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Rapid detection of talcum powder 
in tea using FT-IR spectroscopy 
coupled with chemometrics
Xiaoli Li, Yuying Zhang & Yong He

This paper investigated the feasibility of Fourier transform infrared transmission (FT-IR) spectroscopy 
to detect talcum powder illegally added in tea based on chemometric methods. Firstly, 210 samples 
of tea powder with 13 dose levels of talcum powder were prepared for FT-IR spectra acquirement. In 
order to highlight the slight variations in FT-IR spectra, smoothing, normalize and standard normal 
variate (SNV) were employed to preprocess the raw spectra. Among them, SNV preprocessing had 
the best performance with high correlation of prediction (RP = 0.948) and low root mean square 
error of prediction (RMSEP = 0.108) of partial least squares (PLS) model. Then 18 characteristic 
wavenumbers were selected based on a hybrid of backward interval partial least squares (biPLS) 
regression, competitive adaptive reweighted sampling (CARS) algorithm and successive projections 
algorithm (SPA). These characteristic wavenumbers only accounted for 0.64% of the full wavenumbers. 
Following that, 18 characteristic wavenumbers were used to build linear and nonlinear determination 
models by PLS regression and extreme learning machine (ELM), respectively. The optimal model with 
RP = 0.963 and RMSEP = 0.137 was achieved by ELM algorithm. These results demonstrated that FT-IR 
spectroscopy with chemometrics could be used successfully to detect talcum powder in tea.

Tea is one of the most popular drinks throughout the world. Among all the organoleptic evaluation indexes of tea, 
color plays an especially important role in the quality and the market price of tea1,2. Therefore, some tea producers 
add talcum powder into the tea illegally to make it more attractive or conceal quality defects. Talcum powder, 
Mg3[Si4O10](OH)2, is an important industrial mineral and it is widely used in the manufacture of body and face 
powder3,4. Recently, many researches have proved that abusing talcum powder may increase the risk of cancer5,6. 
According to China food safety standards GB/T 14456.17, it is banned to add any illegal adulterations in tea pro-
duction. However, there is still no standard method for the detection of talcum powder in tea.

Unfortunately, research on talcum powder in tea is uncommon. Chen et al.7 and Xiang et al.8 investigated 
talcum powder in tea based on traditional chemical methods. In these researches, the existence of talcum pow-
der in tea was arbitrarily inferred based on the existence of magnesium7,8. Actually, the tea itself has abundant 
magnesium, which is the integrant element of chlorophyll9. And soil metal pollution may also lead to the accu-
mulation of magnesium in tea. So, the existence of magnesium cannot prove the existence of talcum powder. In 
addition, the traditional detection of adulterations is based on chemical analysis, which is trivial, expensive and 
time-consuming. Therefore, a rapid, simple and accurate detection method to evaluate the talcum powder added 
in tea is required.

Infrared (IR) spectroscopy has been known as a powerful tool for analysis of chemical constituents with spe-
cific frequency absorbance of functional groups. More complex structure leads to more absorption bands and 
more complex spectra. Rapid detection is the biggest advantage of IR spectroscopy. In 1977, Norris et al. first 
used near infrared (NIR) spectroscopy to study the protein in hard red winter wheat10. In recent decades, IR 
spectroscopy has been widely applied to analyze food quality11–13. Especially, an increasing number of researches 
on tea and adulterants in food are reported. Li et al. analyzed dry matter content of tea by near infrared (NIR) 
and mid-infrared (MIR) spectroscopy14. Botelho et al. applied MIR spectroscopy to detect five adulterants in raw 
milk15. However, there are still few studies on detection of adulterants in tea based on IR spectroscopy.

The IR spectra generally comprises a wide range of wavenumbers, some of which are useless or irrelevant 
information for modeling16. These interfered wavenumbers should be eliminated and the most relevant wave-
numbers should be selected. Therefore, chemometric methods play a particularly important role in wavenumbers 
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selection. In order to improve the accuracy of model and reduce the modeling time, more and more wavenumbers 
selection methods were reported nowadays, such as, regression coefficient analysis (RCA)17, Genetic algorithm 
(GA)18 and random forests (RF)19. In this research, a hybrid wavenumbers selection method, which combined 
backward interval partial least squares (biPLS) regression20, competitive adaptive reweighted sampling (CARS) 
algorithm21 and successive projections algorithm (SPA)22, was applied for IR spectral wavenumbers selection.

The aim of this study is to discriminate the tea samples added with talcum powder or not based on the IR spec-
tra. Moreover, a hybrid method of biPLS, CARS and SPA was applied to select the most relevant wavenumbers 
and to build a model for quantitative detection of talcum powder in tea.

Results and Discussion
Overview of samples and spectral pre-treatment. The average spectra of pure tea sample, tea sample 
with 1.50 mg/g talcum powder and pure talcum powder are demonstrated in Fig. 1(a–c), respectively. For the pure 
talcum powder spectrum, the main absorbance peaks were observed in the range of 990–1055 cm−1 (see enlarged 
peaks in Fig. 1(d)), which can be attributed to the Si-O-Si group23. In addition, another peak around 1444 cm−1 
could be found in Fig. 1(c), which is related to Magnesite24. Comparing Fig. 1(a) with Fig. 1(b), the spectra of 
pure and adulterated samples have similar absorbance peaks at 1401 (related to N =  N), 1617 (related to N =  O) 
and 3117 cm−1 (related to C-H and O-H)25,26. Moreover, no distinct differences can be observed by naked eyes 
in Fig. 1(a,b). Therefore, it is in urgent need to build a model based on IR spectra for detection of talcum powder 
in tea.

In order to obtain a reliable, accurate and stable model, it is necessary to preprocess raw spectra before mod-
eling, as shown in Fig. 2(a). Consequently, the spectral preprocessing methods of smoothing, normalize and 
standard normal variate (SNV) were applied comparatively in this research. And the spectra preprocessed using 
these methods were respectively presented in Fig. 2(b–d). To evaluate the effects of the spectra preprocessing, the 
data was used to build a PLS model, and the results were shown in Table 1. It could be found that the PLS model 
with SNV preprocessing (Model 4) had the best performance, which had a highest correlation of prediction 
(RP =  0.948) and a lowest root-mean square error of prediction (RMSEP =  0.108). Therefore, the following che-
mometric analysis was based on the spectra after SNV preprocessing.

Qualitative analysis. Before establishing quantitative model, principal component analysis (PCA) was used 
as a classification tool for analyzing tea sample with talcum powder or without. PCA is an unsupervised pattern 
recognition method, which can indicate the data trend of samples in visualizing dimension spaces27. To visualize 
the data trend of tea samples with different dose levels of talcum powder, a three-dimensional graph of tea sam-
ples using the first three principal components (PCs) were obtained, which was shown in Fig. 3. The PC1, PC2 

Figure 1. The average spectra of (a) pure tea sample, (b) tea sample with 1.50 mg/g talcum powder and (c) 
pure talcum powder including (d) the enlargement of the main peaks of pure talcum powder in the range of 
990–1055 cm−1.
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and PC3 explained 77.9%, 6.2% and 3.1% of the variables, respectively. The total accumulative contribution rate of 
PC1, PC2 and PC3 accounted for 87.2%, which means the first three PCs could explain 87.2% of all information. 
It could be seen in Fig. 3 that pure tea samples and adulterated tea samples can be clearly separated. Whereas 
adulterated tea samples with different dose levels of talcum powder were clustered closely. It means PCA can be 
efficiently utilized for analyzing tea sample with talcum powder or without. However, it was not good at classi-
fying adulterated tea samples with different dose levels of talcum powder. Therefore, quantitative analysis was 
adopted in the following studies.

Quantitative analysis. Establishment of linear model. In order to simplify the model and improve the 
performance of model, biPLS was first used to select the most relevant wavenumbers in this research. During 
the process of biPLS, firstly, the full spectrum from 881 to 3581 cm−1 were divided into 20 intervals with the 
same width manually. Then, leaving one subinterval out at a time, and the remaining subintervals were com-
bined to build a PLS model. Repeating the previous step, several models with different number of intervals were 
achieved. Comparing the root-mean square error of cross validation (RMSECV) of each model, the one with 
lowest RMSECV was chosen as the best model. Thus, the intervals in the best model are the optimal ones. In 
this research, the final selected intervals were: 881–1080, 1182–1381, 1583–1682, 1783–1983, 2285–2384, 2686–
2785 cm−1. Then these 936 wavenumbers were used to build a PLS model (Model 5), and the results were shown in 
Table 2. Comparing with Model 4, Model 5 was more simple, the wavenumbers of which was reduced from 2800 
to 936, and its performance improved obviously with higher RP =  0.949 and lower RMSEP =  0.107. However, the 
wavenumbers of Model 5 for modeling were still too much, which accounted for 33.46% of the full wavenumbers. 

Figure 2. IR spectra of tea samples obtained from: (a) raw spectra, (b) smoothing preprocessing spectra, 
(c) normalize preprocessing spectra, (d) SNV preprocessing spectra.

Model No. Preprocessing RC RMSEC RCV RMSECV RP RMSEP

Model 1 Raw data 0.959 0.141 0.958 0.144 0.933 0.123

Model 2 Smoothing 0.960 0.140 0.958 0.144 0.934 0.122

Model 3 Normalize 0.984 0.091 0.979 0.102 0.903 0.142

Model 4 SNV 0.972 0.118 0.969 0.125 0.948 0.108

Table 1.  Results for different spectral preprocessing methods by PLS.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:30313 | DOI: 10.1038/srep30313

So, CARS was used to reduce wavenumbers after biPLS processing. The process of CARS was shown in Fig. 4. It 
could be seen that the number of sample variables decreased fast in Fig. 4(a). And in Fig. 4(b), RMSECV declined 
at first, which indicates that some uninformative wavenumbers were eliminated. Then it increased rapidly due 
to removing some useful wavenumbers. Lines in Fig. 4(c) represented the coefficient of independent variables at 
different sampling runs. The vertical asterisk line was used to mark the optimal model with the lowest RMSECV. 
After the asterisk line, the RMSECV began to rise, which was attributed to the elimination of some effective wave-
numbers. Finally, 111 wavenumbers, which accounted for 3.96% of the full wavenumbers, were selected by CARS 
to build a PLS model (Model 6). The results were shown in Table 2. It could be found that Model 6 had worse 
performance than both Model 4 and Model 5. But the gap between calibration and prediction in Model 6 became 
smaller than both Model 4 and Model 5, which means Model 6 had better stability and adaptability. Thus, CARS 
was effective for extraction of the optimal wavenumbers in this research.

However, 111 wavenumbers were also a little more for establishing a simple and convenient model. Therefore, SPA 
was utilized on the basis of these 111 wavenumbers. It could be seen in Table 2 that 18 wavenumbers (914, 1011, 1016, 
1021, 1035, 1050, 1059, 1067, 1080, 1182, 1249, 1340, 1613, 1631, 1683, 1804, 2296, 2370 cm−1) were selected as the 
most useful variables through SPA, which was only 0.64% of the full wavenumbers shown in Fig. 5. Combination of 
previous refs 24, 28, 29 and Fig. 1(c), 1016 (Si-O-Si), 1182 and 1249(CO-O), 1340 ( −CO3

2 ), 1631 (OH) and 2296 (Si-H) 
cm−1 were the characteristic wavenumbers of talcum powder. Subsequently, these 18 wavenumbers were treated as 
input variables for establishing PLS model (Model 7), and the results were shown in Table 2. Comparing Model 5 and 
Model 6, the performance of Model 7 seemed slightly worse, but RP =  0.931 and RMSEP =  0.124 of Model 7 were still 
acceptable. The most exciting thing was that the dimension of spectral variables reduced from 2800 to 18 characteris-
tic wavenumbers, which resulted in a pretty simple linear model for the quantitative detection of talcum powder in 
tea. Meanwhile, these characteristic wavenumbers laid a solid foundation for revealing the detection mechanism of 
talcum powder in tea by IR spectroscopy. In conclusion, all these results indicated that a hybrid wavenumbers selec-
tion method, which combined biPLS regression, CARS algorithm and SPA, was effective for extracting the optimal 
wavenumbers from full spectrum. Meanwhile, it had good performance of the quantitative detection model of talcum 
powder in tea. More details of results of different wavenumbers selection methods were shown in Table 2.

Establishment of nonlinear model. In order to further improve the accuracy of the detection model, 
ELM was used to build a nonlinear model based on the above 18 characteristic wavenumbers. In the modeling, 
the activation function of ELM was set to “sigmoidal”. The number of hidden nodes, which was the only param-
eter needed to be determined manually, was varied from 1 to 80. The best model was achieved using 36 hidden 
nodes. The optimal results were obtained with RP =  0.963 and RMSEP =  0.137 shown in Fig. 6. Compared with 
the prediction capacity of Model 7, ELM model had better prediction accuracy which indicated that ELM was 
more suitable than PLS for IR analysis in this research.

Figure 3. Scatter plot of three-dimensional PCs. 

Model No. Methods Variable number RC RMSEC RCV RMSECV RP RMSEP

Model 4 None 2800 0.972 0.118 0.969 0.125 0.948 0.108

Model 5 biPLS 936 0.973 0.116 0.971 0.121 0.949 0.107

Model 6 BiPLS +  CARS 111 0.965 0.131 0.962 0.136 0.942 0.114

Model 7 BiPLS +  CARS +  SPA 18 0.964 0.133 0.961 0.139 0.931 0.124

Table 2.  Results of different wavenumbers selection methods.
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Conclusion
In this research, the feasibility of FT-IR spectroscopy for the detection of talcum powder in tea was investigated. 
Comparing with previous studies, a hybrid of biPLS regression, CARS algorithm and SPA were first used to select 
optimal wavenumbers, which effectively extracted 18 characteristic wavenumbers from the full spectrum (3581 
wavenumbers). Among these 18 wavenumbers, 1016(Si-O-Si), 1182 and 1249(CO-O), 1340 ( −CO3

2 ), 1631(OH) 
and 2296(Si-H) cm−1 were the characteristic wavenumbers of talcum powder. And the linear and nonlinear 
detection models were built with these 18 characteristic wavenumbers by PLS and ELM, respectively. The optimal 
model was achieved with RP =  0.963 and RMSEP =  0.137 based on ELM. All these results sufficiently indicated 
that FT-IR spectroscopy could be considered as a useful tool for rapid detection of talcum powder in tea.

Materials and Methods
Sample preparation. A set of 210 LongJing tea samples were purchased from a local market in Hangzhou, 
China. Talcum powder was purchased from Beijing Hagibis Technology Co.Ltd (Beijing, China). Firstly, Tea 

Figure 4. The process of CARS. (a) The changing trend of the number of sampled variables; (b) The changing 
trend of RMSECV; (c) The changing trend of regression coefficients of each variable.

Figure 5. Selected wavenumbers by a hybrid of biPLS, CARS and SPA. 
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samples were ground into powder and filtered through a 60-mesh sieve. Then, 4.00 g pure sample was blended 
with 0.00 mg, 0.50 mg, 1.00 mg, 1.40 mg, 2.00 mg, 2.60 mg, 3.00 mg, 3.40 mg, 4.00 mg, 4.40 mg, 5.00 mg, 5.60 mg 
and 6.00 mg talcum powder. So the dose levels were 0.00 mg/g, 0.15 mg/g, 0.25 mg/g, 0.35 mg/g, 0.50 mg/g, 
0.65 mg/g, 0.75 mg/g, 0.85 mg/g, 1.00 mg/g, 1.10 mg/g, 1.25 mg/g, 1.40 mg/g and 1.50 mg/g. Successively, 1.00 g 
blended sample was added into 49.00 g KBr medium, and mixed adequately for the following IR spectros-
copy scanning. The 140 samples with concentrations of 0.00 mg/g, 0.25 mg/g, 0.50 mg/g, 0.75 mg/g, 1.00 mg/g, 
1.25 mg/g and 1.50 mg/g were chosen as the calibration samples and the left 70 samples with concentrations 
of 0.15 mg/g, 0.35 mg/g, 0.65 mg/g, 0.85 mg/g, 1.10 mg/g and 1.40 mg/g were subsumed into the prediction set. 
Meanwhile, the calibration set was validated by full cross validation method. So the calibration, validation and 
prediction sets obtained 140, 140 and 70 samples respectively.

Spectra collection. The IR spectra of samples were measured in the wavenumber range of 400–4000 cm−1 by 
a Jasco FT-IR-4100 spectrometer (Tokyo, Japan) coupled with a TGS detector and a ZnO crystal sampling acces-
sory with transmission mode. The spectral resolution was 4 cm−1. Each spectrum was the average of 100 scans. 
During the whole experiment, the temperature was kept at about 25 °C and the humidity was kept at a stable level 
in the laboratory.

Raw spectra frequently contained noises besides sample information, so the first 500 and last 400 spectral data 
were deleted to remove noises, and the following analysis was based on the spectra in range of 881–3581 cm−1.

Data analysis. Wavenumbers selection methods. In this research, a hybrid wavenumbers selection method, 
which combined backward interval partial least squares (biPLS) regression, competitive adaptive reweighted sam-
pling (CARS) algorithm and successive projections algorithm (SPA), was applied for IR spectral wavenumbers 
selection. Backward interval partial least squares (biPLS) regression can extract the spectral wavenumbers highly 
related to the chemical structure20. CARS eliminates the wavenumbers with little or no effective information and 
retains effective wavenumbers according to the ‘‘survival of the fittest’’ principle30. Successive projections algo-
rithm (SPA) has been proved to be a useful and effective tool for solving the collinearity problem with minimal 
redundancy22. Therefore, a hybrid of biPLS, CARS and SPA can combine the advantages of biPLS, CARS and SPA. 
It can achieve the objective to improve the stability of the prediction model and increase the interpretability of the 
relationship between the spectral response and chemical structure at the same time. Data analysis was performed 
on Matlab 7.0 (The Math Works, Natick, MA, USA).

Chemometric calibration method. Partial least squares (PLS) regression is a traditional technique for building 
linear models, which is able to not only extract principal component from both input and output data, but also 
determine the direction on which input and output data have the largest covariance31. In recent years, techniques 
for building nonlinear models coupled with spectroscopic techniques have also been successfully applied in many 
areas32–34. Extreme learning machine (ELM) is one of learning neural algorithms, which has been successfully 
applied in nonlinear regression problems35,36. Comparing with traditional learning algorithms, ELM not only 
reaches the smallest training error but also the least amount of output37. In this paper, ELM was used to build a 
nonlinear model and make a comparison with the linear PLS model. During modeling, full cross-validation was 
used to validate the quality of the models and to prevent over-fitting of the calibration. And the performance of 
models was evaluated by correlation and root-mean square error of calibration, cross validation and prediction 
(RC, RCV, RP, RMSEC, RMSECV, RMSEP)38,39.
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