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Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective invasive treatment
for advanced Parkinson’s disease (PD) at present. Due to the invasiveness and cost of
operations, a reliable tool is required to predict the outcome of therapy in the clinical
decision-making process. This work aims to investigate whether the topological network
of functional connectivity states can predict the outcome of DBS without medication. Fifty
patients were recruited to extract the features of the brain related to the improvement
rate of PD after STN-DBS and to train the machine learning model that can predict the
therapy’s effect. The functional connectivity analyses suggested that the GBRT model
performed best with Pearson’s correlations of r = 0.65, p = 2.58E—07 in medication-off
condition. The connections between middle frontal gyrus (MFG) and inferior temporal
gyrus (ITG) contribute most in the GBRT model.
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INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disorder with a wide range of motor and
non-motor symptoms, such as cognitive impairment, autonomic dysfunction, disorders of sleep,
depression, or hyposmia, which lead to a severe burden for the patients and their caregivers (Poewe
et al., 2017). It is considered that PD arises from dysfunction in several neural networks. Thilo
van Eimeren et al. confirmed that the medial prefrontal cortex and rostral ventromedial caudate
nucleus were functionally disconnected in PD (Thilo van Eimeren et al., 2009). Hammond et al.
found that PD patients showed abnormally synchronized oscillatory activity at multiple levels of
the basal ganglia (BG)-cortical loop (Hammond et al., 2007).

To cure PD, highly efficacious therapies, such as pharmacological dopamine substitution, have
been adapted widely (Poewe et al., 2017). The use of levodopa as dopamine-replacement therapy is
highly effective in ameliorating the symptoms of the disease (Fahn et al., 2004) through changing
the motor cortex hypoactivation in the supplementary motor area and the primary motor cortex
(Buhmann et al., 2003). Deep brain stimulation (DBS) at high frequency was firstly used in 1997
to replace thalamotomy in treating the characteristic tremor of PD and has subsequently been
applied to the pallidum and the subthalamic nucleus (STN) (Benabid, 2003). It is reported that
neurostimulation of STN was more effective than medical management alone (Deuschl et al., 2006).

DBS therapy is an invasive and costly procedure, and its outcome differs in patients with PD
(Cury etal., 2014). While a growing body of research suggests that variability in treatment response
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links up with individual differences in neurological function
(Hartmann et al., 2016), the search for brain network-based
biomarkers can yield a reliable indicator for future treatment
response in this respect. The identification of brain-based
predictors of PD can not only expand existing biological
knowledge of neurodegenerative pathophysiology but also
inform real-world clinical practice by assignment of patients to
make decisions based on individual patterns of neural function
or biomarkers.

Nowadays, powerful neuroimaging methods, such as
magnetic resonance imaging (MRI), establish accurate and
high-precision observation from the view of neuronal activities
(Cohen et al.,, 1993). In particular, the application of functional
magnetic resonance imaging (fMRI) in neuroscience has offered
a way to assess the status of functional systems, which can reveal
relationships between brain activity and treatment response, such
as obsessive-compulsive disorder (Figee et al., 2013), depression
(Guo et al, 2012), pediatric anxiety disorders (McClure
et al, 2007), etc. Neuroimaging studies have also identified
impairments in the corticostriatal network pathways and the
related neural circuits in patients with PD (Hacker et al., 2012).

Moreover, studies of large-scale network analysis using graph
theory-based approaches revealed disruptions in the topological
properties of brain networks in PD patients. For example, it
was found that PD patients had lower clustering coefficient and
local efficiency than control subjects, which can contribute to
identifying and tracking PD (Luo et al,, 2015). Kim et al. found
that PD was related to the temporal properties of brain functional
connectivity states as well as the variability of network topological
organization using resting state fMRI (rs-fMRI) (Kim et al,
2017). These findings of graph theory-based analysis of fMRI in
PD give us insights into the possibility of predicting the outcome
after DBS with brain networks.

It is confirmed that specific connectivity profiles
encompassing frontothalamic streamlines correlated with
clinical response, which can guide surgeons to locate DBS
electrode in surgery (Horn et al., 2017). There is also a series of
specific patterns of the brain that can enhance the clinical care of
DBS, such as frontal white matter architecture in curing major
depression (Coenen et al., 2019) and posterior thalamus (Tha)
in treating essential tremor (Al-Fatly et al.,, 2019). With these
approaches, surgery can be utilized easily, and the sophisticated
relationship between the effectiveness of operation and the
intrinsic brain connectome can be discovered.

Machine learning as a data-driven technique can use
spatiotemporal information to extract the stable whole-brain
patterns that are present in MRI data. Because machine learning
is effective in automating the process of building models that
relate neural activity to symptoms, it has been attempted to use
machine learning for predicting response after DBS (Bermudez
et al., 2019; Habets et al., 2019).

In this paper, we aimed at building a model to predict
the outcome (percentage change in the Unified Parkinson’s
Disease Rating Scale (UPDRS)-III score) after DBS through
functional brain connectivity. We hypothesized that the outcome
of stimulation based on whole-brain networks; thus, functional
connectivity profiles would predict the individual outcomes of

DBS for PD. The results suggested that the model was capable
to predict the DBS outcome, and that the most contributive
connections to the prediction were detected.

MATERIALS AND METHODS

Participants and Assessment

This study included 50 patients aged from 50 to 77 (mean
age = 60.24 £ 7.84 years) with a final clinic diagnosis of
PD. They were recruited from Tsinghua University Yuquan
Hospital, Beijing, China, and their disease severities were assessed
according to the motor section of the Movement Disorder
Society (MDS) UPDRS-III (Antonini et al., 2013). All of them
received preoperative MRI and evaluation of dopaminergic
responsiveness, and they were considered suitable to DBS surgery
according to acute levodopa challenge test (Defer et al., 1999;
Rodriguez et al., 2007). The assessing procedure was conducted
by a specialist with more than 10 years of experience. All
participants were informed about the procedures in this protocol
and provided informed consent before the experiment. The
research protocol was approved by the Ethics Committee of
Tsinghua University Yuquan Hospital.

To be noted, the DBS outcome measure was measured as
percentage change in UPDRS-III score comparing postoperative
ON DBS to preoperative baseline. The baseline UPDRS-III score
was 43.9 £ 12.1, and the UPDRS improvement rate with DBS was
65.2 £ 20.6%.

Surgical Procedure

DBS surgery was performed under local anesthesia, using the
Leksell stereotactic frame (Elekta AB, Stockholm, Sweden). Two
STN-DBS electrodes (PINS L301; Beijing, China) were placed
in both hemispheres. During the operation, a single unit of
microelectrode kept stimulating and recording continuously to
evaluate and confirm the site with the best clinical results. After
the lead placement was confirmed, the electrodes were connected
to a pulse generator (G102R; Pinchi, Beijing, China), which was
implanted subcutaneously in the right subclavian region. During
surgery, MRI scanning was used for both preoperative targeting
and immediate postoperative verification (Foltynie and Hariz,
2010). It was ensured that electrode contacts were well-sited
within the STN.

Image Acquisition

MRI scans were conducted 2-3 days before the operational
therapy for all PD patients, and each patient was scanned after
withdrawal from levodopa for more than 12 h.

Imaging data were collected on a 3T Philips Achieva MRI
scanner (Philips Healthcare, Best, The Netherlands) with a 32-
channel head coil. Participants were instructed to keep their eyes
open and not to think about anything specific during the rs-fMRI
scan. Head motion was controlled by fixing their heads using
headphone and sponge during scanning. Resting state blood
oxygenation-level-dependent (BOLD) signals were collected
using the following parameters: 35 axial slices, repetition time
(TR) = 2,000 ms, the number of volumes = 240, echo time
(TE) = 30 ms, flip angle (FA) = 90°, slice thickness = 4.0 mm,

Frontiers in Computational Neuroscience | www.frontiersin.org

October 2020 | Volume 14 | Article 571527


https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Shang et al.

Connectome-Based Model Predicts DBS Outcome

gap = 0.8 mm, acquisition matrix = 64 x 64, and field of view
(FOV) = 224 x 224 mm?.

Image Preprocessing and Brain Network

Construction

Whole-brain functional networks were constructed using SPM
12 and GRETNA software (Wang et al., 2015). The following
pre-processing steps were taken: (1) the first 10 volumes of each
scan were discarded for magnetization equilibration, (2) data
were realigned to the first volume to correct for head motions,
(3) bottom-up slice-timing correction was applied, (4) functional
images were co-registered to subject-space (the same participant’s
T1-weighted structural image), then spatial normalization was
conducted to acquire Montreal Neurological Institute (MNI)
template space, and (5) spatial smoothing was performed at 4 mm
full-width half maximum (FWHM) Gaussian kernel. According
to the Brainnetome Atlas (BNA) (Fan et al., 2016), we segmented
the whole brain into 246 regions, including 210 cortical and 36
subcortical regions. Each region served as one node of functional
brain networks, and it can also be regard as a region of interest
(ROI). The mean time series of each ROI was obtained by
averaging the BOLD time series over all voxels within that
region. The edges of functional brain networks were computed
by Pearson correlation coefficients between ROIs.

The T1-weighted volume MRI data and fMRI data were used
for DBS lead localization, and this protocol followed the steps
in the manual of Lead-DBS (Horn and Kithn, 2015). Images
were normalized into ICBM 2009b NLIN asymmetric space
using the DISTAL Minimal atlas (Ewert et al., 2017), and DBS
electrode contacts were localized within MNI space using Lead-
DBS software (www.lead-dbs.org) (Horn and Kiihn, 2015).

Connectome-Based Predictive Modeling
According to the BNA, we acquired 30,135 connectivities
between ROIs, and the dimension space of connectivity matrix
is so large that it can lead to a serious overfitting problem.
Therefore, feature preparation was conducted on connectivity
between ROIs. To be more specificc we narrowed down
the feature space of sparse matrixes through random forest
algorithm, which is a multivariate supervised approach that can
retain essential pre-surgical features.

As shown in Figure 1, our process of learning and predicting
mainly includes four parts: (1) all participants were scanned by
an MRI scanner to acquire BOLD time series in rs-fMRI, (2)
the functional connectivity network was constructed through
computing the Pearson correlation coefficients between ROIs,
(3) feature selection was applied, and (4) use machine learning
method to train the predictive model.

Six predictive models were implemented in this study,
including linear regression models with Ordinary Least Squares
(OLS) (Goldberger, 1964), ridge regression (Tibshirani, 1996b),
or least absolute shrinkage and selection operator (lasso)
(Tibshirani, 1996a) and non-linear regression models with
Support Vector Regression (SVR) (Drucker et al., 1997), Gradient
Boost Regression Tree (GBRT) (Friedman, 2001), or reformed
random forest named Extremely Randomized Trees (ERT)
(Geurts et al., 2006). We used nested cross-validation, which

included outer Leave-One-Out-Cross-Validation (LOOCYV) and
inner 5-fold cross-validation (5F-CV), to quantify the prediction
accuracy. The inner 5F-CV was used to determine the optimal
parameters (e.g., a, A) for six machine learning algorithms, and
outer LOOCV was applied to evaluate the generalizability of
the model.

In the inner 5F-CV, we used grid search method to find the
best estimator for six models and evaluated each estimator by
measuring the prediction error of the model. Then, we acquired
six models with suitable estimator to predict the outcome of
DBS surgery and choose the most predictive model to conduct
connection analysis accordingly.

Because the dataset size is limited compared with tens of
thousands of features in PD patients’ brain, a Leave-One-
Out-Cross-Validation (LOOCV) was used in the outer loop to
maximize the prediction model to learn existing data (Kohavi,
1995). In the LOOCYV, one sample was used as validation data,
and the other samples were used as training data. In the dataset
with n subjects, the data of n—1 subjects were used as input
to train the model, and this process was repeated n times
with different left-one-out subjects, generating the estimated
percentage changes of UPDRS-III score, identified functional
connectivity and their corresponding weights in the training
model. This allows us to investigate the biological characteristic
of these connections between ROIs by analyzing important
connections and nodes chosen by machine learning model.

RESULTS
DBS Lead Placement

The electrode contacts were well-sited within the STN, and
DBS lead localization was reconstructed using Lead-DBS. The
reconstruction image of #36 patient was shown as an example
in Figure 2.

Feature Selection and Connection Analysis
By choosing BNA-based functional connectivity matrix, we
acquired 30,135 pairs of connections by removing the repeated
connections from the 246 x 246 combinations in whole-
brain connections for each subject. As mentioned in the
Materials and Methods section, we used random forest to
exclude redundant connections. Finally, the data showed that
there were 242 connections for predicting the outcome of DBS
without levodopa.

Predicting the Individual Outcome of DBS

With PD

Six models (OLS/ridge regression/lasso/SVR/GBRT/ERT) were
implemented for the prediction of the DBS outcome. To test the
reliably of our connectome-based predictive model, we employed
an outer LOOCV analysis to predict the improvement rate
in UPDRS-III score after DBS. Four indicators [i.e., Pearson’s
r, Pearson’s p, mean absolute error (MAE), and mean square
error (MSE)] were utilized to measure the performance of
each predicting model, shown in Table 1. Pearson’s r is an
indicator to measure the correlations between two objects,
whereas Pearson’s p-value corresponds to a test for whether
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FIGURE 1 | The process of our work, which includes learning the significant features in functional brain network and predicting the outcome after DBS.

#36 patient

RN, red nucleus (blue: GPe, green: GPi, orange: STN, red: RN).

FIGURE 2 | The reconstruction image of #36 patient’s DBS lead localization. Gpe, globus pallidus externus; GPi, globus pallidus internus; STN, subthalamic nucleus;

the correlation was significantly different from zero (p <
0.05 was considered statistically significant). We also used
MAE (Willmott and Matsuura, 2005) and MSE (Imbens et al,,
2005) to describe the average model-performance error. The
correlations between predicted percentage change in UPDRS-
III score and actual percentage change in UPDRS-III score
were significant in our model based on functional connectivity.
The best fitting model came from the GBRT model with
Pearson correlations of r = 0.65, p = 2.58E—07 in medication-
off condition, shown in Figure 3. In addition, the Bonferroni
correction (Abdi, 2007) was used in performing multiple
tests, and the Pearson’s p was less than the stricter threshold
0f 0.001.

Connections Contributing to Prediction
Based on stable prediction, further brain analysis could be
conducted by the GBRT model. For better interpretation, we
grouped the 246 ROIs into 24 gyri as defined by BNA and
calculated the top 11 predictive connections between 24 gyri,
shown in Figure 4A. The gyri of each brain hemisphere were
further divided into five lobes, and the predictive connections
selected by the GBRT model from the perspective of the lobes
were shown in Figure 4B.

TABLE 1 | Performance of six models in predicting the improvement rate in
UPDRS-IIl score by using nested cross-validation.

Model MAE MSE r p-value
OoLs 21.14 862.94 0.05 0.75
Ridge regression 17.57 573.95 0.14 0.35
Lasso regression 14.29 411.83 0.33 0.02
GBRT 12.40 240.74 0.65 2.58E-07
SVR 16.06 398.57 0.28 0.05
ERT 13.12 282.13 0.59 6.67E—06

In predicting the outcome of DBS without levodopa, middle
frontal gyrus (MFG), inferior temporal gyrus (ITG), superior
frontal gyrus (SFG), and Tha show more connections than
other regions. The top 11 predictive connections were shown in
Table 2. The connections of cross-brain regions, such as MFG
and ITG, precuneus (Pcun), and posterior superior temporal
sulcus (pSTS), exerted an enormous function on medication-
off condition.
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DISCUSSION

The actual outcome of PD patients was based on their
motor and non-motor symptoms. To assess the condition
of PD patients, there were the Hoehn and Yahr (H&Y)
scale (Ramaker et al., 2002) for quantifying disease stage,
MDS-UPDRS (Goetz et al,, 2008) for assessing the patients

relationship between brain connectivity and DBS outcome
regarding the motor symptoms among PD patients. UPDRS-III
provides a useful severity measure on the motor symptoms of

TABLE 2 | The top 11 connections in the prediction of improvement rate in
UPDRS-IIl score after the deep brain stimulation operation in medication-off

condition clinically, Beck Depression Inventory (Beck et al.,  condition.
1988) for measuring the patient’s degree of depression, and Mini- | Node name D Node name
Mental State Examination (Folstein et al., 1983) for intellectual
impairment. The objective of this study was to explore the 1 Superior frontal gyrus 9 Inferior temporal gyrus (ITG)
(SFG)
1 Superior frontal gyrus 10 Fusiform gyrus (FUG)
(SFG)
. . 2 Middle frontal gyrus 4 Orbital gyrus (OrG)
Prediction of improvement rate after DBS (MFG) ° g
surgery using fMRI 2 Middle frontal gyrus 9 Inferior temporal gyrus (ITG)
100- (MFG)
» r=0.65 2 Middle frontal gyrus 14 Inferior parietal lobule (IPL)
© go{ P=2.58E-07 ¢ (MFG)
8 5 Precentral gyrus (PrG) 24 Thalamus (Tha)
g 60+ ) Q 8 Middle temporal gyrus 8 Middle temporal gyrus (MTG)
Qo ‘ (MTG)
Q0 407 9 Inferior temporal gyrus 13 Superior parietal lobule (SPL)
b e (TG)
(]
= 204
o 11 Parahippocampal 22 Hippocampus (Hipp)
0 gyrus (PhG)
0 20 40 60 80 100 12 Posterior superior 15 Precuneus (Pcun)
Actual Scores temporal sulcus (pSTS)
18 Cingulate gyrus (CG) 24 Thalamus (Tha)
FIGURE 3 | The GBRT model with the most predictive performances of
Pearson correlations r = 0.65, p = 2.58E—07 in medication-off condition 1-6: fontal, 7-12: temporal, 13-16: parietal, 17: insular lobe, 18: limbic lobe, 19-20:
o ) ) occipital lobe, 21-24: subcortical nuclei.

it represents the importance of connections between regions in prediction.
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FIGURE 4 | (A) The top 11 predictive connections of 24 macroscales brain designed by BNA in medication-off condition. (B) The distribution of predictive
connections selected by the GBRT model without levodopa, which is divided into the left and right brain hemispheres. The range of color bar in (B) is from O to 1, and
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PD (Tison et al., 2002), and it was reliable (Metman et al., 2004).
Therefore, the DBS outcome in this study was measured as the
percentage change in UPDRS-III score.

Based on the results of 50 PD patients in this study, we were
able to characterize networks that can predict the recovery after
the DBS therapy. These network features played significant roles
in training the machine learning model. In PD patients treated
by DBS without levodopa, the connections of the MFG to ITG,
Pcun to pSTS, and internal connection in middle temporal gyrus
(MTG) were found to provide top contribution in the GBRT
model to the prediction of operation therapy. These findings
provide new evidence that the functional connectivity has an
effect on predicting the DBS operation outcome in PD patients
before the operation. This progress may potentially help reduce
the loss of money and the trauma of body in patients with
unsatisfactory DBS response (Ellis et al., 2008).

As a white matter lesion associated with motor and
cognitive symptoms (Gattellaro et al., 2009), PD is related to
topological properties (Olde Dubbelink et al.,, 2013), through
which the effectiveness of DBS can be assessed (i.e., global
efficiency, clustering coefficient, and small-worldness) (van
Hartevelt et al, 2014). Moreover, the predictive value of
connectivity-informed brain stimulation for DBS can be seen
in obsessive-compulsive disorder (Baldermann et al., 2019),
resistant depression (Johansen-Berg et al., 2007), and tremor
disorder (Middlebrooks et al., 2018). These results indicated that
it might be feasible to predict the outcome of PD patients treated
by DBS.

There are already previous studies related to PD that present
results similar to our work. Brain activity in the right ITG and
MFG was also found related to gait in PD (Wang et al., 2016).
Comparing with healthy controls, PD patients showed increased
functional connectivity in ITG (Yang et al., 2016). Furthermore,
Grafton et al. found that effective DBS can smoothen the
overactivity in bilateral rostral ITG of PD patients toward a
more normal pattern (Grafton et al., 2006), which suggested that
the pattern of ITG may be a biomarker indicating the outcome
of DBS. It was reported that gray matter atrophy or cortical
thinning in MFG is related to PD (Brenneis et al., 2003; Biundo
et al., 2015), and that it can also be a predictor of conversion
to dementia in PD patients (Song et al., 2011). These findings
were consistent with our results that ITG and MFG showed more
connectivity with other gyri and the connections between ITG
and MFG have significant contribution in the model predicting
the outcome of DBS in medication-off condition.

It has been confirmed that PD patients exhibited decreased
short-range functional connectivity densities in SFG (Zhang
et al,, 2015). SFG is one of the most important gyri for executive
control (Kendi et al.,, 2008), and cortical atrophy in SFG can
affect the motor cortex (Possin et al., 2013). Similar to SFG, Pcun
is also associated with network modulation in the treatment of
PD patients. In PD patients, the functional connectivity between
Pcun and motor system is decreased (Thibes et al., 2017), and
the metabolic in Pcun increased after STN-DBS according to
the study based on PET (Asanuma et al., 2006). The association
between DBS outcome and SFG and Pcun is congruent with the
results of prior studies.

The current study indicated that the frontal lobe and temporal
lobe play an important role in predicting DBS’s effect. Among
the top 11 predictive connections, there are one or both ends
of 17 connections distributed in the frontal lobe and temporal
lobe. Kosti¢ et al. have also found that a specific pattern of
brain network damage involving the frontal and parietal cortices
occurs in patients with freezing of gait (Kosti¢ et al, 2012).
It was also reported that a lack of adequate frontal activation
was found to be related to PD patients (Jahanshahi et al,
2010), and that the modulation by STN-DBS was found to
be correlated to the suppression of alpha and beta oscillations
in the temporal area based on a MEG study (Cao et al,
2017). By comparing six machine learning models, the GBRT
regression model was able to estimate the improvement rate
of UPDRS-III score after DBS most accurately. The GBRT
regression model (Friedman, 2001) is an ensemble of weak
prediction models (decision trees) based on gradient boosting.
GBRT sequentially adds small trees (low depth) with high
bias, so that it can better fit target. It has been widely used
in many fields of regression problems because of its high
prediction accuracy. To conclude, GBRT regression offers many
advantages over the traditional multiple-regression models, with
the ability of processing non-linear data. Besides the GBRT
model, the ERT model also showed excellent prediction. In the
two collections of top 11 connections selected by the GBRT and
ERT regression models, respectively, 10 connections were the
same (Supplementary Table 1), which also verified the accuracy
of the GBRT model in prediction.

It has several limitations when interpreting the findings
in our study. First, there are some factors that influence
variables during the operation, such as surgical instruments,
doctors’ operations, etc. These factors have not been fully
considered. Second, due to the difficulty in obtaining the
data clinically, the amount of sample is still small from the
perspective of machine learning, which may cause errors.
In further research with larger dataset of more PD patients
carried out DBS surgery, more predictive patterns can be
found, and there can be more comprehensive evaluation
before surgery.

CONCLUSION

In this study, we investigated the relationship between functional
connectivity and outcome of DBS therapy in 50 PD patients.
Using machine learning models, we demonstrated that the
functional network can predict the outcome of operation therapy.
The GBRT model is the most effective machine learning model
with Pearson correlations r = 0.65, p = 2.58E—07 in medication-
off condition, and the most contributable connections for models
were identified.
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