
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Particle simulation approach for subcellular dynamics and 
interactions of biological molecules
Ryuzo Azuma*1, Tetsuji Kitagawa2, Hiroshi Kobayashi3 and 
Akihiko Konagaya1,2

Address: 1RIKEN Genomic Sciences Center, 1-7-22 Suehiro Tsurumi, Yokohama, Kanagawa, 230-0045, Japan, 2Dept. of Mathematics and 
Computing Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan and 3Graduate School of Pharmaceutical 
Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan

Email: Ryuzo Azuma* - azuma@gsc.riken.jp; Tetsuji Kitagawa - tetsu@bio.cs.titech.ac.jp; Hiroshi Kobayashi - hiroshi@p.chiba-u.ac.jp; 
Akihiko Konagaya - konagaya@gsc.riken.jp

* Corresponding author    

Abstract
Background: Spatio-temporal dynamics within cells can now be visualized at appropriate
resolution, due to the advances in molecular imaging technologies. Even single-particle tracking
(SPT) and single fluorophore video imaging (SFVI) are now being applied to observation of
molecular-level dynamics. However, little is known concerning how molecular-level dynamics affect
properties at the cellular level.

Results: We propose an algorithm designed for three-dimensional simulation of the reaction-
diffusion dynamics of molecules, based on a particle model. Chemical reactions proceed through
the interactions of particles in space, with activation energies determining the rates of these
chemical reactions at each interaction. This energy-based model can include the cellular membrane,
membranes of other organelles, and cytoskeleton. The simulation algorithm was tested for a
reversible enzyme reaction model and its validity was confirmed. Snapshot images taken from
simulated molecular interactions on the cell-surface revealed clustering domains (size ~0.2 μm)
associated with rafts. Sample trajectories of raft constructs exhibited "hop diffusion". These
domains corralled the diffusive motion of membrane proteins.

Conclusion: These findings demonstrate that our approach is promising for modelling the
localization properties of biological phenomena.

Background
We propose here a general method of simulating the
dynamics and interactions of molecules based on a parti-
cle framework. Analyses of subcellular localization are

now quite important to know how the cellular properties
of interest are regulated. Experimental techniques helped
unraveling these properties. For example, single particle
tracking (SPT) and single fluorophore video imaging

from Symposium of Computations in Bioinformatics and Bioscience (SCBB06) in conjunction with the International Multi-Symposiums on Computer and 
Computational Sciences 2006 (IMSCCS|06)
Hangzhou, China. June 20–24, 2006

Published: 12 December 2006

BMC Bioinformatics 2006, 7(Suppl 4):S20 doi:10.1186/1471-2105-7-S4-S20
<supplement> <title> <p>Symposium of Computations in Bioinformatics and Bioscience (SCBB06)</p> </title> <editor>Youping Deng, Jun Ni</editor> <note>Research</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-7-S4-info.pdf</url> </supplement>

© 2006 Azuma et al; licensee BioMed Central Ltd 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7(Suppl 4):S20
(SFVI) techniques have enabled observation of how indi-
vidual molecules actually move and interact in space and
time. SPT and SFVI have been used to investigate the
dynamics of receptors in the plasma membrane [1,2] and
mRNAs in the nucleus [3-5]. These techniques have also
enabled the sizes of microdomain structures [6,7] to be
measured. While some of these observations provided
quantitative data, as in the case of SPT/SFVI studies, most
merely provided a multitude of qualitative information
focused primarily on biological significance. Moreover,
the length and time scales in these experiments were
approximately intermediate in scale between those that
may be addressed by typical microscopic and macroscopic
simulations (i.e., molecular dynamics and rate equa-
tions). Hence, our objective was to provide a simulation
tool useful for integrating and examining experimental
data quantitatively at the "mesoscopic" scale.

Our simulation method incorporates Brownian motion
of molecules in 3D space. Interactions of molecules in the
space are due to the production of complexes. The associ-
ation and dissociation of these complexes, coupled with
the modification of substrates to products, are accepted at
certain rates based on a Monte Carlo (MC) algorithm
which takes account of changes in their energy states.
Although our setup is based on this type of molecular-
level description, its ensemble average has been con-
firmed to correctly reproduce predictions derived from
thermodynamic and rate equation theories. By using this
method we succeeded to demonstrate the production of
clustering patterns on the cellular membrane associated
with cholesterol-rich detergent-resistant membranes
(DRM) termed "rafts" [8]. Furthermore, there we obtained
important observations implying (1) molecular trajecto-
ries of raft constructs give rise to characteristic types of dif-
fusion associated with "hop diffusion" [9] (2) the
production of membrane protein complexes are facili-
tated by entering a clustering domain (3) the escaping rate
of protein complexes from the clustering domain seems to
be less than that of unbound molecules (4) hence the
membrane proteins are corralled in these domains most
of the time, and in turn appear to stabilize the clustering
domains. These results suggest the usefulness of our sim-
ulation approach.

This paper is organized as follows. In Methods we explain
the random walk, binding, dissociation, and catalysis
processes in our MC simulation algorithm. Then we dis-
cuss the correspondence of our probability constants to
kinetic parameters of the corresponding rate equations. In
Results we compare our simulation result of a reversible
enzyme reaction model with the prediction from the rate
equation theory. Then we show the result of cell-surface
clustering simulation. The final section is devoted to our
conclusions.

Methods
The random walk process
In this process, each particle moves along a cubic lattice,
taking random steps to reach one of the six nearest neigh-
bor sites with equal probability. The steps are of length l,
so that each subsequent particle position can only take the
values (nxl, nyl, nzl), where nx, ny, and nz are integers. This
process allows the particle to take steps with probability d
per unit time (τ), meaning that the particle waits at each
point for a variable amount of time. A master equation
theory can show that at the limit l → 0, this type of ran-
dom walk can be considered a Wiener process with a time-
dependent Gaussian distribution with the following diffu-
sion coefficient [10]:

The fastest rate of diffusion here is equivalent to d = 1/6[τ-

1], meaning that the particle must take the random walk
step.

The binding process
Suppose that a particle of chemical species S has just
entered the interaction range of another particle of T spe-
cies through the movement trial described above, and that
these particles may bind to each other. In this binding
process, whether the particles can form a ST complex must
be determined. Specifically, we need to obtain both the
candidates for complexes in a predefined table and the
complexes that have already formed. Figure 1 shows a typ-
ical example of the case of a binary complex. For simplic-
ity, we consider only the dynamics projected onto a
particular plane. Here, S, T, and U denote the chemical
species of particles. The area enclosed by the dash-dot cir-
cle indicates the interaction range for particle S, which is
defined as a sphere of radius √3. In this case, the binding
process consists of the series of steps listed below.

1. Particle S moves upward, as indicated by the pointer,
causing another particle T to enter the interaction range.
Here, the symbols {φ} attached to these particles denote
an empty variable and indicate the absence of bound par-
ticles. The variable is hereinafter referred to as the bond
variable (Figure 1A).

2. The ability of S to bind with T is checked by referring to
the predefined table for S. More precisely, when the table
has a combination of single S and single T (represented by
S-T in (b)), particle S is able to bind with particle T (Figure
1B).

3. A uniform random number ξ (0 ≤ ξ < 1) is generated
and compared with probability P(ST|S+T) = exp(-ΔE1/
kBT) ≡ p1, where ΔE1/kBT is a dimensionless activation
energy. When ξ <p1, the movement of particle S is
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Page 2 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7(Suppl 4):S20

Page 3 of 13
(page number not for citation purposes)

The binding processFigure 1
The binding process. (A) The movement trial drives S upward. Here the bond variables of S and T are empty (symbols {φ}). 
(B) Before the movement, S is checked to determine whether it may bind with T, by searching among the complex candidates. 
(C) If the table has a combination of single S and single T (S-T) simultaneously, a uniform random number ξ (0 ≤ ξ < 1) and the 
transition probability p1 are compared. (D) When ξ <p1, the movement is accepted.
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accepted; when ξ ≥ p1, it is rejected (Figure 1C). Here we
assume that the rate of the production of ST complex is
related to the conditional probability p1.

4. When the movement is accepted, we assign T to the
bond variable of particle S, and vice versa (Figure 1D).

Conservation of stoichiometry
It is not necessarily true that all pairs of S and T particles
within the interaction range can bind to each other. Figure
2 shows this exceptional case, in which molecule T has
already bound to a molecule of species U and therefore
cannot bind to molecule S. In this case, these particles
undergo the series of steps listed below.

1. The movement trial drives particle S upward, thereby
causing particle T to enter the interaction range (Figure
2A).

2. By referring to the predefined table, it is found that mol-
ecule S can bind with molecule T (Figure 2B).

3. The bond variable in molecule T is checked, yielding
species U. This prevents the assignment of T to the bond
variable of particle S, since S cannot be assigned to the var-
iable of T (Figure 2C).

The dissociation process
In this process, the species S and T in the bond variables
are assigned to particles T and S, respectively, and are
cleared upon the acceptance of unbinding.

1. A uniform random number ξ (0 ≤ ξ < 1) is generated
and compared with probability P(S+T|ST) = exp(-ΔE2/
kBT) ≡ p2, where ΔE2/kBT is a dimensionless activation
energy. When ξ <p2, the movement of particle S is
accepted; when ξ ≥ p2, it is rejected (Figure 3A). The basis
of this mechanism is Kramers' theory, which predicts that
the reaction rate of S+T→ST can be written as an exponen-
tial function of ΔE2/kBT [11].

2. When the movement is accepted, T in the bond variable
of particle S is cleared, and vice versa (Figure 3B).

The modification process
This process allows each particle to undergo a trial in
which its chemical species is replaced by a different one.
The steps of the procedure are as follows:

1. A uniform random number ξ (0 ≤ ξ < 1) is generated
and compared with probability P(VT|ST) = exp(-ΔE3/kBT)
≡ p3, where ΔE3/kBT is a dimensionless activation energy.
When ξ <p3, the modification of particle S to V is accepted;
when ξ ≥ p3, it is rejected (Figure 4A).

2. When the modification is accepted, S is replaced by V
(Figure 4B).

Time and length scales
We define unit time τ of a simulation as a cycle in which
every particle has undergone the movement trial only
once. Also the trial of the modification process is per-
formed only once for every particle per single unit time.
We then relate the unit time and unit length to real ones.
Specifically, our choices of scale conversions are: (a) when
we are interested in relatively fast dynamics within a small
volume, 1 sec ≡ 5 × 105τ and 1 μm ≡ 181.9l, or (b) when
we study the long-time behavior of reactions within a rel-
atively large volume, 1 sec ≡ 5 × 103τ and 1 μm ≡ 18.19l
(Table 1).

These two combinations of scale conversions are selected
so that both give D ≈ 7.6 [μm2/sec] when d = 1/6[τ-1], i.e,
the fastest diffusion. This is readily checked by the follow-
ing calculation. Since the diffusion coefficient is estimated
using D ≡ 3l2d[τ-1] as an approximation of Equation (1),
and by noting that l = 5.498 × 10-3 [μm] and d = 5 × 105/
6 [sec-1] for case (a), and l = 5.498 × 10-2 [μm] and d = 5 ×
103/6 [sec-1] for case (b), we obtain D = 3l2d[τ-1] ≈ 7.6
[μm2/sec] equally for (a) and (b). This value approximates
experimental values for globular proteins in the cyto-
plasm [12].

Kinetic coefficients
Table 1 summarizes the correspondence between the
probability constants and kinetic coefficients theoretically
derived for cases (a) and (b). Here, k1, k-1, and k2 denote
the kinetic coefficients for reactions S+T→ST, ST→S+T,
and ST→VT, respectively. The second-order kinetic coeffi-
cient (k1) is approximated by 4πR × 2D × p1, as predicted
from diffusion-limited reaction rate theory in three-
dimensional solutions in the limit case of t → ∞ [13,14].
Here, R is the reaction radius and approximated by l. The
factor 1/3 in k-1 indicates that the total number of move-
ments with unbinding for all possible binding conforma-
tions of S for fixed T is one-third of the total number of
movements, with or without unbinding for all possible
binding conformations of S for fixed T.

Results
Dynamics of bound molecules
To show that our algorithm and its implementation –
especially for the binding process – correctly function as
designed in a simulation, Figure 5 displays a trajectory of
an SE complex with p2 = 0 (i.e., permanent binding).
Within this time range, molecules S and E remain contin-
ually bound to each other, while undergoing random
movements in space (a movie presentation of this can be
obtained in [15]).
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An interaction without bindingFigure 2
An interaction without binding. (A) U already occupies the bond variable of T due to the binding of T and U. (B) The proc-
ess of searching for TS among the candidates. (C) Particle T returns {U}, with discarding of the ST complex.
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Reversible enzyme reaction
To determine in more quantitative fashion whether our
technique satisfies the theoretical requirements for the
binding, unbinding, and modification processes, we con-
ducted a series of simulations for the following reversible
enzyme reactions:

Then we compared these reactions with the results
obtained from rate equations. Here, the variables in each

reaction denote the combination of a kinetic coefficient
and dimensionless activation energy (e.g., a1 and ΔEf1 in
S+E→SE reaction).

In our Monte Carlo (MC) simulations, we estimated aver-
age time evolutions over 16 samples, starting with a ran-
dom initial distribution of particles. Figure 6 plots the
average of time evolution of [P] for various initial concen-
trations [S]0 and two sets of activation energies listed in
Table 2(a) and 2(b) (open symbols in Figure 6A and 6B,
respectively). We confirmed that the ratio [P]/[S] of
steady-state values correctly reproduces exp(-ΔG/kBT)
(e.g., coincidence between steady state values for [S]0 = 10
(or 4) with plotting symbol Ќ (or ) in Figure 6A and
6B), where ΔG = ΔEf1-ΔEr1-ΔEf2+ΔEr2+ΔEf3-ΔEr3 =
0.7kBT.

To make comparisons with rate equations, we applied the
scale conversion rule in Table 1(a) to the activation ener-
gies in Table 2(a) and 2(b), thereby obtained the corre-
sponding kinetic parameters in Table 2(c) and 2(d),
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The unbinding processFigure 3
The unbinding process. Particle S is driven downward by the random walk trial. The TS complex (A) splits into the S and T 
particles (B).
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respectively. The curved lines in Figure 6 are then drawn
by numerically solving the following rate equations:

with the following constraints:

where, x, y, and z denote [SE], [PE], and [P], respectively.

Extension to higher-order chemical reactions
The simulations thus far described have included only
chemical reactions with complexes consisting of at most
two different species. For general application of our simu-
lation method, however, we must incorporate algorithms
that address higher-order chemical reaction models that
involve many-body interactions with more than two spe-
cies. To do this, we developed an extended version of the
algorithm by incorporating "bond tables" in which the
indexes and species of bound partners for each particle are
continually updated. We will not describe further details
of the algorithm here because of their complexity, and will
note only that they conform in essence to what we have
described in Methods.

Clustering on the cellular membrane
The advantages of this type of strict stoichiometric
processing of interactions are enormous. One of the best
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The modification processFigure 4
The modification process. The TS complex (A) is converted to TV (B).

Table 1: Relationships between probability constants and kinetic coefficients.

(a) (b)

1 sec 5 × 105τ 5 × 103τ
1 μm 181.9l 18.19l
D [μm2/sec] 45d 45d
k1 [nM-1sec-1] 38p1d 38p1d
k-1 [sec-1] 5 × 105 × 1/3 × p2d 5 × 103 × 1/3 × p2d
k2 [sec-1] 5 × 105p3 5 × 103p3

Scale conversions for cases (a) and (b), and correspondence between kinetic coefficients and probability constants.
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demonstrations of the usefulness of the extended algo-
rithm is simulation of clustering on the cellular mem-
brane. This simulation examines the effects of associating
LAT, a transmembrane adaptor protein, with T-cell recep-
tor TCR on the lifetime of raft clustering. The T-cell recep-

tor and LAT are shown to preferentially associate with
cholesterol-rich microdomains on the cell surface.

Cholesterol has very important effects on the clustering,
since it can change the properties of plasma membranes

S+E->SE particle simulationFigure 5
S+E->SE particle simulation. Trajectories of particles S and E bind together with p2 = 0, taken at every 1.6 × 102τ from t = 
0 to 1.6 × 104τ. The unit of length is 1 μm, based on the scale conversion of (b) in Table I. Red: particle of S species; Green: 
particle of E species.
Page 8 of 13
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Comparison of particle simulation and ODE resultsFigure 6
Comparison of particle simulation and ODE results. The average of [P] plotted with time (sec) for Monte Carlo (parti-
cle) simulations (open symbols) and the corresponding rate equations (line curves). The activation energies and their corre-
sponding kinetic parameters are listed in Table 2: (a) and (c) in Table 2 for (A), while (b) and (d) in Table 2 for (B). The total 
concentration of E is [E]0 = 0.1 μM. The initial distribution is random with equal probability for all the sites in the 3D space, 
with use of 16 samples.
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that mainly consist of sphingomyelins. The addition of
cholesterol is shown to drive a solid-ordered (SO) phase
transition into a liquid-ordered (LO) one. In the interme-
diate level of this addition, the LO phase and liquid-disor-
dered (LD) phase may coexist. This may give rise to lateral
heterogeneity in the plasma membrane, thereby segregat-
ing cholesterols into cholesterol-rich domains [8]. The
effects of other factors relevant to clustering in the outer
leaflet of plasma membranes are also emphasized. It has
been proposed that the length and saturation of alkyl
chains are responsible for clustering: glycosphingolipids,
sphingomyelins, and phospholipids with long saturated
alkyl chains may constitute rafts by entering the choles-
terol-rich domains [16-19].

Taking these factors into account, we incorporated key
components and their mutual interaction parameters
other than those related to constituents in the bulk
domain. We considered the interactions among cholester-
ols (component C), glycosphingolipids (component G),
TCR (component T), and LAT (component L) molecules:
a lower magnitude of coupling is assumed for CG, GT,
and GL complexes, and a higher affinity is assumed for the
TL complex (for details see [20]). With this setup and a
sufficient amount of CG complexes, stable clustering pat-
terns are obtained (Figure 7; movie file is in [21]). In Fig-
ure 7C and 7G, components segregate and form clustering
domains (size ~0.2 μm), reproducing DRM/raft-like struc-
tures. The improvement made in our simulation from
those described in previous studies [18] is demonstration
of oligomerization-induced clustering, whereby the pres-
ence of a small number of plasma membrane protein
complexes bound with relatively strong coupling corre-
lates with the production of stabilized rafts (receptor-clus-
ter rafts) that are rich in C and G [22]. In fact, the
production of TL complexes is facilitated by the corralling
of T and L in the clustering domains, while the slow
motion of the TL complexes within the clusters in turn
appears to hinder breakup of the clusters.

To make comparisons with SPT as well as SFVI experi-
ments, in particular, we displayed typical sample trajecto-

ries obtained from this simulation (Figure 8, movie file is
in [23]). We observed two types of diffusional movements
in the presence of clustering: the slow movement
observed mainly for T and L (Figure 8A and 8B), and the
relatively free motion exhibited by C and G (Figure 8C
and 8D) but with a slower diffusion rate than that in the
absence of clustering. Interestingly, these trajectories,
especially that of G in Figure 8D, appear to exhibit lumps
with a similar size (~0.2 μm), indicating "hop diffusion"
across clusters. This size approximately equals the diame-
ter of the clustering domain in Figure 7. For T and L, this
hop diffusion rarely occurs, because most T's and L's rap-
idly form TL complexes in the clusters, and thus the
energy cost of escaping from them increases. Hence, in
Figures 8A and 8B, T manages to escape from a cluster and
enters another one wherein L remains to be trapped.
Experimentally, images of trajectories of single or small
groups of DOPE (a phospholipid) molecules on the
membrane of an NRK fibroblastic cell recorded at time
resolutions of 25 μs were tracked, and found to exhibit
hop diffusion with a typical scale of around 0.2 μm [9]. In
the dynamics of membrane proteins, the rate of diffusion
of Lck (a Src family kinase recruited to TCR clustering) was
reduced with decreasing distance from the point of stimu-
lation in a TCR cluster [24]. These observations are con-
sistent with our simulation results.

Conclusions
Our simulation method represents molecular movements
and interactions with the use of a particle model. The
movements are expressed as a random walk in 3D space,
and interactions are expressed as inter-particle binding,
unbinding, and modification processes. A characteristic
feature of our approach is that it enables complexes to be
modeled as bound particles. The binding, unbinding, and
modification processes of these complexes are based on
energetic considerations, in which these processes pro-
ceed according to transition probabilities determined by
the activation energy. This does not require setup of sub-
volumes assuming well-stirred surrounding media, as
incorporated in previous reaction-diffusion methods
[25,26] based on Gillespie's algorithm [27,28]. Instead,

Table 2: Parameter values of the reversible enzyme reaction model in Eq. 2. The translation of activation energies into kinetic 
coefficients are performed based on Table 1(a). Keq = a1a2b-1/a-1b2b1

Activation energy [kBT] (a) (Figure 6A) (b) (Figure 6B) Kinetic coefficients (c) (Figure 6A) (d) (Figure 6B)

ΔEf1 0.1 1.7 a1 [nM-1sec-1] 5.73 1.16
ΔEr1 0.1 1.7 b1 [nM-1sec-1] 5.73 1.16
ΔEf2 2.3 3.9 a-1 [sec-1] 2.79 × 103 5.62 × 102

ΔEr2 4.6 4.6 b-1 [sec-1] 2.79 × 102 2.79 × 102

ΔEf3 10.8 10.8 a2 [sec-1] 1.02 × 101 1.02 × 101

ΔEr3 12.4 10.8 b2 [sec-1] 2.06 1.02 × 101

ΔG 0.7 0.7 Keq 0.50 0.50
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our method requires precise treatment of the stoichiome-
try of these processes.

Moreover, it is important to examine the magnitude and
effects of stochastic fluctuations, since our particle simula-
tion model is essentially probabilistic. Our quantification
of simulation results was intended to demonstrate that it

correctly reproduced theoretical curves from a rate equa-
tion theory for the reversible enzyme reaction model.
However, by observing raw time courses obtained for
individual samples, continual fluctuations can be
observed in raw time courses around the average value.
This type of fluctuation corresponds to intrinsic noise,
whereas fluctuation due to external input is referred to as

Simulation of cell-surface clusteringFigure 7
Simulation of cell-surface clustering. A snapshot image taken at t = 2.2 sec. The length scale of each side is in μm. Molec-
ular species: (+) cholesterol, (×) glycosphingolipids, (●) T-cell receptor, and (▲) LAT adaptor protein.
Page 11 of 13
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extrinsic noise [29,30]. We are now performing systematic
analyses of quantification of intrinsic noise by examining
its dependence on kinetic constants such as Km and Vmax.

Using this simulation method, we successfully demon-
strated the existence of a clustering pattern that may be
associated with receptor-cluster rafts and the "fluid
mosaic model" [31,32] in the plasma membrane. In

immune cell signalling, rafts are hypothesized to be "plat-
forms" for raft-philic adaptor proteins such as LAT in T-
cells [33,34], with these proteins insulated from others
with different signals. Using simulation to verify this will
require (1) automatic identification of clustering domains
or rafts, and (2) analyses of the net flow transferred
between these domains. These topics will be addressed in
the near future.

Simulation of cell-surface clustering: Particle trajectoriesFigure 8
Simulation of cell-surface clustering: Particle trajectories. (A) TCR, (B) LAT, (C) cholesterol, and (D) glycosphingoli-
pid, for t = 0.4–2.3 sec.
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