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Novel aspects of extracellular adenosine dynamics 
revealed by adenosine sensor cells

Adenosine Signaling in the Brain
Adenosine is a major neuromodulator that does not induce 
neuronal activities by itself but influences the efficacy of syn-
aptic transmission and spike frequency. Four G protein-cou-
pled receptors, namely Gi/o-coupled A1 and A3 receptors and 
Gs-coupled A2A and A2B receptors, mediate adenosine re-
sponses with marked differences in their affinity to adenos-
ine (70 nM for A1 receptors, 150 nM for A2A, 5,100 nM for 
A2B, and 6,500 nM for A3) (Dunwiddie and Masino, 2001). 
A1 and A2A receptors are broadly distributed in the brain and 
largely localize at synapses in both pre- and post-synaptic 
structures (Sebastiao and Ribeiro, 2015). The A1 receptor is 
one of the most abundant G protein-coupled receptors in the 
brain, and it downregulates neuronal activity and protects 
neuron from excitotoxicity by suppressing glutamate release, 
as well as subsequent neuronal firing (Chen et al., 2013). The 
A2A receptor, which is highly expressed in the striatum, upreg-
ulates excitatory synaptic transmission (Ciruela et al., 2006) 
and is essential for some forms of synaptic plasticity, espe-
cially those depending on brain-derived neurotrophic factor 
(BDNF) (Rebola et al., 2008; Jeronimo-Santos et al., 2014).

Adenosine affects the signaling of other neurotransmitters, 
because adenosine receptors form heterodimers and compet-
itively interact with other neurotransmitter receptors. One 
notable example is the interaction between the adenosine A2A 
receptor and dopamine D2 receptor in the striatum; the up-
regulation of D2 receptor signaling by A2A antagonists is con-
sidered a potential therapeutic strategy for Parkinson’s disease 
(Cieślak et al., 2008). Vasculature, blood cells, glial cells, and 
neural stem cells are also under the influence of adenosine in 
the brain (Tabrizchi and Bedi, 2001). Adenosine is a potent 

vasodilator in many organs, including the brain (Ralevic and 
Dunn, 2015), as well as an opener of the blood brain barrier 
(Bynoe et al., 2015). Inflammatory responses of the resident 
immune cells of the brain, microglia (Orr et al., 2009), as well 
as peripheral neutrophils (Barletta et al., 2012) and monocytes 
(Hasko and Pacher, 2012), are modulated in an anti-inflam-
matory direction by adenosine. Astrocyte function (Orr et al., 
2015) and pathological activation (Brambilla et al., 2003) are 
also modulated by adenosine. Neural stem cells strongly ex-
press NTPDase2, which increases extracellular adenosine by 
hydrolyzing extracellular adenosine triphosphate (ATP) and 
adenosine diphosphate (ADP) (Gampe et al., 2015), and their 
proliferation is upregulated by adenosine (Migita et al., 2008). 
To the best of our knowledge, adenosine interacts with all cell 
types residing and circulating in the brain, except for mature 
oligodendrocytes, and it modulates diverse brain functions and 
pathologies.

Dynamics of Extracellular Adenosine 
Measured by Adenosine Sensor Cells
Cerebral adenosine fluctuates on a daily cycle, and it promotes 
sleep in a manner that is blocked by caffeine, whereas a ke-
togenic diet for epilepsy treatment boosts cerebral adenosine 
for days or even weeks (Masino et al., 2009). Meanwhile, brief 
electrical stimulations to brain slices elevate adenosine for only 
a few seconds (Nguyen and Venton, 2015). These temporally 
distinct fluctuations of extracellular adenosine are essential for 
diverse brain functions, and they are likely enabled by multiple 
pathways for releasing, uptaking, producing, and inactivating 
adenosine. Thus, the malfunction or disruption of these path-
ways should cause neurological and psychiatric disorders.
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placed on top of these cells, as illustrated in Figure 1. This 
novel method revealed new aspects of extracellular adenos-
ine dynamics, as summarized in Figure 2, and their implica-
tions are discussed below.

Neuronal Mechanism for Elevating 
Extracellular Adenosine and Psychiatric 
Disorders
The adenosine sensor cell detected the adenosine release in 
the hippocampal CA1 region following high-frequency elec-
trical stimulation (HFS, 30 Hz for 5 seconds) of the presyn-
aptic or postsynaptic pathways to pyramidal neurons, and 
this release was blocked by the pharmacological inhibitions 
of the L-type voltage gated calcium channel (L-VGCC) or 
calcium-induced calcium release (CICR) via the ryanodine 
receptor (Yamashiro et al., 2017). The spatiotemporal distri-
bution of the evoked adenosine released was well correlated 
with that of the heterosynaptic depression, which is a broad-
ly-distributed suppression of excitatory synaptic transmis-
sion due to A1 receptor activation lasting for a few minutes 
after HFS (Manzoni et al., 1994). Thus, the neuronal ade-
nosine release depending on L-VGCC most likely underlies 
this classical form of synaptic plasticity. Activity-dependent 
presynaptic ATP release had been demonstrated in the para-
sympathetic nerve terminal (Ralevic and Dunn, 2015) and 
was suggested in a biochemical analysis of extracellular fluid 
collected from hippocampal slices electrically stimulated for 
3 minutes (Cunha et al., 1996). However, ATP release was 
not detected in hippocampal slices after HFS by adenosine 
sensor cells, as in a previous study using an enzymatic elec-
trode (Wall and Dale, 2013). Thus, the evoked ATP release in 
the hippocampus likely reached detectable levels after accu-
mulation by continuous stimulation for a couple of minutes, 
and the contribution of presynaptic ATP release to the rapid 
dynamics of extracellular adenosine involved in synaptic 
plasticity in the hippocampus is limited. Equilibrative nu-
cleoside transporter (ENT) blockers had been reported to 
inhibit the evoked adenosine release measured by enzymatic 
electrode (Wall and Dale, 2013), but they did not affect the 
release measured by adenosine sensor cells. ENT transports 

Extracellular adenosine has been studied using biochem-
ical and physiological methods. In early days, cellular ATP 
was labelled by incubating with radiolabelled adenine, and 
the release of ATP metabolites, including adenosine, was an-
alyzed by high-performance liquid chromatography (HPLC) 
(Lloyd et al., 1993). Current HPLC techniques can be used 
to detect adenosine in in vivo samples collected by a mi-
crodialysis probe every 5–10 minutes (Haink and Deussen, 
2003), however, the temporal resolution of these biochemi-
cal methods is insufficient to analyze the fast dynamics (less 
than 50 ms) of extracellular adenosine, as suggested by the 
indirect pharmacological measurement of A1 receptor-medi-
ated synaptic inhibition in brain slices (Cunha et al., 1998). 
Thus, two electrochemical methods have been developed for 
measuring the fast adenosine dynamics. One method is the 
enzymatic electrode, in which a series of enzymatic reactions 
are used to degrade adenosine to urea, and its byproduct, hy-
drogen peroxides, are measured using a redox electrode (Dale 
and Frenguelli, 2012). The other is cyclic voltammetry, in 
which the oxidation of adenosine on the surface of a carbon 
fiber electrode is measured (Nguyen and Venton, 2015). The 
temporal resolution of the cyclic voltammetry method (100 
ms) is better than that of the enzymatic electrode (2 s for rise 
time). On the other hand, only the enzymatic electrode en-
ables long-term measurement; cyclic voltammetry measure-
ments are stable for no more than 90 seconds. These meth-
ods allowed accurate descriptions of adenosine dynamics in 
brain tissue under physiological and pathological conditions, 
and they suggest various forms of elevations of extracellular 
adenosine (Nguyen and Venton, 2015).

For a detailed analysis of the mechanisms underlying 
adenosine dynamics, we have developed a biosensor called 
an adenosine sensor cell that allows for the imaging of ade-
nosine by conventional calcium imaging (Yamashiro et al., 
2017). The adenosine sensor cell is a cell line that stably ex-
presses the A1 receptor and Gqi5 (Conklin et al., 1993), which 
is an artificial G protein mutant capable of mediating be-
tween Gi-coupled receptor and phospholipase C. Adenosine 
above 0.1 μM elevates intracellular calcium in the adenosine 
sensor cells, and this calcium response is successfully used to 
detect the elevation of extracellular adenosine in a brain slice 

Figure 1 Measurement of adenosine release in hippocampal slice 
following electrical stimulation by adenosine sensor cells. 
A hippocampal slice was placed on the top of the adenosine sensor cells 
(human embryonic kidney 293 (HEK293) cells expressing A1 receptor 
and Gqi5) loaded with Fura-2AM and a high-frequency electrical stimu-
lation was delivered to schaffer collateral (SC) (left). Calcium response 
of an adenosine sensor cell imaged by an inverted microscope (IM) 
following electrical stimulation (arrow) (right).

Figure 2 Pathways for elevating extracellular adenosine.
AdoR: Adenosine receptors; AQP4: aquaporin 4; ATP: adenosine 
triphosphate; BDNF: brain-derived neurotrophic factor; ENT: equili-
brative nucleoside transporter; EPSP: excitatory postsynaptic potential; 
GluR: glutamate receptors; L-VGCC: L-type voltage gated calcium 
channel; RyR: ryanodine receptor.

Adenosine sensor cells

[1] Neuronal adenosine release
•    L-VGCC dependent
•    Heterosynaptic depression (A1)
•    Stress / Depression (A2)
[2] Astrocyte ATP release
•    AQP4 dependent
•    Anti-epileptic (A1)
•    BDNF-dependent plasticity (A2)
[3] Other pathways
•    ENT dependent adenosine release
       - ATP consumption dependent
       - Ambient adenosine / tonic inhibition (A1)
•    Hemichannel dependent ATP release
       - Development
       - Inflammation
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nucleoside, depending on the concentration gradient across 
the plasma membrane, and thus, it may release adenosine 
if intracellular adenosine is elevated by ATP consumption. 
However, pharmacological inhibition or genetic ablation of 
ENT were reported to elevate, rather than decrease, extra-
cellular adenosine as measured by biochemical methods and 
to protect brain and cardiac tissue (Van Belle et al., 1987; 
Fredholm et al., 1994; Rose et al., 2010). The elevation of 
adenosine by ENT blockers was interpreted as the fact that 
the inhibition of adenosine uptake into adenosine degrading 
cells, rather than adenosine release, dominates the effects of 
ENT inhibition on extracellular nucleoside in a simulation 
study (Newby, 1986). Thus, ENT blockers likely suppress 
the degradation of adenosine by astrocytes, rather than the 
release of adenosine by neurons after electrical stimulation. 
Indeed, ENT blockers reduce extracellular inosine and hy-
poxanthine, which are the degradation products of adenos-
ine and are contained in interstitial fluid at a higher concen-
tration than adenosine, in the heart or hippocampus under 
metabolic stress (Van Belle et al., 1987; Fredholm et al., 
1994; Rose et al., 2010). The reduction in adenosine release 
measured by using an electrode (Wall and Dale, 2013) likely 
reflects the reduction in inosine, rather than adenosine, be-
cause the enzymatic electrode is incapable of discriminating 
inosine from adenosine.

Because the evoked elevation of extracellular adenosine is 
detected only within a few seconds by cyclic voltammetry, 
the adenosine release following neuronal activities is mediat-
ed by a rapid process, such as exocytosis, rather than by the 
metabolic production of adenosine and subsequent passive 
release via ENT. The back-propagating action potential was 
recently shown to induce calcium release and lysosomal exo-
cytosis in dendrites (Padamsey et al., 2017). The activation 
of L-VGCC and CICR, which was suggested to mediate den-
dritic adenosine release in the study using adenosine sensor 
cells, was also reported to induce dendritic BDNF release 
(Kolarow et al., 2007). Thus, adenosine is likely released as 
part of the activity-dependent membrane dynamics in den-
drite, which has been proposed to be essential for synaptic 
plasticity (Padamsey et al., 2017).

Both L-VGCC and adenosine, especially A2A receptor 
signaling, are linked to psychiatric disorders, in partic-
ular depression; thus, the L-VGCC-mediated neuronal 
adenosine release is presumably a pathway involved in 
developing psychiatric disorders. Caffeine improves the 
mental condition in stressful environments, and the block-
ade of A2A signaling alleviates the depression from chronic 
stress (Kaster et al., 2015). Meanwhile, the polymorphism 
of an L-VGCC gene, CACNA1A, is associated with bipo-
lar disease (Gonzalez et al., 2013), and dihydropyridine 
compounds, which are L-VGCC selective calcium chan-
nel blockers, possess antidepressant-like effects as well as 
synergistically enhancing the effects of tricyclic antide-
pressants (Casamassima et al., 2010). These findings sug-
gest that chronic stress induces excessive brain activities, 
which have already been imaged by functional magnetic 
resonance imaging (fMRI) during psychological as well as 
physiological stresses (Kogler et al., 2015), and this causes 
pathological A2A receptor activation leading to depression 

via L-VGCC-mediated adenosine release.

Astrocytic Mechanism for Elevating 
Adenosine and Synaptic Plasticity
The study using adenosine sensor cells also revealed an 
astrocytic pathway for elevating extracellular adenosine. 
Because astrocytes are equipped with a number of mech-
anisms, including exocytosis, gap junction hemichannel, 
P2X7 receptor, and anion channels for ATP release (Butt, 
2011), we tested which conditions known to induce ATP 
release from cultured astrocytes elevate adenosine detect-
ed by adenosine sensor cells in hippocampal slices. Treat-
ments with hypoosmotic condition or potassium channel 
blockers, both of which are known to swell cultured as-
trocytes and induce ATP release via the volume-regulated 
anion channel (Liu et al., 2008), were found to elevate ade-
nosine (Yamashiro et al., 2017). These adenosine elevations 
are distinct from those produced by electrical stimulation, 
because they were not affected by the pharmacological in-
hibitions of L-VGCC or CICR via the ryanodine receptor. 
Meanwhile, the hypoosmotically-induced adenosine ele-
vation was suppressed by the pharmacological inhibitions 
of aquaporin 4 (AQP4), a water channel subtype strongly 
expressed in astrocytes or extracellular nucleotidases, 
which convert extracellular ATP to adenosine, suggesting 
the involvement of astrocyte ATP release following water 
influx via AQP4 and subsequent conversion to adenosine 
by extracellular nucleotidases.

A study using an enzymatic electrode also reported adenos-
ine elevation owing to astrocyte ATP release in hippocampal 
slices; however, it attributed the ATP release to astrocyte exo-
cytosis following neuronal activities (Wall and Dale, 2013). In 
this study, adenosine elevation following electrical stimulation 
was reduced by the inhibitions of extracellular nucleotidases, 
and this component was eliminated in a transgenic mouse 
expressing dominant negative SNARE (dnSNARE) under the 
control of the astrocyte-selective GFAP promoter. This mouse 
line was widely used to inhibit astrocyte exocytosis, but the 
conclusions of these studies are recently reconsidered because 
it has been shown to express dnSNARE not only in astrocytes 
but also in neurons (Fujita et al., 2014). Thus, the ATP exocy-
tosis characterized by the enzymatic electrode can be at least 
partly attributed to neurons. 

Astrocyte swellings are also induced by epileptic neuro-
nal activity or glutamate treatment in slices, and they were 
eliminated in slices of AQP4 ko mice (Binder et al., 2004). 
Thus, astrocyte is supposed to elevate extracellular adenos-
ine during epileptic neuronal activities by AQP4-mediated 
swelling. This possibility is supported by the fact that the du-
ration of chemically or electrically induced seizure is longer 
in AQP4 ko mice (Binder et al., 2006), but it still needs to be 
tested by measuring the elevation of extracellular adenosine 
following epilepsy. AQP4 ko mice show normal excitatory 
post-synaptic potential and paired-pulse facilitation, indi-
cating that the A1 receptor-mediated presynaptic inhibition 
reflecting the ambient adenosine level is not affected in this 
mouse line (Fan et al., 2013). Meanwhile, synaptic plasticity 
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is affected in AQP4 ko mice, and adenosine is likely involved 
in the altered plasticity. The long-term potentiation (LTP) 
induced by HFS is normal; however, the BDNF-dependent 
late phase of theta burst-induced LTP is impaired in AQP4 
ko mice (Skucas et al., 2011). Since the activation of the A2A 
receptor is essential for BDNF signaling as well as for normal 
expression of BDNF (Tebano et al., 2008), the lack of AQP4 
is assumed to reduce the expression or signaling of BDNF 
and to impair LTP by suppressing astrocyte ATP release and 
subsequent A2A receptor activation. The normal HFS-in-
duced LTP in AQP4 ko mice is consistent with the lack of 
AQP4-mediated adenosine elevation following similar HSF 
in our study using adenosine sensor cells (Yamashiro et al., 
2017), and the theta burst, as well as epileptic neuronal ac-
tivities, may be a more potent way to induce astrocyte ATP 
release after swelling, than HFS.

Future Directions
Pharmacological characterizations using adenosine sensor 
cells revealed the novel aspects of neuronal and astrocytic 
pathways for elevating extracellular adenosine. The impli-
cations of these pathways in brain functions and pathology 
are discussed in this review, and they will be addressed 
by using mice with modifications of related genes (i.e., 
L-VGCC or AQP4). In addition to these rapid changes in 
extracellular adenosine following the neuronal activities or 
alterations of the extracellular ionic environment, the slow 
fluctuations of extracellular adenosine play important roles 
in the brain. Neural activities are broadly suppressed by 
tonic A1 receptor activation by ambient adenosine, which 
is presumably derived from the cellular ATP metabolism 
but not necessarily as a consequence of neuronal electri-
cal activities. Increasing temperature elevates the ambient 
adenosine released via ENT (Dunwiddie and Diao, 2000), 
which passively releases intracellularly increased adenosine 
(Brundege and Dunwiddie, 1996). The passive diffusion 
of nucleoside via ENT in the brain likely determines the 
level of ambient adenosine by a complicated interaction 
between adenosine-releasing neurons and adenosine-de-
grading astrocytes. The astrocyte expression of enzymes 
degrading adenosine, especially adenosine kinase, affect 
ambient adenosine via this interaction and play crucial roles 
in neuroprotection and the development of epilepsy (Fedele 
et al., 2005). However, the regulation of ambient adenosine 
remains unclear. The ATP release via connexin and pannex-
in hemichannels is another pathway for elevating adenosine; 
however, these channels are also not yet fully characterized. 
A couple of astrocyte pathways for releasing ATP play im-
portant roles in brain development and pathology, presum-
ably via extracellular adenosine. Astrocyte calcium waves 
are accompanied by ATP release, which is essential for brain 
development (Weissman et al., 2004). This ATP is assumed 
to increase extracellular adenosine and activate adenosine 
receptors, including A2B and A3 receptors, which are minor 
in the adult brain; however, the ablation of these genes cause 
significant alterations in brain development (Chen et al., 
2013). ATP release via the connexin hemichannel, which 

is activated by oxidative stress (Retamal et al., 2016), and 
subsequent extracellular production of adenosine also play 
crucial roles in the brain pathology, especially inflammation 
(Ribeiro et al., 2002). The extracellular dynamics of adenos-
ine under developmental and pathological conditions, which 
are poorly characterized so far, constitute the next important 
issue to be analyzed by adenosine sensor cells. Collectively, 
multiple pathways including nucleotide release and uptake 
as well as intracellular and extracellular metabolism of nu-
cleotides allow the involvement of extracellular adenosine in 
diverse physiological and pathological processes, which are 
spatiotemporally distinct in the brain. Further characteriza-
tions of these pathways are expected to provide novel thera-
peutic targets of brain disorders.
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