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Abstract: Naringenin, a natural flavonoid widely found in citrus fruits, has been reported to possess
anti-oxidant, anti-inflammatory, and hepatoprotective properties as a natural dietary supplement.
However, the regulatory mechanism of naringenin in human liver remains unclear. In the present
study, messenger RNA sequencing (mRNA-seq), microRNA sequencing (miRNA-seq), and real-time
qPCR were used to distinguish the expression differences between control and naringenin-treated
HepaRG cells. We obtained 1037 differentially expressed mRNAs and 234 miRNAs. According to
the target prediction and integration analysis in silico, we found 20 potential miRNA-mRNA pairs
involved in liver metabolism. This study is the first to provide a perspective of miRNA–mRNA
interactions in the regulation of naringenin via an integrated analysis of mRNA-seq and miRNA-seq
in HepaRG cells, which further characterizes the nutraceutical value of naringenin as a food additive.
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1. Introduction

Naringenin, a natural flavonoid, is found abundantly in citrus fruits and other edible
fruits, like grapefruit, oranges, bergamot, tomatoes, and figs [1]. After oral administration,
naringenin is widely distributed in the gastrointestinal tract and liver [2,3] and exhibits a
direct antioxidant property by free radical scavenging activity on account of its molecular
structure, and induces the endogenous antioxidant system in the liver [4]. Growing evi-
dence from both in vitro and in vivo studies has identified various protective capacities of
naringenin, such as anti-inflammatory [5], antioxidant [6], anti-fibrosis [7], and hepatopro-
tective [4,8] activities. These capacities suggest that dietary naringenin could be applied
to prevent metabolic syndrome and malignant diseases, including fulminant hepatitis,
fatty liver disease, fibrosis, etc. [9,10]. However, there are few detailed studies about the
regulatory effects of naringenin on the overall genes of liver [4].

MicroRNAs (miRNAs) are a class of non-coding, single-stranded RNA molecules with
a length of 18–26 nucleotides encoded by endogenous genes, which exhibit a broad range
of biological regulatory functions in phylogeny, differentiation, proliferation, and apop-
tosis [11]. miRNA, binding messenger RNAs (mRNAs) by sequence-specific recognition,
negatively regulates gene expression at the post-transcriptional level through degradation
of target mRNAs [12]. Under exogenous stimulation, miRNA expression is altered, and
then target mRNA expression is regulated. Eventually, extensive physiological functions
are changed to cope with the challenges caused by exogenous stimulation [13]. A more
reliable method for predicting miRNA–mRNA target relations is to simultaneously inte-
grate mRNA-seq analysis with miRNA-seq analysis using a particular processing context
in silico [14].
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Therefore, our objective was to study the effects of naringenin on global genes and
highlight the possible regulatory mechanism of miRNA-mRNA pairs in the liver. In present
study, mRNA expression changes and miRNA expression profiles were investigated in
HepaRG cells by performing mRNA-seq, miRNA-seq, bioinformatic analyses, and real-time
qPCR to provide evidence for the potential of naringenin as a natural dietary supplement.

2. Results
2.1. Analysis of Transcriptome Sequencing in the Response to Naringenin

To identify mRNA expression changes of HepaRG cells in response to naringenin,
eight complementary DNA (cDNA) libraries in the control group (CK-1, CK-2, CK-3,
and CK-4) and the experimental group (T-1, T-2, T-3, and T-4) were constructed with
total RNA and subjected to Illumina HiSeq2500 sequencing(Genedenovo Biotechnology
Co., Ltd, Guangzhou, China). Overviews of the sequencing and assembly results for the
control group and experimental group are shown in Table 1. Gene expression changes
were analyzed by comparing the treated and control groups. As shown in Figure 1a, the
naringenin-exposed group expressed 1037 differentially expressed genes (DEGs) compared
with the control group. A heat map of 1037 DEGs showed the cluster analysis of the control
group and the naringenin group (Figure 1b; 381 up- and 656 down-regulated genes; Table
S1, Supplementary Materials).

Table 1. Summary of sequence data generated for HepaRG cells transcriptome and quality filtering.

Sample Raw Data Clean Data
(%)

Raw Data
(bp)

Clean Data
(bp)

After Filtering
Q20 (%)

After Filtering
Q30 (%)

After Filtering
N (%)

After Filtering
GC (%)

CK-1 47,663,932 47,577,906
(99.82%) 7,149,589,800 7,114,281,738 6,992,811,543

(98.29%)
6,756,607,154

(94.97%)
19,427

(0.00%)
3,804,122,670

(53.47%)

CK-2 42,079,942 42,026,040
(99.87%) 6,311,991,300 6,283,554,811 6,189,856,925

(98.51%)
6,000,864,261

(95.50%)
8392

(0.00%)
3,360,455,066

(53.48%)

CK-3 41,188,030 41,131,120
(99.86%) 6,178,204,500 6,147,638,474 6,050,714,205

(98.42%)
5,857,735,081

(95.28%)
8775

(0.00%)
3,273,834,153

(53.25%)

CK-4 43,096,530 43,039,450
(99.87%) 6,464,479,500 6,433,433,599 6,333,636,124

(98.45%)
6,134,820,735

(95.36%)
8660

(0.00%)
3,439,680,095

(53.47%)

T-1 51,658,770 51,539,258
(99.77%) 7,748,815,500 7,706,270,162 7,562,514,956

(98.13%)
7,292,630,398

(94.63%)
26,068

(0.00%)
4,098,720,423

(53.19%)

T-2 48,606,134 48,501,812
(99.79%) 7,290,920,100 7,250,461,713 7,113,064,471

(98.10%)
6,85,1340,567

(94.50%)
23,956

(0.00%)
3,887,698,839

(53.62%)

T-3 62,602,866 62,433,856
(99.73%) 9,390,429,900 9,333,102,578 9,155,158,477

(98.09%)
8,825,370,611

(94.56%)
45,571

(0.00%)
4,878,494,560

(52.27%)

T-4 41,346,744 41,292,738
(99.87%) 6,202,011,600 6,166,582,431 6,070,483,986

(98.44%)
5,876,108,215

(95.29%)
8644

(0.00%)
3,277,271,342

(53.15%)

CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin group.

According to the Gene Ontology (GO) classification system, 1037 DEGs were classi-
fied into three major functional categories (biological process, cellular component, and
molecular function) and 61 subcategories (Figure 2). Among the biological process, cellular
process (731) was the most commonly represented, followed by single-organism process
(672) and biological regulation (595). In the category of cellular component, a significant
proportion of clusters was assigned to cell (727), cell part (721), and organelle (580). Genes
involved in binding (666) and catalytic activity (238) groups were notably represented in
the molecular function category.
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Figure 1. Identification of differentially expressed messenger RNAs (mRNAs) in response to naringenin. (a) Volcano plot
showed that all non-redundant unigenes were identified in the control group and the naringenin group. The 20,285 gray
dots represent non-significantly differentially expressed mRNAs, the 381 red dots represent significantly differentially
up-regulated mRNAs, and the 656 blue dots represent significantly differentially down-regulated mRNAs; FC (fold
change) = the naringenin group/the control group; FDR (false discovery rate), the expected percent of false predictions in
the set of predictions; (b) heat map showing 1037 differentially expressed genes (DEGs), comparing the control group with
the naringenin group. Each row represents one mRNA, and each column represents a sample. Red, upregulation; blue,
downregulation; CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin group.
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The Kyoto Encyclopedia of Genes and Genomes (KEGG) classification was found for
1037 DEGs that were further classified into the top twenty biochemical pathways according
to the smallest q-value and the largest GeneNumber in pathway annotation (Figure 3).The
GeneNumber and ratio of annotated genes of the top five pathways are systemic lupus
erythematosus (33, 8.4%), alcoholism (38, 9.67%), transcriptional misregulation in cancers
(22, 5.6%), PI3K–Akt signaling pathway (34, 8.65%) and complement and coagulation
cascades (12, 3.05%). There were more than 10 enriched genes among the five pathways.
Overall, undergoing naringenin treatment had a significant impact on the global gene
expression profile of HepaRG cells. These results implied that the genes involved in these
pathways may play crucial roles in naringenin regulation.
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Figure 3. Top 20 pathways of Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for
1037 DEGs. GeneNumber: number of target genes in a pathway. RichFactor: ratio of number
of target genes divided by number of all the genes in a term or pathway.

2.2. Analysis of miRNA Transcript Levels in Response to Naringenin

In this study, we aimed to determine whether naringenin exposure alters the expres-
sion levels of miRNAs in HepaRG cells. After exposure, we collected small RNAs and
measured their relative abundance using Illumina HiSeq2500 (Genedenovo Biotechnology
Co., Ltd, Guangzhou, China). As shown in Table 2, clean reads of eight samples were
generated, respectively, after removing contaminant reads. An overview of reads for small
RNA sequencing from raw data to high quality and with quality filtering is provided
in Table 2. The length distributions of small RNAs were similar among libraries in that
21–23 nt RNAs were the most abundant (Figure 4).
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Table 2. Summary of sequence data generated for HepaRG cells’ small RNA and quality filtering.

Sample Clean Reads High Quality Smaller than 18 Nt Polya Low Cutoff Clean Tags

CK-1
13,123,917 13,076,410 2,570,571 540 328,987 10,051,993

(100%) (99.6380%) (19.6581%) (0.0041%) (2.5159%) (76.8712%)

CK-2
13,744,858 13,687,348 1,981,919 807 443,665 11,100,847

(100%) (99.5816%) (14.4799%) (0.0059%) (3.2414%) (81.1030%)

CK-3
12,609,501 12,563,626 1,535,545 766 306,124 10,571,146

(100%) (99.6362%) (12.2221%) (0.0061%) (2.4366%) (84.1409%)

CK-4
13,923,071 13,865,587 3,070,687 377 386,734 10,259,540

(100%) (99.5871%) (22.1461%) (0.0027%) (2.7892%) (73.9928%)

T-1
12,156,840 12,100,462 2,354,606 464 465,005 9,161,791

(100%) (99.5362%) (19.4588%) (0.0038%) (3.8429%) (75.7144%)

T-2
12,620,973 12,574,364 1,472,821 741 337,320 10,592,975

(99.6307%) (11.7129%) (0.0059%) (2.6826%) (84.2426%)

T-3
12,806,071 12,758,280 1,603,461 1012 307,185 10,700,322

(100%) (99.6268%) (12.5680%) (0.0079%) (2.4077%) (83.8696%)

T-4
14,891,138 14,831,250 2,514,654 556 317,307 11,831,747

(100%) (99.5978%) (16.9551%) (0.0037%) (2.1394%) (79.7758%)

CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin group.
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Figure 4. The length distribution of the small RNA sequence. CK-1, CK-2, CK-3, and CK-4, the
control group; T-1, T-2, T-3, and T-4, the naringenin group.

All the small RNAs were aligned in the GeneBank database (Release 209.0) and the
Rfam database (11.0) to identify and remove ribosomal RNA (rRNA), small conditional
RNA (scRNA), small nucleolar (snoRNA), small nuclear (snRNA), and transfer RNA
(tRNA). In accordance with reference genome, these small RNAs, mapped to exons, introns,
and repeat sequences, were also removed. The filtering small RNAs were searched against
miRBase database (Release 21) to identify miRNAs. The heat map of 3373 miRNAs shows
the cluster analysis of the control group and the naringenin group in Figure 5a. Illumina
HiSeq2500 profiling of the 3373 miRNAs analyzed in naringenin exposure vs. control
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samples showed that a total of 234 differentially expressed miRNAs (DEMs, 174 up- and
60 down-regulated; Table S2, Supplementary Materials) were detectable in HepaRG cells
(Figure 5b).
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Figure 5. Identification of differentially expressed microRNA (miRNAs) in response to naringenin. (a) Heat map of 3373
expressed miRNAs in response to naringenin. Each row represents one miRNA, and each column represents a sample. Red,
upregulation; blue, downregulation; CK-1, CK-2, CK-3, and CK-4, the control group; T-1, T-2, T-3, and T-4, the naringenin
group; (b) scatter plot showing 234 DEMs (174 up- and 60 down-regulated) comparing the control group with the naringenin
group. Each dot represents one miRNA. Red, upregulation; green, downregulation; blue, non-significance. CK, the control
group; T, the naringenin group.

2.3. Target Prediction and Integration Analysis of mRNA and miRNA Expression Profiles in
Response to Naringenin

Acting at the post-transcriptional level, miRNAs silence and/or down-regulate cellular
mRNA gene expression by target RNA cleavage. To predict the target genes of 234 DEMs,
we performed computational analyses using the RNAhybrid (v2.1.2) + svmlight (v6.01),
Miranda (v3.3a), and TargetScan (Version: 7.0). The simultaneous profiling of 234 DEMs
and 1037 DEGs levels in silico can identify the presumptive target mRNAs of miRNAs.
We selected the intersection of DEGs and target genes of DEMs, and then performed
bioinformatics analysis on these intersection genes. A total of 5607 negative miRNA-mRNA
pairs for naringenin treatment were obtained, with the involvement of 216 DEMs and 681
DEGs (Table S3, Supplementary Materials). In line with the GO classification system, 681
DEGs were classified into 58 subcategories (Figure 6). The first three subcategories had
not changed in three major functional categories compared with transcriptome sequencing
analysis (Figures 2 and 6).

Pathway enrichment analysis for 681 DEGs of 5607 negative miRNA-mRNA pairs
identified the top twenty pathways according to the smallest q-value and the largest
GeneNumber in pathway annotation after naringenin exposure (Figure 7): with PI3K–Akt
signaling pathway (25, 8.96%) being the eighth pathway and the second-most abundant.



Int. J. Mol. Sci. 2021, 22, 2292 7 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 16 
 

 

tem, 681 DEGs were classified into 58 subcategories (Figure 6). The first three subcatego-

ries had not changed in three major functional categories compared with transcriptome 

sequencing analysis (Figures 2 and 6). 

 

Figure 6. Gene Ontology terms categorization of 681 DEGs. Number of genes: number of target genes in a term. Red, 

upregulation; green, downregulation; CK, the control group; T, the naringenin group. 

Pathway enrichment analysis for 681 DEGs of 5607 negative miRNA-mRNA pairs 

identified the top twenty pathways according to the smallest q-value and the largest Gene-

Number in pathway annotation after naringenin exposure (Figure 7): with PI3K–Akt sig-

naling pathway (25, 8.96%) being the eighth pathway and the second-most abundant. 

Figure 6. Gene Ontology terms categorization of 681 DEGs. Number of genes: number of target genes in a term. Red,
upregulation; green, downregulation; CK, the control group; T, the naringenin group.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 7. Top 20 pathways of KEGG terms for 681 DEGs. GeneNumber: number of target genes in 

a pathway. RichFactor: ratio of number of target genes divided by number of all the genes in a 

term or pathway. 

2.4. Real-Time qPCR Validation of Naringenin Regulation in Liver Metabolism and Potential 

Regulatory miRNA-mRNA Pairs 

According to global gene function annotations, literature review, and their potential 

relationship with naringenin-responsive miRNAs, 19 DEGs (ALOX15, CA9, TH, HKDC1, 

NDUFA4L2, RRM2, ACSL5, PLA2G4C, LIPT2, UGDH, FTCD, ABAT, AZIN2, HS6ST3, 

B4GALT6, GUSB, DCT, ALAS2, and MAT1A) were manually selected as representatives 

for their potential roles in liver metabolism. In addition, the PI3K–Akt signaling pathway 

had been significantly enriched (fourth in the KEGG of RNA-seq analysis, Figure 3; eighth 

in the KEGG of miRNA-RNA-seq analysis, Figure 7); therefore, 11 DEGs (PDGFRB, 

CSF1R, FGFR2, IL2RG, IL7R, ITGB4, GNG4, PCK1, CREB3L3, CREB3L1, and NFκB1) 

among the PI3K–Akt signaling pathway were screened out. 

We here described the interaction between the 30 DEGs and 11 human miRNAs (hsa-

miR-1306-5p, hsa-miR-627-3p, hsa-miR-194-3p, hsa-miR-676-3p, hsa-miR-6837-5p, hsa-

miR-429, hsa-miR-100-3p, hsa-miR-194-5p, hsa-miR-519a-3p, hsa-miR-7-5p, and hsa-miR-

200a-5p), including 20 negative miRNA–mRNA interactions (Figure 8). As shown in Fig-

ure 8, a single miRNA can regulate multiple target mRNAs and vice versa (e.g., ABAT, 

HS6ST3, B4GALT6, and DCT could possibly be simultaneously regulated by hsa-miR-429; 

HS6ST3 may be simultaneously regulated by hsa-miR-429, hsa-miR-100-3p, hsa-miR-

519a-3p, hsa-miR-676-3p, hsa-miR-7-5p, and hsa-miR-194-5p; some DEGs had no paired 

DEMs). The expression profiles of 19 DEGs related to liver metabolism and 11 DEGs 

among the PI3K–Akt signaling pathway were further validated using real-time qPCR 

(Figure 9a,b). The expression level of 11 human miRNAs (two up- and nine down-regu-

lated) was further assessed for naringenin-induced changes by real-time qPCR consistent 

with sequencing results (Figure 9c). Although there were some quantitative differences 

Figure 7. Top 20 pathways of KEGG terms for 681 DEGs. GeneNumber: number of target genes in a
pathway. RichFactor: ratio of number of target genes divided by number of all the genes in a term
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2.4. Real-Time qPCR Validation of Naringenin Regulation in Liver Metabolism and Potential
Regulatory miRNA-mRNA Pairs

According to global gene function annotations, literature review, and their potential
relationship with naringenin-responsive miRNAs, 19 DEGs (ALOX15, CA9, TH, HKDC1,
NDUFA4L2, RRM2, ACSL5, PLA2G4C, LIPT2, UGDH, FTCD, ABAT, AZIN2, HS6ST3,
B4GALT6, GUSB, DCT, ALAS2, and MAT1A) were manually selected as representatives
for their potential roles in liver metabolism. In addition, the PI3K–Akt signaling pathway
had been significantly enriched (fourth in the KEGG of RNA-seq analysis, Figure 3; eighth
in the KEGG of miRNA-RNA-seq analysis, Figure 7); therefore, 11 DEGs (PDGFRB, CSF1R,
FGFR2, IL2RG, IL7R, ITGB4, GNG4, PCK1, CREB3L3, CREB3L1, and NFκB1) among the
PI3K–Akt signaling pathway were screened out.

We here described the interaction between the 30 DEGs and 11 human miRNAs
(hsa-miR-1306-5p, hsa-miR-627-3p, hsa-miR-194-3p, hsa-miR-676-3p, hsa-miR-6837-5p,
hsa-miR-429, hsa-miR-100-3p, hsa-miR-194-5p, hsa-miR-519a-3p, hsa-miR-7-5p, and hsa-
miR-200a-5p), including 20 negative miRNA–mRNA interactions (Figure 9). As shown in
Figure 9, a single miRNA can regulate multiple target mRNAs and vice versa (e.g., ABAT,
HS6ST3, B4GALT6, and DCT could possibly be simultaneously regulated by hsa-miR-429;
HS6ST3 may be simultaneously regulated by hsa-miR-429, hsa-miR-100-3p, hsa-miR-519a-
3p, hsa-miR-676-3p, hsa-miR-7-5p, and hsa-miR-194-5p; some DEGs had no paired DEMs).
The expression profiles of 19 DEGs related to liver metabolism and 11 DEGs among the
PI3K–Akt signaling pathway were further validated using real-time qPCR (Figure 9a,b).
The expression level of 11 human miRNAs (two up- and nine down-regulated) was further
assessed for naringenin-induced changes by real-time qPCR consistent with sequencing
results (Figure 9c). Although there were some quantitative differences between the two
analytical platforms, the similarities between the RNA-seq data and the real-time qPCR
suggested that the RNA-seq data were reproducible and reliable.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 16 
 

 

between the two analytical platforms, the similarities between the RNA-seq data and the 

real-time qPCR suggested that the RNA-seq data were reproducible and reliable. 

 

Figure 8. Putative miRNA–mRNA negative correlation network in response to naringenin. Rectan-

gular nodes, mRNAs; diamond nodes, miRNAs. 

. 

(a) 

Figure 8. Putative miRNA–mRNA negative correlation network in response to naringenin. Rectangular nodes, mRNAs;
diamond nodes, miRNAs.



Int. J. Mol. Sci. 2021, 22, 2292 9 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 17 
 

 

 

. 

(a) 

 
(b) 

Figure 9. Cont.



Int. J. Mol. Sci. 2021, 22, 2292 10 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 17 
 

 

 
(c) 

Figure 9. Relative mRNA and miRNA expression of the control group and the naringenin group, in respect to RNA-seq 
and real-time qPCR. (a) The 19 genes involved in liver metabolism; (b) 11 genes involved in the PI3K–Akt signaling path-
way; (c) 11 putative regulatory miRNAs. Y-axis represents log2 (FC); FC (fold change) = the naringenin group/the control 
group. The dashed line indicated fold change data of 2.0. Values are the mean ± SD (n = 4). 

3. Discussion and Conclusions 
The findings discussed here reveal the first detailed information regarding parallel 

mRNA and miRNA expression changes in HepaRG cells in response to naringenin. We 
performed an integrative analysis of these data including 234 DEMs and 1037 DEGs in-
duced by naringenin, which provide global insight into the miRNA–mRNA interactions 
of naringenin in the regulatory mechanism. According to the gene function annotations 
and literature review, 19 DEGs related to metabolism were screened out. In particular, the 
PI3K–Akt signaling pathway was significantly enriched both in analysis of transcriptome 
sequencing (the third-most abundant, and ranked fourth) and integration analysis of 
miRNA-mRNA expression profiles (the second-most abundant, and ranked eighth) in re-
sponses to naringenin. In addition, 11 DEGs in the PI3K–Akt signaling pathway were fur-
ther validated using real-time qPCR analysis. In this work, we constructed a miRNA-
mRNA regulatory network according to the DEMs and DEGs datasets and miRNA-tar-
geting information. Some studies have demonstrated that the miRNA–mRNA regulatory 
network responds to liver damage, including hepatocellular carcinoma and oxidative 
stress [15]. Although several miRNA-induced RNA activation phenomena were identified 
[16], under most circumstances, the negative correlation between miRNAs and their target 
mRNAs is often considered support for miRNA targeting [17]. Ultimately, 20 miRNA-
mRNA negative correlation pairs were identified with the involvement of liver metabo-
lism and the PI3K–Akt signaling pathway. 

With regard to global genes, we addressed our particular research question using 
pathway analysis to highlight 19 DEGs related to the functional clusters: metabolism, in-
cluding Lipid metabolism (ALOX15, ACSL5, PLA2G4C, and B4GALT6), Energy metabo-
lism (CA9 and NDUFA4L2), Metabolism of cofactors and vitamins (TH, LIPT2, and 

Figure 9. Relative mRNA and miRNA expression of the control group and the naringenin group, in respect to RNA-seq and real-time
qPCR. (a) The 19 genes involved in liver metabolism; (b) 11 genes involved in the PI3K–Akt signaling pathway; (c) 11 putative
regulatory miRNAs. Y-axis represents log2 (FC); FC (fold change) = the naringenin group/the control group. The dashed line indicated
fold change data of 2.0. Values are the mean ± SD (n = 4).

3. Discussion and Conclusions

The findings discussed here reveal the first detailed information regarding parallel
mRNA and miRNA expression changes in HepaRG cells in response to naringenin. We per-
formed an integrative analysis of these data including 234 DEMs and 1037 DEGs induced
by naringenin, which provide global insight into the miRNA–mRNA interactions of narin-
genin in the regulatory mechanism. According to the gene function annotations and litera-
ture review, 19 DEGs related to metabolism were screened out. In particular, the PI3K–Akt
signaling pathway was significantly enriched both in analysis of transcriptome sequencing
(the third-most abundant, and ranked fourth) and integration analysis of miRNA-mRNA
expression profiles (the second-most abundant, and ranked eighth) in responses to narin-
genin. In addition, 11 DEGs in the PI3K–Akt signaling pathway were further validated
using real-time qPCR analysis. In this work, we constructed a miRNA-mRNA regulatory
network according to the DEMs and DEGs datasets and miRNA-targeting information.
Some studies have demonstrated that the miRNA–mRNA regulatory network responds
to liver damage, including hepatocellular carcinoma and oxidative stress [15]. Although
several miRNA-induced RNA activation phenomena were identified [16], under most
circumstances, the negative correlation between miRNAs and their target mRNAs is often
considered support for miRNA targeting [17]. Ultimately, 20 miRNA-mRNA negative cor-
relation pairs were identified with the involvement of liver metabolism and the PI3K–Akt
signaling pathway.

With regard to global genes, we addressed our particular research question using path-
way analysis to highlight 19 DEGs related to the functional clusters: metabolism, including
Lipid metabolism (ALOX15, ACSL5, PLA2G4C, and B4GALT6), Energy metabolism (CA9
and NDUFA4L2), Metabolism of cofactors and vitamins (TH, LIPT2, and FTCD), Amino
acid metabolism (RRM2, AZIN2, DCT, ALAS2, and MAT1A), Glycan biosynthesis and
metabolism (HS6ST3 and GUSB), and Carbohydrate metabolism” (HKDC1, PCK1, UGDH,
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and ABAT). These 19 DEGs enriched to metabolism are primarily involved in insulin
sensitivity, lipid accumulation, glycogen storage, and energy expenditure. Previous studies
reported that the down-regulation of ALOX15 in alcohol-induced mice liver damage [18],
CA9 in BALB/c mice [19], TH in nonalcoholic fatty liver disease (NAFLD) [20], HKDC1 [21],
and the up-regulation of UGDH [22] can significantly relieve oxidative stress, lipid accu-
mulation, and liver damage. Knockdown of NDUFA4L2 suppressed ROS accumulation
and apoptosis in hepatocellular carcinoma (HCC) cells [23]. RRM2 silencing inhibited
NCI-H929 cell proliferation [24], and FTCD overexpression suppressed cell proliferation
by promoting DNA damage and inducing cell apoptosis in HCC cells [25]. Ablation of
ACSL5 improved insulin sensitivity, increased energy expenditure, and delayed triglyceride
absorption in mice [26]. DCT supplementation improved age-associated liver steatosis
and inflammation [27]. Lipid droplet formation upon fatty acid and hepatitis C virus
stimulation in PLA2G4C knockdown cells was impaired [28]. The down-regulation of
LIPT2 inhibited fatty acid synthesis [29]. The up-regulation of ABAT [30], AZIN2 [31],
B4GALT6 [32], HS6ST3 [33], and GUSB [34] could promote fatty acid and glycogen de-
composition. ALAS2 overexpression could improve liver hematopoietic capacity [35], and
MAT1A expressed in hepatocytes maintained the differentiated state of these cells [36].
Consistent with the findings described above, the regulation of these metabolic genes in
our results may be favorable to improve metabolism in response to naringenin.

The PI3K–Akt signaling pathway may offer clues for the molecular mechanism in-
volved in metabolism, inflammation, and oxidative stress [37], which plays a pivotal role
in the response to naringenin. The PI3K–Akt signaling pathway has diverse downstream
effects on cellular metabolism through either direct regulation of nutrient transporters and
metabolic enzymes or the control of transcription factors that regulate the expression of key
components of metabolic pathways [38,39], including glucose metabolism, biosynthesis
of macromolecules, and maintenance of redox balance. It was reported that PDGFRB
silencing inhibited the activation and proliferation of hepatic stellate cells and ameliorated
liver fibrosis [40]. The collaborative inhibition of CSF1R and FGFR2 is expected to en-
hance the antitumor effects by targeting immune evasion and angiogenesis in the tumor
microenvironment [41]. Knocking down ITGB4 suppressed glycolysis in cancer-associated
fibroblasts [42]. Genetic knockdown of PCK1 prevented fatty-acid-induced rise in oxidative
flux, oxidative stress, and inflammation [43], which was also correlated with signaling
pathways governed by insulin [44]. It was shown that overexpression of nuclear CREB3L3
induced systemic lipolysis, hepatic ketogenesis, and insulin sensitivity with increased
energy expenditure [45]. Inhibition of CREB3L1 reportedly blocked cancer invasion and
metastasis [46]. NFκB is a key regulator of immune development, immune responses,
inflammation, and cancer [47]. It has been well-established that suppressing NFκB trans-
duces anti-inflammatory signals and reduces inflammation [48]. In the PI3K–Akt signaling
pathway, our results showed that naringenin significantly down-regulated the mRNA
expressions of PDGFRB, PCK1, CREB3L1, and NFκB1 with related miRNAs (has-miR-1306-
5p and hsa-miR-627-3p) being significantly down-regulated. Therefore, our data suggested
that naringenin may play a salutary role in anti-inflammatory, anti-oxidative stress, and
ameliorative metabolism via the inhibition of the PI3K–Akt signaling pathway.

This study was the first to integrated the analysis of mRNA-seq and miRNA-seq in
the liver in response to naringenin, and provide a perspective of metabolism in naringenin
regulation. In terms of metabolism and the PI3K–Akt signaling pathway, the 11 DEMs,
30 DEGs, and 20 miRNA-mRNA pairs need more research for the activities of naringenin.
There are some limitations of this research; for example, the dose-dependent and time-
dependent effects of naringenin in miRNA-mRNA interactions were still unclear. Although
given miRNAs analyzed in silico suggested regulatory capacities, their functions need to
be further certified in a specific context within a living system. In summary, we provided
preliminary research analyzing mRNA and miRNA expression and profiling of metabolism.
The regulatory mechanism of miRNA-mRNA pairs could be additional possible evidence
for annotating the nutraceutical value of naringenin.
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4. Materials and Methods
4.1. Chemicals and Reagents

The HepaRG cell line was originally purchased from Biopredic International (Rennes,
France). RPMI-1640 medium and penicillin-streptomycin-glutamine solution were obtained
from Gibco (Gaithersburg, MD, USA). Fetal bovine serum (FBS) was purchased from
Corning (Auckland, New Zealand). Naringenin and dimethyl sulfoxide (DMSO) were
from Sigma-Aldrich (St. Louis, MO, USA). TRIzol™ reagent was supplied by Thermo
Fisher (Carlsbad, CA, USA). Ultrapure water was purified by a Milli-Q academic water
purification system (Millipore, Bedford, MA, USA). All other reagents were commercialized
products of the highest analytical grade available.

4.2. HepaRG Cells Culture

The HepaRG cells were seeded at 5 × 104 cells/cm2 in six-well plates and grown in
RPMI-1640 medium, cultured with or without 100 µM naringenin for 48 h, and supple-
mented with 10% FBS and 1% antibiotics (100 U/mL penicillin and 100 µg/mL strepto-
mycin) at 37 ◦C in a humidified 5% CO2 incubator. CK-1, CK-2, CK-3, and CK-4 refer to the
control check group; T-1, T-2, T-3, and T-4 refer to the 100 µM naringenin treatment group.
The numbers 1, 2, 3, and 4 represent samples from four independent repeated experiments.

4.3. Total RNA Extraction

HepaRG cells were washed twice with ice-cold phosphate-buffered saline (PBS) and
harvested with TRIzol™ reagent as recommended by the manufacturer. Thermo Scientific
NanoDrop™ 2000 c Spectrophotometers (Wilmington, DE, USA) were used to measure the
RNA quality and quantity of each sample according to the manufacturers’ protocol.

4.4. RNA Sequencing

The mRNA was enriched by Oligo(dT) beads, then the enriched mRNA was frag-
mented and reverse-transcripted into cDNA with random primers by QiaQuick PCR
extraction kit (Qiagen, Venlo, The Netherlands). RNA molecules in a size range of 18–30 nt
were enriched by polyacrylamide gel electrophoresis. The 3′ and 5′ adapters were added,
then enriched RNAs were reverse-transcripted by the QiaQuick PCR extraction kit, ac-
cording to the manufacturer’s instructions (Qiagen, Venlo, The Netherlands). The ligation
products were size-selected by agarose gel electrophoresis. There were four samples in
the naringenin group and four samples in the control group. Each sample generated two
cDNA libraries: one for mRNA-seq and the other for miRNA-seq. PCR amplified products
were enriched to respectively generate 16 cDNA libraries and sequenced using Illumina
HiSeq2500 by Genedenovo Biotechnology Co. (Guangzhou, China). The RNA and small
RNA sequencing data were deposited in the NCBI Sequence Read Archive (accession
numbers from SRR13675952 to SRR13675963).

4.5. Real-Time qPCR

Transcription of mRNA into cDNA was conducted with the GoScript™ Reverse
Transcription System (Promega, Madison, WI, USA) from 3 µg of total RNA, according
to the manufacturer’s instructions. For miRNA analysis, cDNA-synthesis was performed
with the miRNA First Strand cDNA Synthesis (Tailing Reaction, Sangon Biotech, Shanghai,
China) from 2 µg of total RNA.

The real-time qPCR was carried out with GoTaq® qPCR Master Mix (Promega, Madi-
son, WI, USA) on a LightCycler 480 (Roche, Mannheim, Germany), as recommended by
the manufacturer. The thermal cycling procedure started with an initial denaturation at
95 ◦C for 10 min. This was followed by 45 cycles of denaturation for 10 s at 95 ◦C, primer
binding for 20 s at 60 ◦C, and elongation for 20 s at 72 ◦C. The procedure ended with a final
amplification at 95 ◦C for 5 s, 65 ◦C for 1 min, the addition of a dissociation curve step, and a
cooling step. Primers were purchased from Sangon Biotech (Shanghai, China). The primer
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pairs’ sequences used for the validation of the signature are described in Tables 3 and 4.
Ct-values were calculated in reference to β-actin or U6.

Table 3. List of 32 mRNA primers for real-time qPCR.

Gene Forward Sequence (5′→3′) Reverse Sequence (5′→3′)

PDGFRB TGCAGACATCGAGTCCTCCAAC GCTTAGCACTGGAGACTCGTTG
CSF1R GCTGCCTTACAACGAGAAGTGG CATCCTCCTTGCCCAGACCAAA
FGFR2 GTGCCGAATGAAGAACACGACC GGCGTGTTGTTATCCTCACCAG
IL2RG CACTCTGTGGAAGTGCTCAGCA GAGCCAACAGAGATAACCACGG
IL7R ATCGCAGCACTCACTGACCTGT TCAGGCACTTTACCTCCACGAG

ITGB4 AGGATGACGACGAGAAGCAGCT ACCGAGAACTCAGGCTGCTCAA
GNG4 CTCCAGATTCAGCCTCCGTTTTG TGCCATAGGTCTGGAAGAGGTG
PCK1 CATTGCCTGGATGAAGTTTGACG GGGTTGGTCTTCACTGAAGTCC

CREB3L3 GAAGCCTCTGTGACCATAGACC GGAGGTCTTTCACGGTGAGATTG
CREB3L1 GCCTTGTGCTTTGTTCTGGTGC CCGTCATCGTAGAATAGGAGGC

NFκB1 GCAGCACTACTTCTTGACCACC TCTGCTCCTGAGCATTGACGTC
ALOX15 ACCTTCCTGCTCGCCTAGTGTT GGCTACAGAGAATGACGTTGGC

CA9 GTGCCTATGAGCAGTTGCTGTC AAGTAGCGGCTGAAGTCAGAGG
TH GCTGGACAAGTGTCATCACCTG CCTGTACTGGAAGGCGATCTCA

HKDC1 ATCGCCGACTTCCTGGACTACA GCCTTGAAACCTTTGGTCCACC
NDUFA4L2 CTGGGACAGAAAGAACAACCCG CAGCCTGGCTTAGAAGTCTGGC

RRM2 CTGGCTCAAGAAACGAGGACTG CTCTCCTCCGATGGTTTGTGTAC
ACSL5 GCTTATGAGCCCACTCCTGATG GGAAGAATCCAACTCTGGCTCC

PLA2G4C GGAAGACTGGTCAGAACTCACC GCATTAGCAACAGCCCTTCTCC
LIPT2 GTCTGGCTAGACGATCGCAAGA GCACGATGTGCTCAAACCACGT
UGDH TGTGATGGTGCCCATGCTGTTG GTCCATCGAAGATAAAGGCTGGC
FTCD GGAGAACCTCTTCATCCTGGAG ATGATCCGCTCCTTAGGGCTGA
ABAT GCCTCTGATGAAGACGGAAGTC CATTCGGTTGCCGTCCACATCA
AZIN2 CTTCACTGTGGCAGTCAGCATC TCCCATACACGCCCTCATCAAG
HS6ST3 ACTGGACGGAGCTCACCAACTG TCGCTCAGGTAACGTGACACTG

B4GALT6 CTCATTCCTTTCCGTAATCGCCA GCCCACATTGAAAAGCATCGCAC
GUSB CTGTCACCAAGAGCCAGTTCCT GGTTGAAGTCCTTCACCAGCAG
DCT CTCAGACCAACTTGGCTACAGC CAACCAAAGCCACCAGTGTTCC

ALAS2 GCCTCAAAGGATGTGTCCGTCT TACTGGTGCCTGAGATGTTGCG
MAT1A GCCAAGTCTCTGGTGAAAGCAG CTGTCTTCTGAGAGGTTCCGTAG
β-Actin TGAATGATGAGCCTTCGTGC CTGGTCTCAAGTCAGTGTAC

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

Table 4. List of 11 miRNA primers for real-time qPCR.

miRNA Name miRNA Sequence (5′→3′) Forward Sequence (5′→3′)

hsa-miR-1306-5p CCACCTCCCCTGCAAACGTCCA GCCACCTCCCCTGC
hsa-miR-627-3p TCTTTTCTTTGAGACTCACT CGCAGTCTTTTCTTTGAGACTC
hsa-miR-194-3p CCAGTGGGGCTGCTGTTATCTG CAGTGGGGCTGCTGT
hsa-miR-676-3p CTGTCCTAAGGTTGTTGAGTT CAGCTGTCCTAAGGTTGTTG

hsa-miR-6837-5p ACCAGGGCCAGCAGGGAATGT ACCAGGGCCAGCAG
hsa-miR-429 TAATACTGTCTGGTAAAACCGT CGCAGTAATACTGTCTGGT

hsa-miR-100-3p CAAGCTTGTATCTATAGGTATG CGCAGCAAGCTTGTATC
hsa-miR-194-5p CGGGTAGAGAGGGCAGTGGGAGG CGGGTAGAGAGGGCAGT

hsa-miR-519a-3p AAAGTGCATCCTTTTAGAGTGT GCAGAAAGTGCATCCTTTTAGAG
hsa-miR-7-5p TGGAAGACTAGTGATTTTGTTGTT CGCAGTGGAAGACTAGTGA

hsa-miR-200a-5p CATCTTACCGGACAGTGCTGGA AGCATCTTACCGGACAGT

4.6. Bioinformatic Analysis and SStatistics

DEGs and DEMs were identified using an R-based software package. The threshold
value for selection of DEGs and DEMs was q-value (adjusted p-value) ≤ 0.05 and fold
change (FC) ≥2 or ≤0.5. KEGG and GO classification including molecular functions,
biological processes, and cellular components were used to analyze DEGs and DEMs.



Int. J. Mol. Sci. 2021, 22, 2292 14 of 16

The results of biological assay are presented in the form of mean ± SD based on four
independent experiments in GraphPad Prism 8.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-0
067/22/5/2292/s1: Table S1, Identification of 1037 differentially expressed mRNAs in response to
naringenin; Table S2, Identification of 234 differentially expressed miRNAs in response to naringenin;
Table S3, Identification of 5607 negative miRNA-mRNA pairs in response to naringenin, with the
involvement of 216 DEMs and 681 DEGs in total.
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