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Objective. Breast invasive carcinoma (BRCA), as a systemic disease, is currently the most malignant tumor among women. Early
detection of BRCA will increase the probability of cure. Pyrimidine metabolism (PyM) stands for an essential metabolic pathway
related to DNA replication of cancer cells, which may also serve as a diagnostic marker and therapeutic target. Therefore, the aim
of this research is to discover a prognostic signature associated with PyM for BRCA.Methods. The BRCA mRNA sequencing data
along with microarray data were obtained based on The Cancer Genome Atlas (TCGA) database. In addition, 4 PyM-related gene
sets were profiled through gene set enrichment analysis (GSEA); it revealed the core genes differentially expressed in cancer and
paracancerous tissue. Thereafter, genes were subjected to univariate as well as multivariate regression for constructing an mRNA
signature to independently predict BRCA prognosis. Then, the Kaplan-Meier (KM) curve was applied for validation. The
prognostic power of the signature was verified against the METABRIC (Molecular Taxonomy of Breast Cancer International
Consortium) database. Results. We constructed a three-mRNA (RRM2B, NME3, and POLD2) gene signature related to PyM to
predict overall survival (OS) for BRCA. The as-constructed gene signature was adopted to classify cases as high- or low-risk
group, identifying patients with BRCA with poor prognosis. Additionally, the risk score obtained using our constructed 3-
mRNA prognosis signature is independent from other clinical variables. Conclusion. Our findings suggested that PyM-related
mRNA signature might be a combined prognostic biomarker for BRCA and can provide important reference that are useful
for individualized treatment for BRCA patients.

1. Introduction

Nucleotide metabolism is a critical pathway that generates
purine and pyrimidine molecules for DNA replication,
RNA synthesis, and cellular bioenergetics [1]. The increasing
metabolism of nucleotides facilitates out-of-control tumor
growth, which serves as a cancer hallmark [2]. There has
been an explosion of knowledge in disorders of pyrimidine
metabolism during the last 20 years [3]. Pyrimidines have
long been considered building blocks in synthesizing nucleic
acids as well as intermediates for metabolic energy transfer.

Growing attention has been paid to pyrimidines since their
genetic alterations in metabolism are associated with differ-
ent symptoms (like immunodeficiency, hyperuricemia, and
even neurological disorders) [4]. PyM represents a compli-
cated enzyme network, which combines salvage and de novo
synthesis of nucleotides, along with catalytic pyrimidine deg-
radation [5]. PyM contains 3 related pathways shown below:
(1) free base and nucleoside salvage, (2) de novo synthesis
based on ribose precursors and amino acids, and (3) exces-
sive nucleoside and nucleotide catabolism [6]. Early success
in cancer metabolism took advantage of this characteristic
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by making cancer cells vulnerable to inhibition of this path-
way [7]. The importance of intact pyrimidine pathways in
human physiology and their upregulation in malignancy
[8] makes them ideal targets for pharmacological interven-
tions. Agents inhibiting the synthesis and incorporation of
nucleotides in DNA are widely used as chemotherapeutics
to reduce tumor growth, cause DNA damage, and induce
cell death [9]. Heidelberger and colleagues designed fluori-
nated uracil-based pyrimidine analogues, which disrupted
tumor DNA biosynthesis and which are to this day used to
treat colorectal and breast cancer [10, 11].

BRCA is a malignant tumor in which cancer cells have
penetrated the basement membrane of the breast ducts or
lobular acinars and invaded the interstitium. The vast
majority of breast invasive carcinoma is adenocarcinomas,
which originate from the parenchymal epithelial cells of
the breast, especially the peripheral ductal lobular units of
the breast [12]. Ninety-nine percent of BRCA patients are
women, so this disease is the malignant tumor with the high-
est incidence among women [13]. Among the known risk
factors for BRCA, in addition to age factors, individual fam-
ily history, menstrual history, pregnancy history, and benign
breast lesions are all closely related to the risk of breast can-
cer [14]. Early detection and early diagnosis of this disease is
the key to improving the efficacy and can significantly
extend the survival period [15]. Clinically, there is always a
need for better or alternative methods to identify people at
risk of cancer [16]. Previous studies have found many prog-
nostic biomarkers in patients with BRCA [17]. However,
there is little research on the systematic study of metabolic
status as well as prognostic significance among tumor cases,
in particular for research associated with PyM, and this is
possibly a novel point cut in our study. Therefore, in this
study, we are trying to exploit the gene signature associated
with PyM in BRCA.

This work carried out GSEA for identifying the gene sets
associated with PyM to differentiate clinical as well as molec-
ular parameters for BRCA. We developed a PyM-related
prognostic signature (RRM2B, NME3, and POLD2) with
whole genome expression data from TCGA database. Sur-
prisingly, the local PyM-related risk signature could inde-
pendently classify patients with BRCA with a high risk of
unfavorable outcome. Then, the prognostic power of the
signature was validated in the METABRIC database. Our
finding provides important references to understand the
mechanism of PyM and to develop an individualized treat-
ment for BRCA patients.

2. Materials and Methods

2.1. Collection of Gene Expression Data and Patient
Clinicopathological Parameters. The whole mRNA expres-
sion data and corresponding clinical parameters of BRCA
were extracted from TCGA (http://cancergenome.nih.gov/)
and METABRIC database. METABRIC is a Canada-UK
joint project that is aimed at further classifying breast
tumors based on molecular characteristics that help deter-
mine the best course of treatment. Altogether, 1108 BRCA
cases together with 113 normal subjects who had matched

clinical characteristics were obtained from TCGA. Table 1
shows the clinical characteristics of all participants. And
we collected 1892 BRCA samples from the METABRIC
database.

2.2. Functional and Pathway Enrichment Analysis. GSEA
(http://www.broadinstitute.org/gsea/index.jsp) can be applied
to examine the significance of gene set-derived genomes in

Table 1: Clinical parameters of patients with BRCA from TCGA.

Clinical parameters n % Dead number

Age (years)

≥58 581 52.44 89

<58 527 47.56 66

pTNM stage

Stage I 183 16.52 16

Stage II 626 56.50 69

Stage III 251 22.65 44

Stage IV 20 1.80 15

Unknown 28 2.53 11

Primary tumor

T1 282 25.45 33

T2 641 57.85 81

T3 138 12.45 25

T4 40 3.61 15

Unknown 7 0.63 1

Regional lymph nodes

N0 553 49.91 48

N1 332 29.96 59

N2 120 10.83 22

N3 79 7.13 15

Unknown 24 2.17 11

Metastasis

M0 918 82.85 124

M1 22 1.99 17

Unknown 168 15.16 14

Person neoplasm status

With tumor 96 8.67 88

Tumor-free 882 79.60 39

Unknown 130 11.73 15

ER status by IHC

Negative 239 21.57 42

Positive 814 73.47 102

Unknown 55 4.96 11

PR status by IHC

Negative 345 31.14 57

Positive 705 63.63 88

Unknown 58 5.23 10

HER-2 status by IHC

Negative 567 51.17 59

Positive 164 14.80 23

Unknown 377 34.03 73
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two gene expression data groups [18]. We discovered three
PyM-related gene sets on the GSEAwebsite, which were called
GO_PYRIMIDINE_CONTAINING_COMPOUND_CATA-
BOLIC_PROCESS, GO_PYRIMIDINE_CONTAINING_
COMPOUND_BIOSYNTHETIC_PROCESS, KEGG_PYRI
MIDINE_METABOLISM, and GO_PYRIDINE_CONTAIN-
ING_COMPOUND_METABOLIC_PROCESS in Molecular
Signatures Database v4.0 (http://www.broadinstitute.org/
gsea/msigdb/index.jsp). Gene sets were determined by the cor-
rected p value (p < 0:05) in subsequent analysis. Thereafter, we
also screened core genes (core enrichment: yes) in subsequent

analysis. Later, the above screened genes were subjected to
functional enrichment analysis by the bioinformatics
approach Metascape (http://metascape.org). The aim of
Metascape is to develop a set of reliable, productive, and intu-
itive tools that help the biomedical research communities to
analyze gene/protein lists and make better data-driven deci-
sions [19].

2.3. Establishment and Confirmation of a Prognostic
Signature. Figure 1 displays the flowchart of the present
work. In this study, we used the univariate Cox model to

1108 gene expression data and clinical information
of BRCA patients from TCGA database

Pyrimidine metabolism
related differentially

expressed genes

Pyrimidine metabolism
related prgnosis genes

Pyrimidine metabolism
related gene signature

Verify the predictive power of gene
signature in validation dataset

Cox univariate regression analysis

Cox multivariate regression analysis

GSEA

Risk score gene signature predict
the prognosis of BRCA patients

Analyze indpendence of the risk
score for the 3-mRNA from other

clinical variables

Stratified analysis

Figure 1: The overall design and flow diagram.

Table 2: Gene sets enriched in patients with BRCA and their core genes (1108 samples).

GS follow link to MSigDB Size
NOM p
value

FDR q
value

Core gene list
Core

enrichment

KEGG_PYRIMIDINE_METABOLISM 61 0.002 0.013

POLD3, NUDT2, POLR3A, RRM2B, TXNRD1,
DUT, UPRT, UCK2, POLR1B, POLR2L, POLA1,
NT5C, TXNRD2, NME, NME6, PNPT1, UMPS,
POLR1C, NME2, NT5C3A, POLR3C, CAD,
UCKL1, CMPK2, POLR2D,NME1-NME2,
POLR1A, NT5M, ENTPD8, DCK, POLE3,
CTPS2, PRIM1,ZNRD1, RRM1, ENTPD6,
POLR2I, PRIM2, POLR2K, POLE, PNP,

POLR2G, POLD4, POLD1, POLD2, NME3,
CTPS1, NME1, ITPA, POLR2J,TYMS, CANT1,
NME4, POLA2, TYMP, TK1, POLE2, POLR2H,

DTYMK,RRM2, POLR3K

Yes

GO_PYRIMIDINE_CONTAINING_
COMPOUND_CATABOLIC_PROCESS

15 0.127 0.127

DUT, APOBEC3A, NT5C, APOBEC3H,
NT5C3A, TDG, MBD4, NT5M,UNG,
TET3, APOBEC3B, SMUG1, NTHL1,

TYMP, DCTPP1

Yes

GO_PYRIMIDINE_CONTAINING_
COMPOUND_BIOSYNTHETIC_PROCESS

26 0.12 0.12

DUT, UPRT, UCK2, GPAT4, NME2P1,
NME7, PRPS1, NME6, UMPS,NME2,
CAD, AGPAT3, UCKL1, CMPK2,

DCK, CTPS2, LCLAT1, CDS1,NME3,
CTPS1, NME1, TYMS, NME4, TYMP,

TK1, DTYMK

Yes

GO_PYRIDINE_CONTAINING_
COMPOUND_METABOLIC_PROCESS

15 0.333 0.333

PSAT1, IDO1, SLC5A8, ACMSD,
NUDT17, PNPO, NADSYN1, KMO,
NAPRT, QPRT, PDXP, IDH2, PARP9,

PNP, PARP10

Yes
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Figure 2: Genes from the PyM-related gene sets show significant differences between adjacent cancer samples and tumor samples. (a)
Enrichment plots of 4 gene sets. (b, c) Functional enrichment analysis. (The figure is colored by the degree of enrichment. The darker
the color, the greater the number of genes enriched in this type of pathway or biological process).
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calculate the association of every screened PyM-related
mRNA expression with patient OS. After that, the multivar-
iate Cox analysis method was used to evaluate the weight of
mRNA, and the prognostic gene from the previous step was
further analyzed and confirmed as a factor to independently
predict prognosis. Afterwards, we determined the risk scores
for all BRCA cases according to mRNA expression as well as
the regression coefficients acquired upon multivariate Cox
regression. Risk score = gene 1 expression level × β1 + gene 2
expression level × β2 +⋯+gene n expression level × βn. In
addition, R package was utilized for exploring the relation-
ship between risk scores and OS. Thereafter, the median risk
score value was adopted as the threshold for classifying 1108
BRCA cases as a high- or low-risk subgroups. KM curves
were used for survival analysis of single genes.

2.4. Statistical Analysis. GraphPad Prism 7 and SPSS 16.0
were utilized for statistical analysis. At the same time, for
prognostic genes in BRCA, their genetic alterations were
determined using the cBioPortal web software (http://www
.cbioportal.org/). The chi-square test was used to demon-
strate the relationship between risk score and clinical
parameters.

3. Results

3.1. Genes from the PyM-Related Gene Sets Show Significant
Differences between Adjacent Cancer Samples and Tumor
Samples. For BRCA, the mRNA expression profiles, together
with matched clinical characteristics, were acquired with
TCGA. We discovered four PyM-related gene sets on the
GSEA website, which were called GO_PYRIMIDINE_CON-
TAINING_COMPOUND_CATABOLIC_PROCESS, GO_
PYRIMIDINE_CONTAINING_COMPOUND_BIOSYN-
THETIC_PROCESS, KEGG_PYRIMIDINE_METABOLISM,
and GO_PYRIDINE_CONTAINING_COMPOUND_MET-
ABOLIC_PROCESS. First, we used GSEA to explore whether
the genomes from the PyM-related gene sets show signifi-
cant differences between the two groups of gene expression
data. We found that only KEGG_PYRIMIDINE_METABO-
LISM gene set differs significantly between adjacent cancer
samples and BRCA samples (normalized p value = 0.002<
0.05) (Table 2, Figure 2(a)). Next, the core gene from the
abovementioned gene set was screened, that is, the gene that
has made the main contribution to the enrichment score of
the gene set. We then selected 61 core genes for further
analysis.

The Metascape Bioinformatics Tool was utilized for
functional analysis of core genes to verify the above conclu-
sion. The histogram and network diagram showed that the
most enriched KEGG pathway was pyrimidine metabolism,
suggesting that the core genes are indeed associated with
PyM (Figure 2(b)).

3.2. Identification of PyM-Related Genes Associated with
Prognosis in BRCA. According to the overall design and flow
diagram of this study, we used the univariate Cox model to
calculate the relationship between the expression levels of
61 selected PyM-related mRNAs and the patient’s OS. It

was found that there are 19 prognostic mRNAs in patients
with BRCA. In total, 3 mRNAs (RRM2B, POLD2, and
NME3) were selected upon multivariate Cox regression
analysis to be the independent prognostic models (p < 0:05)
(Table 3, Figure 3(a)). Afterwards, those chosen mRNAs were
divided into risk (RRM2B and POLD2, hazard ratio: HR > 1)
or protective (NME3, 0 < HR < 1) subtype.

Thereafter, alterations of those 3 screened mRNAs
within BRCA were examined using cancer samples derived
from the cBioPortal database. As a result, RRM2B had 16%
cases of gene mutation, including gene amplification, mis-
sense mutation, and deep deletion; there were 5% of gene
mutations in NME3, including gene amplification and deep
deletion; 1.3% cases of POLD2 had gene mutation, including
gene amplification and missense mutation (Figure 3(b)).

Expression levels of these 3 genes in BRCA and matched
noncarcinoma tissues were differentially analyzed. As a
result, the 3 genes in breast invasive cancer tissues were sig-
nificantly upregulated (p < 0:05, Figure 3(c)).

3.3. Establishment and Confirmation of a Prognostic
Signature. Then, the risk scores for all BRCA patients were
determined according to the 3 prognostic mRNA expression
as well as the regression coefficient (β) acquired through
multivariate Cox regression. Risk score = ð0:22065 × RRM2
B levelÞ + ð−0:12697 × NME3 levelÞ + ð0:18280 × POLD2
levelÞ. The unique value of the risk score for each BRCA
patient in the dataset can be calculated and was ranked in
increasing order (Figure 4(a)). Thereafter, the median risk
score was utilized to be the threshold for classifying 1108
BRCA cases as a high- or low-risk subgroups. As shown by
KM curve analysis, high-risk patients had a dismal prognosis
related to low-risk counterparts (Log-rank p < 0:001,
Figure 4(c)). Figure 4(b) displays the risk score, OS (years)
together with life status for 1108 cases from the dataset. As
observed, a greater risk score indicated the worse survival
status and shorter survival time of patients.

In addition, the chi-square test was adopted for revealing
the association of risk score with clinical characteristics
(Table 4), implying that a higher risk score was associated
with T (tumor), N (node), and ER (estrogen receptor) status
by IHC (immunohistochemistry) (p < 0:05).

3.4. The Three-mRNA Prognostic Signature Is Robust in
BRCA Patients. The constructed 3-mRNA signature was
used in the validation set including 1892 BRCA samples
from the METABRIC database to validate its prediction abil-
ity. In the validation set, we used the same risk prediction
model to calculate the risk score of each patient with BRCA
and divided them into high-risk and low-risk subgroups

Table 3: Information of the 3 filtered mRNAs.

mRNA Ensemble ID β (Cox) HR p

RRM2B ENSG00000048392 0.22065 1.24688 0.0088

NME3 ENSG00000103024 -0.12697 0.88076 0.0104

POLD2 ENSG00000106628 0.18280 1.20058 0.0138
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using the median risk score. Conforming to prior results,
high-risk patients showed markedly reduced survival time
relative to low-risk patients in the validation set (Log-rank
p value < 0.0001; Figure 5(c)). In addition, Figures 5(a)
and 5(b) show the distribution of risk scores, life status,
and survival time of 1892 BRCA patients. The above find-
ings suggested that our constructed 3-mRNA signature con-
tributed to the effective prediction of BRCA prognosis.

For verifying the superior effectiveness of the con-
structed 3-mRNA signatures on the single genes that make
them up, we validated them through KM analysis. The
results showed that when these 3 genes are used as an inde-
pendent biomarker individually, the ability to predict the
patient’s survival is lower than the 3-mRNA signature
(Log-rank p > 0:0007) (Figure 5(d)).

3.5. The Three-mRNA Signature Is an Independent
Prognostic Indicator in BRCA Patients. For assessing the
independence of our 3-mRNA signature-derived risk score

from other clinical variables, we carried out univariate as
well as multivariate Cox regression analysis. As shown in
Figure 6(a), the distributions of diverse clinical factors in
each subject were analyzed. First of all, upon univariate
Cox regression, age, PR status, HER-2 status, ER status,
M, N, stage, and risk score were significantly related to
patients’ survival with p values less than 0.05
(Figure 6(b)). Moreover, multivariate Cox regression anal-
ysis showed that the risk score generated from the 3-
mRNA signature was an independent prognostic indicator,
after adjusting for N (Figure 6(c)). And the risk score is
the most robust parameter predicting the prognosis of
patients with BRCA, because the probability of death in
patients with high risk is 2.995 times that of patients with
low risk.

In addition, a stratified analysis was carried out based on
these clinical characteristics to determine the appropriate
patient group for the risk prediction model. It turns out that
the risk score is still remaining with the ability to predict OS
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Figure 3: Identification of PyM-related genes associated with prognosis in BRCA. (a) The coefficients of the 3 genes, red for risk factors and
blue for protective factor. (b) Selected genes’ alteration with the study. (c) Different expression of 3 selected genes (∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001).

6 BioMed Research International



within each subgroup of age, N, and HER-2 status
(Figures 7(a), 7(b), and 7(d)). However, the risk score is
more suitable for the subgroup of M0 (Figure 7(c)), which
suggests that BRCA may be diseases that need further
explanation.

4. Discussion

Breast cancer is one of the most common cancers among
women, and susceptibility is explained by genetic, lifestyle,
and environmental components [20]. BRCA is a major
type of breast cancer; the main feature is that the tumor

of this breast cancer infiltrates nearby tissues and has an
obvious tendency to metastasize so far [21]. It is still a
challenge to detect BRCA early. Therefore, creditable diag-
nostic approaches that attain high accuracy in prediction
of the least genes should be developed to detect BRCA ear-
lier [22]. Thanks to technological development, an increas-
ing number of biomarkers are identified for the effective
prediction of BRCA prognosis [23]. For instance, BRCA1
and BRCA2, the two primary BRCA suppressor genes,
have been discovered in the 1990s [24]. Breast tumors
carrying BRCA1 mutants are linked to basal-like and
triple-negative phenotypes [25], but those with BRCA2
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mutations are generally of the luminal subtype [26].
lncRNA OIP5-AS1 promotes breast cancer progression by
regulating miR-216a-5p/GLO1 [27].CLIC2 is a useful bio-
marker for identifying breast cancer patients who could
benefit from immune checkpoint blockade [28]. In addi-
tion, serum proteomics can be used in combination with
bioinformatics analysis for the early detection of BRCA
[29]. RS/DJ-1, the PTEN regulator [30], has been identified
as the circulatory antigen discovered in serum samples of
37% new BRCA cases, rather than from normal subjects
[31]. It can be seen that the methods for screening bio-
markers are becoming increasingly diversified, and bioin-
formatics methods have gradually become a new attempt
for us.

In recent years, the energy metabolism of tumors has
become an indispensable research hotspot. Different from
resting cells, tumor cells continuously supply deoxyribonu-
cleoside triphosphates (dNTPs) resting in the de novo path-
way, which thus facilitates the out-of-control tumor growth
[1]. PyM represents a part of nucleotide metabolism to gen-
erate deoxy/ribonucleotides and nucleosides of pyrimidine
bases (including uracil, thymine, and cytosine) [32]. Nota-
bly, the deoxyribonucleotide pool necessary for the prolifer-
ation of cells can be generated based on purine metabolism
[33]. The persistent dNTP supply plays a crucial role in
maintaining cancer cell survival [7]. Therefore, the perma-
nent activation of the PyM gene from the beginning is nec-
essary for growing tumors. KRAS drives tumor growth in

Table 4: The relation between risk score and clinical features.

Clinical feature
Risk score

X2 p
High risk n (%) Low risk n (%)

Age 0.044 0.835

≥58 285 (26.27) 280 (25.81)

<58 259 (23.87) 261 (24.05)

T 8.930 0.030

T1 126 (11.65) 153 (14.14)

T2 333 (30.78) 294 (27.17)

T3 59 (5.45) 78 (7.21)

T4 23 (2.13) 16 (1.47)

N 10.250 0.017

N0 250 (23.47) 296 (27.79)

N1 171 (16.06) 152 (14.27)

N2 72 (6.76) 47 (4.41)

N3 38 (3.57) 39 (3.67)

M 0.003 0.960

M0 478 (51.73) 425 (46.00)

M1 11 (1.19) 10 (1.08)

Stage 5.344 0.148

I 77 (7.25) 104 (9.79)

II 309 (29.10) 307 (28.91)

III 132 (12.43) 114 (10.73)

IV 9 (0.85) 10 (0.94)

Person neoplasm cancer status 3.477 0.062

Tumor-free 420 (43.66) 448 (48.38)

With tumor 55 (5.94) 39 (2.02)

PR status by IHC 3.266 0.071

Negative 184 (17.83) 158 (15.31)

Positive 330 (31.98) 360 (34.88)

ER status by IHC 8.363 0.004

Negative 138 (13.33) 100 (9.66)

Positive 377 (36.43) 420 (59.90)

HER-2 status by IHC 1.049 0.306

Negative 283 (39.42) 274 (38.16)

Positive 86 (11.98) 75 (10.44)
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Figure 5: The three-mRNA prognostic signature is robust in BRCA patients. (a–c) Validation of prognostic efficiency for three-mRNA
signature within 1892 BRCA patients from the METABRIC database. (d) Performance of 3 genes when they are used as a single biomarker.
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pancreatic cancer by activating PyM [34]. Additionally,
tumor cells are able to utilize diverse mechanisms for acti-
vating PyM genes and desensitizing the feedback regulatory
pathway, thus resulting in allosteric suppression and main-
taining the persistent cell nitrogen flow into the pathway
producing dNTP along with ribonucleotide phosphate [35].

GSEA was performed in the present work for identifying
gene sets associated with PyM to differentiate those clinical
as well as molecular parameters for BRCA. In addition, the
BRCA mRNA sequencing data along with the microarray
data were acquired on TCGA database. Moreover, we
applied the prognostic signature related to PyM (RRM2B,
NME3, and POLD2) to predict OS for BRCA using Cox
regression analysis. The as-constructed gene signature was
adopted for classifying cases as high- or low-risk subgroups,

identifying patients with BRCA with poor prognosis. Then,
the METABRIC database was used to validate the signature
prognosis prediction ability. Surprisingly, our prognostic
model performed well on the KM analysis in 1892 BRCA
patients. Stratification analysis indicated that the 3-mRNA
signature-based risk score might independently predict the
prognosis of each subgroup of age, N, and HER-2 status.
However, the risk score is more suitable for the subgroup
of M0 rather than M1, that is, the prognostic signature we
selected is more suitable for BRCA that had not undergone
distant metastasis, which suggests that our 3-mRNA signa-
ture may have great significance for the early diagnosis of
BRCA. These findings suggested that our constructed 3-
mRNA signature might serve as a biomarker for BRCA
cases. Yet the low sample size was its limitation.
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Figure 6: The risk score generated from the 3-mRNA signature as a prognostic indicator is independent from other clinical variables. (a)
Distribution of the clinicopathological parameters in BRCA patients with low-risk score to high-risk score. (b) Univariate Cox regression
analysis of OS. (c) Multivariate Cox regression analysis of OS.
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Figure 7: Continued.
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5. Conclusions

The present work first proposes the use of 3-mRNA signa-
tures associated with PyM using bioinformatics methods
for the prognosis of BRCA. In our study, cases who had high
risk scores were found to show dismal prognostic outcome.
The constructed 3-mRNA signature can be used as a prog-
nostic marker for BRCA irrespective of additional clinico-
pathological factors. We believe that bioinformatics
methods can be well combined with the early detection of
breast cancer and can provide general guidance for the
future application of molecular medicine combined bio-
markers in other diseases. In the future, we will follow up
with biological experiments and verify these biomarkers
with our collaborators.
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