional risk 
factors and additional diagnostic imaging data, we calculated the part of heterogeneity explained 
by imaging data. For traditional risk assessment, this part typically remains unexplained, thus 
constituting a lower bound on unobserved heterogeneity. Next, the potential impact of heterogeneity 
on CHD hazard rates in several large countries was investigated. CHD rates increase with age but the 
increase attenuates with age. Presuming this attenuation to be largely caused by heterogeneity, an 
approximate upper bound on σ was derived. Taking together both bounds, unobserved heterogeneity 
in studies without imaging information can be described by a shape parameter in the range 
σ = 1–2. It substantially contributes to observed age-dependences of hazard ratios and may lead to 
underestimation of hazard ratios by a factor of about two. Therefore, analysis of studies for primary 
CHD risk assessment should account for unobserved heterogeneity.

Abbreviations
AUC   Area under the receiver-operator curve
CAC   Coronary artery calcium
CCTA   Coronary computed tomography angiography
CHD  Coronary heart disease
HR  Hazard ratio

Coronary heart disease (CHD) risk varies widely among individuals. Part of this variation can be explained by 
risk factors. However, true risk varies even among individuals with identical risk factor levels. This variation is 
called unobserved heterogeneity. Unobserved heterogeneity in risk estimation is inevitable, since no risk estimate 
can perfectly capture true CHD risk. However, from the statistical literature it is well known that unobserved 
heterogeneity can bias risk estimates and complicates the interpretation of hazards and hazard ratios (HRs)1–3. 
This problems have even led to the proposal to use other effect measures than  HRs4,5. To understand the issue, a 
distinction has to be made between the so called marginal and the conditional hazard. Observed hazards always 
refer to risk groups specified by certain risk factor levels. Therefore, they are marginal with respect to unknown 
or unmeasured risk factors within the group. Instead, the conditional hazard can be thought of as an individual 
hazard: it cannot be determined as it depends on unmeasured factors. Assuming proportional hazards, observed 
marginal HRs are smaller than conditional  HRs5. Therefore, marginal HRs underestimate the effect of risk fac-
tors in the individual. The underlying mechanism is depicted in Fig. 1: on average, individuals at higher risk for 
CHD experience an event earlier and thus drop out from the risk set. This reduces the mean risk within each 
risk group. Because this effect is stronger in high risk groups, also HRs are affected. Although this mechanism 
is more severe for common  diseases5, it has not been thoroughly investigated so far in CHD  epidemiology6,7. 
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Aim of the present study is to estimate the size of unobserved heterogeneity and its consequences in CHD risk 
estimation. Analyses are based on published data from large studies and official WHO data.

As the name implies, there is no way to determine unobserved heterogeneity from incidence data in general. 
Some approaches employ familial risk or recurrent event  data2,8 but are not generally applicable. Main goal of 
the present study is to establish a lower bound of unobserved heterogeneity in primary CHD risk assessment. 
The idea is obvious: The more risk factors are taken into account in a study, the larger part of heterogeneity can 
be captured. For an analysis that does not take the full set of risk factors into account, some of this heterogeneity 
remains unobserved. This part of unobserved heterogeneity can be estimated in the comprehensive analysis. 
Typically, this situation arises if assessment of some risk factors is expensive or limited by ethical concerns. In 
such case, the predictive value of risk factors may be known but they can still not be included in general risk 
prediction models.

Traditional CHD risk assessment is based on risk factors such as blood pressure, smoking behavior, and blood 
 lipids6,7 which are subsumed to risk  scores9–11. It has been difficult to increase the performance of traditional 
risk  scores12, as most additional markers such as genetics or novel circulating biomarkers provide only modest 
improvements in prediction  performance13–16. Improved prediction, however, can be obtained by diagnostic 
imaging  data17,18. Coronary artery calcium (CAC) scanning has emerged as the most robust predictor of coronary 
events in the asymptomatic primary prevention  population19 and even better discrimination can be obtained by 
coronary computed tomography angiography (CCTA)20. However, imaging is not routinely performed in primary 
risk assessment. Therefore, imaging in CHD risk assessment forms an example of the situation sketched above: 
heterogeneity assessable by CAC and CCTA remains unobserved and constitutes a lower bound of unobserved 
heterogeneity in traditional risk assessment.

Next, to provide a more complete picture, we also establish a rough upper bound of unobserved heterogene-
ity under some plausible presumptions. In population-based studies, it is typically observed that at young ages, 
risk strongly increases with age but the relative increase slows down at older age. Such attenuation of the hazard 
increase is predicted by unobserved heterogeneity. Based on published CHD mortality data, we will estimate the 
amount of heterogeneity that would be necessary to drive this attenuation. As several causes may contribute to 
the attenuation, the estimate constitutes an upper bound on unobserved heterogeneity.

Figure 1.  Unobserved heterogeneity attenuates hazard rates and ratios. The upper panel sketches the 
distribution of hazards within a low-risk group (e.g. non-smokers, normal blood pressure, normal cholesterol 
level,…). The green line refers to young, the red line to older age. The red dashed line shows the hypothetical 
distribution at older age if no CHD occurred: it is identical to the distribution at young age but shifted towards 
higher hazards. However, especially individuals with high hazards experience coronary heart disease and 
thus drop out of the risk set. The resulting depleted distribution is depicted as solid red line. Owing to the 
depletion, the mean hazard increases slower with age than individual risk. The bottom panel refers to a high 
risk group (e.g. smokers, normal blood pressure, normal cholesterol level,…). The marginal hazard ratio (HR) 
is the quotient of the mean hazards of two risk groups (e.g. smokers vs. non-smokers, each with normal blood 
pressure, normal cholesterol level,…). The conditional HR refers to the effect of a risk factor (e.g. smoking) 
on individual risk. At sufficiently low age, both HRs coincide. However, depletion of high-risk individuals is 
stronger in the high-risk group. This reduces the observed marginal HR with age.
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Finally, the derived plausible range for heterogeneity is used to evaluate its impact on age- and sex-specific 
HRs. These results are compared to official WHO data. Implications of our findings on individual risk estima-
tion are discussed.

Methods
Statistical methods. Parametrizing heterogeneity. CHD risk differs between individuals for different rea-
sons. Differences are partially related to observed risk factors which we collectively call R . Therefore, R may be 
thought of as a linear predictor involving several risk factors. Other, unobserved, factors L are called latent. Mak-
ing this distinction, we write the hazard � as

This is called the conditional hazard. The term eR is the part that can be predicted for each individual in a 
study. On the other hand, eL is an individual factor (called frailty) that is not observed. The distribution of eL 
thus describes unobserved heterogeneity. We assume a log-normal frailty  model2: L is normally distributed 
(variance σ 2

L
 ) and independent of R and normalized at young age by E[eL] = 1 . For simplicity, we will assume 

also R to be normally distributed (variance σ 2
R

 ). Then, variances simply add to yield the total variance of the log 
hazards σ 2 = σ 2

R
+ σ 2

L
 .

While the conditional hazard describes individual risk, the marginal hazard � describes the average hazard 
in some group or population, thus averaging over L:

As illustrated in Fig. 1, the marginal hazard deviates from the conditional hazard with increasing age because 
individuals with high eL are depleted from the risk set. Stronger attenuation occurs for larger cumulative hazards 
thus affecting HRs. The mathematical derivation is presented in the Appendix.

Estimating explained heterogeneity from the concordance index. Without access to the original individual data, 
the variance σ 2

R
  must be estimated from published summary data. Good prediction performance means large 

explained heterogeneity. Therefore, σ 2
R

 is related to the area under the receiver-operator curve (AUC) and for 
normally distributed explanatory variables in logistic regression, the following formula approximately  holds21

with � denoting the cumulative normal distribution. We use this formula to calculate σ 2
R

 from published AUC 
or concordance index values.

In particular, we are interested in studies investigating the incremental prognostic value of some imaging 
marker. Equation (1) is thus applied twice: First, for the risk prediction function without the imaging marker, 
and second, for the function with the marker added. This results in two estimates of σ 2

R
 . For the risk prediction 

function that takes into account imaging, a larger part of heterogeneity can be explained, related to larger σ 2
R

 . 
The difference of the two estimates corresponds to the additional heterogeneity which is assessable by diagnostic 
imaging data.

Data. Using imaging studies to establish a lower bound of heterogeneity. To estimate the part of CHD risk 
heterogeneity that can be assessed by imaging but not by traditional risk factors, relevant studies from the litera-
ture were collated. Following the available evidence, first the improvement of risk estimation due to CAC scoring 
was investigated, followed by the additional improvement by use of CCTA.

For CAC, long-term population based studies have shown the incremental prognostic value of CAC scoring. 
For the two largest  studies22, MESA and HNR, concordance index values were jointly published  in23 together 
with results of the DHS. The discriminative ability of CAC was superior compared to other non-traditional risk 
 markers24,25. We therefore use the studies published  in23 for analysis, as well as a recent clinical study because 
of its large study  size26.

For CCTA, a PubMed search was performed for CHD studies assessing the concordance index (or AUC) 
from CCTA, using reference tracking and the “similar articles” feature of PubMed. As only a single population 
based study could be  identified27, we list also clinical studies. However, the treating physicians were not blinded 
for imaging results. This may have increased the rate of interventions in patients with adverse findings on CCTA. 
On the one hand, this may have led to an apparent improvement in discrimination for cardiac interventions. 
On the other hand, it may have reduced the rate of cardiac deaths and myocardial infarctions thus leading to an 
apparent decline in discrimination for hard endpoints.

As derivation of a precise estimate is therefore difficult, we place more emphasis on population based studies 
and rather use a conservative estimate as given by the lower values from the calculations in Eq. (1). Combining 
results from CAC and CCTA, we then derive heterogeneity assessed only by imaging. This constitutes a lower 
bound for unobserved heterogeneity for traditional primary risk assessment.

Using WHO mortality rates to establish a rough upper bound of heterogeneity. We analyze sex-specific crude 
CHD mortality rates for four different large countries (USA, Russian Federation, Japan, Germany) as published 
in the WHO Mortality Data  Base28. Countries were chosen for existence of complete and continuous data, aim-
ing for a wide range of CHD rates and main risk factors, and aiming for some overlap with the studies on 
CAC and CCTA. In order to gauge period and cohort effects, rates are presented for the first and last year for 

� = e
R+L

� = e
R
E[eL]

(1)AUC = �(σR/
√
2)
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which CHD rates were available defined by ICD-9 or ICD-10. Based on the geometric mean of data from this 
first and last year, we extrapolate exponentially the trend from younger ages (30–45 years). This extrapolation 
constitutes a hazard age dependence without any attenuation. Assuming this age dependence to hold for the 
conditional hazard, we calculate the attenuation induced by unobserved heterogeneity for different values of the 
shape parameter σ, see Eq. (A.2). The resulting, attenuated hazard curve is visually compared to the empirical 
data in the older age groups. This way, a value for σ can be roughly estimated for which the observed attenuation 
can be explained from unobserved heterogeneity. However, as attenuation might also be due to other causes, 
this estimation gives an upper bound. Because the analysis is based on crude rates, unobserved heterogeneity 
coincides with total heterogeneity ( σL = σ ). In general, σL ≤ σ , and the upper bound thus holds also for studies 
including traditional risk factors.

Statement. All methods were carried out in accordance with relevant guidelines and regulations.

Results
CHD risk heterogeneity captured by imaging. Characteristics of studies analyzing the incremental 
value of CAC scoring on traditional risk prediction are listed in Table 1. For each study two estimates of the 
observed variance σ 2

R
 are presented as derived from the concordance indices. Variance σ 2

T
 relates to a risk esti-

mation based on traditional risk factors only, and σ 2
T
+ σ 2

CAC
 to the estimation also incorporating CAC. These 

estimates always refer to the endpoint of the respective study. As can be seen from Table 1, σ 2
T

 varied between 
studies from 0.7 to 1.3. CAC scoring increased the variance of predicted risk by 0.38 to 0.51.

Table 2 shows the studies which investigate the incremental prognostic value of CCTA as compared to risk 
assessment by traditional risk factors and CAC scoring. Limitations of these studies have already been detailed 
above, and may explain divergent variances comparing for example the two studies of Hadamitzky et al.29,30, 
which are based partially on the same patient cohort. However, an estimate σ 2

CCTA
∼ 0.5 appears to be rather 

conservative, in particular as the studies listed in Table 2 may not have assessed all relevant features assessable 
by modern CCTA 20,31.

Table 1.  Studies investigating the incremental prognostic value of coronary artery calcium (CAC) scoring. 
Studies and estimated variances of the log risks predicted by traditional risk factors ( σ2

T
 ) and additional 

variance by CAC scoring ( σ2
CAC

 ). For all studies, traditional risk factors include age, sex, smoking, systolic 
blood pressure, anti-hypertensive medication, total cholesterol, high-density lipoprotein cholesterol, lipid-
lowering medication, diabetes, family history, and ethnicity. CHD Coronary heart disease.

Study Cohort recruitment Endpoint Cases/participants; follow up σ
2

T
σ
2

CAC

McClelland23

(Multi-Ethnic Study of Atherosclerosis) Population based, age 45–84, USA

CHD death, myocardial infarction, resus-
citated cardiac arrest, revascularization 
after angina

422/6726; 10.2y (median) 0.91 0.51

McClelland23

(Heinz Nixdorf Recall Study) Population based, age 45–75, Germany 274/3692; 10.4y (median) 0.68 0.50

McClelland23

(Dallas Heart Study) Population based, age 45–65, Texas 58/1080; 9.3y (median) 1.21 0.41

Blaha26

(Coronary Artery Calcium Consortium)
Asymptomatic individuals referred to clini-
cal CAC scoring, age 45–79, USA CHD death 421/53,487; 12y (mean) 1.30 0.38

Table 2.  Studies investigating the incremental prognostic value of coronary computed tomography 
angiography (CCTA). Estimated variances of the log risks refer to risk predicted by traditional risk factors and 
coronary artery calcium (CAC) scoring ( σ2

T+CAC
 ) and to the additional variance obtained by CCTA imaging 

( σ2
CCTA

). CHD coronary heart disease, MI myocardial infarction.

Study Cohort recruitment Endpoint Cases/participants; follow up Features assessed by CCTA σ
2

T+CAC
σ
2

CCTA

Moon27 Population based, age 65+, South 
Korea Cardiac death, MI 24/470;

8.2y (median) Stenosis (modified Duke  score32) 0.81 0.56

Halon33 Type 2 diabetics, age 55–74, Israel
Cardiovascular death, MI, unstable 
or new-onset angina requiring 
intervention

41/630;
6.6y (mean)

Plaques (relative volume), stenosis 
(Gensini  score34) 1.03 0.71

Hadamitzky29 Suspected CHD, Germany
Cardiac death, MI, unstable angina 
requiring hospitalization, late 
coronary revascularization

47/2223;
2.4y (median) Stenosis severity 1.98 1.03

Hadamitzky30 Suspected CHD, Germany Cardiac death, MI 25/1584;
5.5y (median)

Number of segments with steno-
sis ≥ 25% or any plaques 0.63 0.24

Hou35 Suspected CHD, China Cardiac death, MI, late coronary 
revascularization

363/4425;
3.0y (median)

Number of obstructive vessels, 
occlusion, plaque composition, 
location

1.68 2.7

Nadjiri36 Suspected CHD Cardiac death, MI, late coronary 
revascularization

46/1168;
5.7y (median)

Segment stenosis  score37, low 
attenuation plaque volume 1.28 0.56
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In summary, the variance of the log hazards assessable by imaging, σ 2
CAC

+ σ 2
CCTA

 , is of the order of 1 or larger. 
Without imaging information, this part of the variance would not have been explained and thus contributed to 
unobserved heterogeneity. For studies based on traditional risk factors only, unobserved heterogeneity may thus 
be described by a variance of log hazards σ 2

L
≥ 1, or equivalently by a shape parameter σL ≥ 1.

CHD risk heterogeneity and attenuation of hazard rates. Based on the WHO Mortality Data  Base28, 
Fig. 2 shows crude CHD mortality rates for four large countries. Dotted lines show the exponentially extrapo-
lated trend from ages 30 to 45. The deviation between the true CHD rates and the extrapolated trend illus-
trates the attenuation of hazard rates with age. Obviously, attenuation affects different rates to different degrees: 
For women in Japan, the extrapolation reasonably describes also rates for older ages. For men and for other 
countries, there is more attenuation from the extrapolated trend with higher ages, and generally attenuation is 
stronger for men than women. Stronger attenuation for larger cumulative hazards exactly corresponds to the 
behavior predicted by heterogeneity.

To estimate the heterogeneity required to drive this attenuation, we calculated the marginal hazards for con-
ditional hazards that follow the exponential trend. In other words, no attenuation was assumed at the individual 
level. The dashed lines show the marginal hazards presuming a shape parameter σ = 2 . As heterogeneity has 
minor impact for small cumulative hazards, marginal and conditional hazard are similar for women in Japan. For 
women in the Russian Federation, the marginal hazard attenuates even stronger than the crude rates. Overall, 
heterogeneity with σ = 2 largely, but not fully suffices to explain the attenuation.

If presuming σ = 3 in the above calculation instead of σ = 2 , heterogeneity alone sufficed to explain the 
observed attenuation for USA and Germany, and led to even stronger than observed attenuation for the Russian 
Federation and Japan (not shown).

Figure 2.  Coronary heart disease (CHD) crude mortality rates according to the WHO Mortality Data Base. 
To guide the eyes, the area between mortality rates of different calendar years has been shaded. Dashed lines 
illustrate marginal hazards resulting from unobserved heterogeneity with shape parameter σ = 2 assuming 
exponentially increasing conditional hazards as delineated with dotted lines.
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In summary, heterogeneity can explain why higher hazard rates are associated with stronger attenuation. For 
this explanation a shape parameter σ ∼ 2 is about sufficient. However, as we do not expect heterogeneity to be 
the only explanation for attenuation, σ ∼ 2 presents an upper bound for total heterogeneity.

Taken together, in “CHD risk heterogeneity captured by imaging” a lower bound of σL = 1, was established for 
unobserved heterogeneity for studies lacking imaging information. A rough upper bound σ ∼ 2 was estimated 
for total heterogeneity in the previous section. Since heterogeneity explained by traditional risk factors can be 
approximately described by σR ∼ 1 (see Table 1), and shape parameters add quadratically, σ 2 = σ 2

R
+ σ 2

L
 , this 

implies a plausible range σL = 1–2 for unobserved heterogeneity in studies based on traditional risk factors only.

Discussion
Unobserved heterogeneity in the range σL = 1–2 has substantial impact on HRs and thus on individual risk 
estimation. We will now illustrate by specific worked examples how risk is underestimated if heterogeneity is not 
taken into account. To this aim, we use data from the WHO CVD Risk Chart Working  Group38.

Recall that in the presence of unobserved heterogeneity, it is important to distinguish the conditional from 
the marginal HR. The conditional HR cannot be observed directly and relates to comparing two individuals who 
differ only in some risk factor(s) under investigation. The marginal HR can be observed as it relates to comparing 
two groups which differ in the investigated risk factor(s) but may also differ in other, unknown or unmeasured 
covariates. The prevalence of these other covariates is age dependent, thus reducing the marginal HR with age, 
as illustrated in Fig. 1.

Figure 3 now juxtaposes the age dependence of HRs expected from unobserved heterogeneity with empirical 
data. The left panel shows the age dependence of marginal HRs due to unobserved heterogeneity, i.e. assuming 
constant conditional HRs. To calculate the effect of depletion of high risk individuals, Eq. (A.3), sex-specific 
exponentially increasing German CHD mortality rates (see Fig. 2) were applied. As can be seen, attenuation of 
the marginal HRs is stronger for stronger heterogeneity ( σL = 2 vs. σL = 1 ), for larger conditional HRs (5 vs. 2), 
and for larger cumulative hazards (men vs. women).

The right panel relates to results from the WHO CVD Risk Chart Working Group and is based on CHD mor-
tality and myocardial infarction in 376.177 individuals from 85 different  cohorts38. It shows sex-specific HRs for 
smoking, diabetes, cholesterol, and blood pressure. Obviously, all HRs decrease with age, and larger HRs tend 
to attenuate stronger. For diabetes and smoking, HRs were larger for women than for men. Overall, comparing 
the two figure panels, it can be concluded that heterogeneity may explain substantial part of the observed age 
dependence, especially for σL = 2.

Figure 3.  Predicted and observed age dependence of hazard ratios. (a) Heterogeneity induced age dependence 
of the marginal hazard ratio for constant conditional hazard ratio values of 5 (lines originating at the top left) 
and 2 (other lines). Two different values of the shape parameter σL were applied for unobserved heterogeneity. 
Exponentially increasing conditional hazards were assumed as shown in Fig. 2 for Germany. (b) Age 
dependence of the hazard ratios of several risk factors for 10-year cardiovascular risk, as derived by the WHO 
CVD Risk Chart Working  Group38. In both panels, red lines refer to women, blue lines to men.
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However, this has profound impact on the interpretation of the HRs. For a risk factor that increases individual 
risk by a factor 5 (conditional HR), only a HR of about 2.5 may be observed at age 65 (marginal HR), see Fig. 3a. 
Vice versa, the observed age-related decrease of HRs (see Fig. 3b) may be dominated by depletion of high-risk 
individuals; there may be no significant reduction in individual risk with age. As a main goal of accurate CHD 
risk estimation is to improve patient communication to motivate healthy lifestyle choices, the conditional HR 
is the more relevant measure in this context. As exemplified above, it may be twice as large as the marginal HR.

The marginal HR is the relevant measure e.g. to determine the number of deaths attributable to a risk factor. 
It can be derived directly from incidence data. The above worked example also has implications with regard to 
the marginal HR: As illustrated in Fig. 3a, a sigmoidal age dependence is expected. The exponential dependence 
assumed in the WHO model therefore overestimates HRs at young ages.

Estimates of heterogeneity explained by CAC and CCTA varied between studies. Partially, this may be 
explained by imaging results to have influenced treatment decisions and therefore risk. Moreover, studies dif-
fered in the features derived from CCTA, likely leading to different prognostic values. Therefore, rather con-
servative estimates were applied. Results in this study were based on some simplifying assumptions. The choice 
for log-normal distributions was motivated by the widespread use of the log-transformation to relate the hazard 
with a linear predictor. The distribution of some particular risk factor may be far from normal. However, there 
are many relevant risk factors in CHD such that the linear predictor may be expected to be distributed approxi-
mately normally. Moreover, the distribution of the log CAC scores indeed appears to be approximately normally 
 distributed39. In our analysis we have presumed a constant frailty. However, it may vary with age due to vary-
ing biological or environmental factors, possibly related to prevention measures. Also randomness may play a 
role in individual disease  development1. In this regard, it should be noted that imaging data can predict risks 
for a decade as can be seen from Table 1, thus indicating limited relevance of variation with time. Moreover, in 
agreement to the present study, large heterogeneity was obtained in a recent modeling study that was based on 
autopsy data in youth and incorporated  randomness40. Finally, it should be noted that even if individual frailties 
are constant, the variance of unobserved heterogeneity is not. The depletion of high-risk individuals gradually 
reduces total variance and thus also unobserved  heterogeneity2. For example, assume the conditional hazard 
for German men, Fig. 2, and presume a log-normal frailty model at birth with shape parameter σL = 2 . Then 
at higher age, heterogeneity is not strictly log-normal any more, and at age 70 the standard deviation of the log 
hazards is not 2 but only 1.8. In any case, risk estimates are mostly relevant for middle and old age for which 
our estimates were derived.

Our analysis showed that the attenuation of the increase of CHD hazard rates can be explained by unob-
served heterogeneity. Based on this conclusion we have argued that σ may not be too large in order not to yield 
a too strong attenuation. However, this argument has a loophole. Even though it may appear contrived, it is not 
excluded mathematically that the conditional hazard may grow even faster than exponentially. For this case, our 
upper bound would be evaded. Therefore, we performed no stringent evaluation to derive the upper bound but 
estimated it by visual inspection. Also no competing causes of death were considered in the present study. For 
given frailty and shared risk factors, competing causes of death would reinforce the attenuations.

With access to primary data, some of the presented results could have been obtained directly. This includes 
the distributions of predicted hazards, which were here assumed to follow log-normal distributions. Primary 
epidemiological data can easily be analyzed with frailty  models2. As shown here, this would be important for 
interpretation of hazard ratios and for extrapolation to young ages. To evaluate the potential impact of unob-
served heterogeneity, we suggest log-normal frailty models with σL in the range 1–2. When establishing new 
risk models, sub-studies including additional risk factors may help to derive more specific lower bounds on 
unobserved heterogeneity.

Conclusions
Additional markers, such as imaging, improve CHD risk prediction beyond traditional risk factors. This implies 
the existence of unobserved heterogeneity in studies based on traditional risk factors only. Unobserved hetero-
geneity can attenuate hazard ratios towards 1, and according to our estimates this attenuation is substantial. 
Observed hazard ratios may underestimate actual individual risk by a factor of two. Therefore, even if risk scores 
reliably predict absolute risks, they may fail to predict the impact of a risk factor on individual risk. However, 
the impact on individual risk is important for risk communication and to motivate healthy lifestyle changes in 
primary prevention. Therefore, frailty models should be applied in studies used for primary risk assessment.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 13 October 2021; Accepted: 31 May 2022
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