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Abstract

Cephalotaxus hainanensis, an endangered plant, is known to contain several metabolites with anti-cancer activity. Despite its
clinical impact, the alkaloid metabolism of this species has remained largely uncharacterized. The potential of Cephalotaxus
for metabolic engineering of medically interesting compounds has, so far, not been exploited, due to the almost complete
lack of molecular information. We have therefore performed a high throughput RNA-seq analysis and assembled the
transcriptome de novo. Raw reads comprising 4.3 Gbp were assembled de novo into 39,416 unique sequences (unigenes)
with a mean length of 1,089.8 bp and a total assembly size of 45.8 Mbp, which equals to more than 50 times the number of
Cephalotaxaceae sequences currently deposited in the GenBank (as of August 2013). As proof of principle for medically
interesting pathways, gene fragments related to paclitaxel biosynthesis were searched and detected. To verify their
functionality, the metabolic product paclitaxel, and its precursor baccatin III, were identified in the leaves of C. hainanensis
by HPLC, and shown to be induced by MeJA. This finding demonstrates exemplarily the potential of the annotated
transcriptome as information resource for the biotechnological exploitation of plant secondary metabolism.

Citation: Qiao F, Cong H, Jiang X, Wang R, Yin J, et al. (2014) De Novo Characterization of a Cephalotaxus hainanensis Transcriptome and Genes Related to
Paclitaxel Biosynthesis. PLoS ONE 9(9): e106900. doi:10.1371/journal.pone.0106900

Editor: Lars Kaderali, Technische Universität Dresden, Medical Faculty, Germany

Received March 19, 2014; Accepted August 11, 2014; Published September 9, 2014

Copyright: � 2014 Qiao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All sequence data, including raw Illumina reads
and transcriptome assembly, are now accessible through the NCBI SRA (accession No.: SRR1509462) and TSA database (accession No.: GBHQ01000000), we have
added the accession numbers into our manuscript.

Funding: This work was supported by Hainan University Young Scientist Fund (qnjj1217) and Special Fund for Agro-scientific Research in the Public Interest
(201303117). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: hanqing.cong@hotmail.com (HC); hnjiangxuefei@gmail.com (XJ)

. These authors contributed equally to this work.

Introduction

Plants generate around 106 specific secondary metabolites [1].

Most of these metabolites modulate the interaction of plants with

other organisms and therefore many of them are pharmaceutically

active. Often, those compounds are medically relevant, but cannot

be synthetized technically and therefore have to be extracted and

purified from their natural source. The underlying metabolic

pathways are complex and often require the interaction of

different cell types until the active compound is stored in

specialized tissues [2], often even in specialized secretory cells.

This renders extraction cumbersome, inefficient and costly. Very

often, the respective plants are endangered. For instance, the

Pacific Yew was brought to the verge of extinction by the discovery

that paclitaxel can block the growth of human tumors. Biotech-

nological approaches, for instance based on tissue culture, would

be an alternative. Especially in a situation, where small quantities

of a highly priced product have to be produced, Green Molecular

Farming turns out to excel other systems of biotechnological

production such as transgenic animals or microorganisms [3]. The

focus of Green Molecular Farming has been on the production of

recombinant proteins, whereas the wealth of plant secondary

compounds has remained mostly unexploited. One limitation is

our still incomplete knowledge on the underlying pathways and

the genes driving metabolic complexity. For two decades, the

impressive advances of molecular biology have remained confined

to few model systems – in the plant field mostly thale cress and rice

– whereas medically interesting species were not accessible. The

technological breakthroughs in high-throughput technologies,

especially next-generation sequencing, have now allowed extend-

ing molecular analysis to more ‘‘exotic’’ models that so far had

remained out of scope.

Cephalotaxus, the sole representative of the family Cephalotax-

aceae, is distributed through southern and eastern Asia. As a

member of this genus, Cephalotaxus hainanensis is endemic to the

tropical island of Hainan. C. hainanensis is an evergreen conifer

tree which can reach 20–25 m in height. Due to its slow growth

and over-exploitation for timber and medical purposes, Cephalo-
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taxus hainanensis is already classified as an endangered plant in

China.

Alkaloids of Cephalotaxus were reported back to 1954 [4]. Some

50 alkaloids, falling into two types (cephalotaxine-type and

homoerythrine-type) have been isolated and identified from this

genus so far [5]. Among these alkaloids, drupangtonine,

11a-hydroxy-homodeoxy-harringtonine, 11b-hydroxy-homodeoxy-

harringtonine, 11b-hydroxy-deoxy-harringtonine [6], neoharringto-

nine, homo-neoharringtonine, (39S)-hydroxyl-neoharringtonine [7],

nordeoxy-harringtonine, homodeoxy-harringtonine and bishomo-

deoxy-harringtonine have attracted medical interest [8], due to

their cytotoxicity against P-388 leukemia cells. Most recently,

homoharringtonine-based induction therapies were shown to be

more effective against acute myeloid leukemia compared to

daunorubicin and cytarabine, hitherto considered as the gold

standard for induction chemotherapy [9]. Moreover, some

Cephalotaxus alkaloids harbor also activities against epidermoid

carcinoma [10], lymphoma [11], and nasopharynx carcinoma [12],

as well as against pertinent human parasites such as Plasmodium
falciparum and Leishmania major [13].

Although it is principally possible to synthetize these rare

alkaloids and their analogues chemically [14], this approach has

not been pursued intensively, probably due to low efficiency.

Biosynthesis should be possible, and a pathway has been already

proposed by Powell [15]. However, sequence information on the

enzymes driving the biosynthesis of these alkaloids has remained

elusive. The advent of RNA-Seq technique has facilitated large-

scale gene discovery [16], and in fact, with this method, a gene

cluster involved synthesis of an anticancer alkaloid in poppy has

been identified [17].

In the current study, we apply this strategy to Cephalotaxus
hainanensis, as case study for a pharmacologically interesting

species, for which only limited sequence information is available.

Illumina RNA-Seq technology was used to generate 51,442,422

short reads containing a total of 5,195,684,622 nucleotide bases.

By de-novo assembly, 39,416 unigenes with an average length of

1090 bp were identified by combining these reads and annotated

with respect to their potential function. This sequence information

will be used as a platform for global gene discovery in

Cephalotaxus. To demonstrate the feasibility of this strategy,

sequences related to paclitaxel biosynthesis were identified using

this platform, and the metabolites predicted by the presence of

these genes, paclitaxel and its precursor baccatin III, subsequently

could be detected in leaves of C. hainanensis.

Materials and Methods

Preparation of plant samples and RNA isolation
Seedlings of C. hainanensis were collected in the greenhouse of

the Institute of Tropical Crop Genetic Resources, Chinese

Academy of Tropical Agricultural Sciences (CATAS) originating

from Jianfengling in Ledong county, Hainan province, China. The

leaves were harvested and frozen immediately in liquid nitrogen.

Total RNA was extracted using a CTAB-based isolation

procedure [18], and purified with the Axyprep multisource total

RNA miniprep kit (Axygen Scientific, Inc., Hangzhou, China).

The quantity and quality of the isolated total RNA was verified

using UV spectrophotometry (DU800, Beckman Coulter, USA)

and gel electrophoresis, respectively.

Library construction and Illumina sequencing
A C. hainanensis leaf transcriptome library was constructed

using an mRNA-seq assay for paired-end Illumina sequencing,

which was performed at Majorbio Biopharm Technology Co.,

Ltd. (Shanghai, China). Poly(A) mRNA was isolated from total

RNA by using Sera-mag Magnetic Oligo (dT) Beads (Thermo

Fisher Scientific, USA), and then mRNA-enriched RNAs were

chemically fragmented to short pieces using the RNA Fragmen-

tation Reagent (Ambion, USA). Double-stranded cDNA was

synthesized using the SuperScript Double-Stranded cDNA Syn-

thesis Kit (Invitrogen, Carlsbad, CA). Subsequently, the Illumina

Paired End Sample Prep kit (Illumina, USA) was used to construct

a RNA-seq library which then was sequenced by Illumina HiSeq

2000 (Illumina, San Diego, CA).

De novo Assembly
Due to the absence of reference genomic sequences, de-novo

assembly was applied to construct transcripts from these RNA-seq

reads. Briefly, the raw reads generated by Illumina Hiseq 2000

were initially processed to generate clean reads by removing the

adapter sequences and low quality bases at the 39 end. Then, the

transcriptome was assembled de novo using the short-read

assembly program Trinity (http://trinityrnaseq.sourceforge.net/)

following a published method [19]. Clean reads with a specified

length of overlap were firstly combined to form longer contiguous

sequences (contigs), and then these reads were mapped back onto

the contigs using pair-end joining and gap-filling in silico. A

minimum of three read pairs was used as criterion to define order

and distance between two contigs to exclude chimeric reads arising

from miss-assembly. This strategy allowed to detect contigs

originating from the same transcript and also to calculate the

distances between the contigs. Subsequently, the reconstructed

contigs were assembled further to obtain longer sequences. This

procedure was reiterated until the constructed sequence could not

be extended on either end using the Trinity software. Such

saturated combined contigs were considered as unique transcripts.

Finally, these unique assembled transcripts were further processed

using the sequence-splicing redundancy removal routine of Trinity

to yield non-redundant transcripts defined as unigenes.

ORF Prediction and Annotation of Gene Functions
All operationally defined C. hainanensis unigenes were analyzed

for open reading frames using the Trinity software. In parallel,

these sequences were subjected to similarity search in the NCBI

non-redundant (Nr) protein database (http://www.ncbi.nlm.nih.

gov/), the String database (http://string-db.org/), and the Swiss-

Prot database (http://www.expasy.ch/sprot) using Blastx with an

E-value of less than 1e25. Unigene sequences that did not produce

hits in the first database were reiterated by a search in the next

database. Based on the Blast results, the unigene sequences were

translated into the related peptide sequences. Protein sequences of

high similarity to these peptide sequences were retrieved from

these databases along with their functional annotations to infer

functions from the information available for homologous genes.

Based on the annotation in the non-redundant (Nr) protein

database, the Blast2GO program (http://www.blast2go.com/

b2ghome) was used to search for gene ontological annotations

according to molecular function, biological process and cellular

component for the C. hainanensis unigenes [20]. After retrieving

the GO annotations for every unigene, they were classified using

the WEGO software (http://wego.genomics.org.cn/cgi-bin/

wego/index.pl) with respect to functional classification, which

allows to define functional clusters [21]. In parallel, the unigenes

were also aligned to the Clusters of Orthologous Groups (COG)

database (http://www.ncbi.nlm.nih.gov/COG/) to predict and

classify possible functions. Pathway assignments were carried out

according to the Kyoto Encyclopedia of Genes and Genomes

C. hainanensis Transcriptome and Paclitaxel Biosynthesis Genes
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(KEGG) pathway database (http://www.genome.jp/kegg) using

Blastx with E-value threshold of 1025.

EST-SSR detection and primer design
The 32,687 unigenes were screened for potential SSR markers

using the msatcommander (http://code.google.com/p/

msatcommander/) following previously described methods [22].

The parameters were adjusted for identification of perfect mono-

nucleotide, di-nucleotide, tri-nucleotide, tetra-nucleotide, penta-

nucleotide, and hexa-nucleotide motifs with a minimum of 10, 6,

4, 4, 4, and 4 repeats, respectively. Mononucleotide repeats were

ignored since distinguishing genuine mononucleotide repeats from

polyadenylation products and single nucleotide stretch errors

generated by the sequencing itself turned out to be difficult. Primer

pairs were designed using BatchPrimer3 software [23]. The major

parameters for primer pair design were set as follows: primer

length of 18–23 bases (optimal 20 bases), PCR product size of

100–400 bp (optimally 200 bp), GC content of 40–70% (optimally

50%), and annealing temperatures of 50–60uC (optimally 55uC).

HPLC analysis
Leaves of C. hainanensis were ground thoroughly with mortar

and pestle in liquid nitrogen. 0.25 g of leaf powder were

transferred to 1.25 ml methanol and homogenized by an

ultrasonic processor for 30 min. The homogenate was incubated

for 1 h in the dark at room temperature, then mixed vigorously by

(vortex), and centrifuged at 13000 rpm for 10 min. Then the

supernatant was filtrated through a 0.22 mm syringe filter (Life

Sciences) prior to injection into the HPLC.

Paclitaxel and baccatin III were analyzed using a high

performance liquid chromatograph, HPLC (Hitachi, 2130 series,

Japan) equipped with an octadecylsilyl column (Kromasil 100-

5C18, 4.6 mm625 cm, particle size 5 mm), a UV detector, and a

quaternary valve. The flow rate was 1.0 ml?min21, and the

injection volume was 20 ml. The mobile phases included

acetonitrile (ACN), formic acid and water in the following

gradient: 30 min water/ACN/formic acid (58/40/2, v/v); 3 min

water/ACN/formic acid (8/90/2, v/v); 5 min water/ACN/

formic acid (58/40/2, v/v). Paclitaxel and baccatin III were

quantified and identified using an external standard on the basis of

retention time and UV-VIS spectra. The standards for paclitaxel

and baccatin III (Aladdin, Shanghai) were dissolved in methanol at

a concentration of 1 mg?ml21, respectively. Calibration curves

determined using these standards were linear (r2$0.999) and used

for quantification of the samples. At least three independent

experimental series were conducted.

To observe, whether paclitaxel and baccatin III contents can be

enhanced by elicitation, the leaves were rubbed with a solution of

1 mM MeJA and harvested at indicated time points (0.5, 12, 24,

36, 48, 72 h) for HPLC analysis.

Figure 1. Distribution of frequency (absolute numbers) over the length. The constructed unigenes from de-novo assembly of Cephalotaxus
hainanensis short reads were generated by Illumina Hiseq 2000 sequencing. The total number of assembled unigenes is 39,416 unigene.
doi:10.1371/journal.pone.0106900.g001

Table 1. Quantitative characteristics of the reconstructed C.
hainanensis transcriptome.

Type Number

Total genes (including ORF) 25,731

Total unigenes 39,416

Total residues (bp) 42,954,608

Average length per unigene 1,089.78

Largest unigene (bp) 8,604

Smallest unigene (bp) 351

doi:10.1371/journal.pone.0106900.t001
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Results

Illumina sequencing and de novo assembly
The raw data from the C. hainanensis experimental samples

yielded a total of 51,442,422 short sequence reads consisting of

5,195,684,622 nucleotides (nt) total, with an average length of

90 bp for each short read (NCBI SRA accession

No.: SRR1509462). In total, 39,416 unigenes could be construct-

ed. This Transcriptome Shotgun Assembly project has been

deposited at DDBJ/EMBL/GenBank under the accession

GBHQ00000000. The version described in this paper is the first

version, GBHQ01000000. As shown in Figure 1, the sequence

length of these assembled unigenes ranged from 351 bp to

8,604 bp, with an average length of 1,089.78 bp. The number

of unigenes decreased with increasing unigene length (Figure 1).

The quantitative parameters of the assembled transcriptome are

summarized in Table 1.

Figure 2. Frequency distribution ontological classifications. The results are grouped into three main categories: biological process, cellular
component and molecular function. The right y-axis indicates the number of genes in a category. The left y-axis indicates the percentage of a specific
category of genes in that main category. Note that this axis is logarithmic to appropriately depict the large variations in abundance.
doi:10.1371/journal.pone.0106900.g002

Table 2. List of selected unigenes involved in paclitaxel biosynthesis.

Gene ID Annotation from homology in GenBank
Similarity
(%) E-value

1782 geranylgeranyl diphosphate synthase [Taxus canadensis] 93% 0

2312 taxane 10-beta-hydroxylase (5-alpha-taxadienol-10-beta-hydroxylase; cytochrome P450 725A1) [Taxus wallichiana var. chinensis] 81% 0

3857 geranylgeranyl diphosphate synthase 6 [Picea abies] 91% 8e-131

5165 phenylalanine aminomutase [Taxus wallichiana var. chinensis] 86% 0

7490 taxadiene 5-alpha hydroxylase [Taxus cuspidata] 79% 0

8229 geranylgeranyl diphosphate synthase 5 [Picea abies] 84% 0

13420 taxadiene synthase (Taxa-4(5),11(12)-diene synthase) [Taxus brevifolia] 78% 1e-167

13597 taxadiene synthase (Taxa-4(5),11(12)-diene synthase) [Taxus baccata] 82% 0

13862 taxadiene 5-alpha hydroxylase [Taxus wallichiana var. chinensis] 86% 2e-112

16282 13-alpha-hydroxylase [Taxus wallichiana var. chinensis] 79% 4e-165

16379 13-alpha-hydroxylase [Taxus wallichiana var. chinensis] 81% 2e-119

doi:10.1371/journal.pone.0106900.t002
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Gene prediction and annotation of predicted proteins
By ORF analysis, 30,107 unigene sequences harboring a

Coding Sequence (CDS) could be identified. The residual 9,309

unigenes did not produce hits in the ORF analysis. All 30,107

CDS could be translated into peptide sequences and all 39,416

unigenes with or without ORF were annotated by blast alignment

with different protein and nucleotide databases (for details refer to

Table S1 and Table S2).

GO classification and KEGG pathway analysis
To classify the predicted functions of the constructed C.

hainanensis unigenes, the Blast2GO and the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway databases were utilized.

Based on sequence homology, a total of 19,830 (50.31%)

sequences could be categorized into 57 functional groups (Table

S3). Most of the GO terms of unigenes fell into the category

biological process (56,479 terms or 43.54%), 49,577 terms (or

38.22%) into the group cellular component, and 23,671 terms

(18.25%) into the group molecular function. Among the sub

classifications, cellular process (11,325 unigenes or 28.73%), cell

part (12,069 unigenes, or 30.62%), and catalytic activity (10541

unigenes, or 26.74%) were dominant, respectively (Figure 2). The

high number of unigenes putatively involved in cellular (11,325)

and metabolic (11,040) processes indicate that the source tissue

was metabolically very active (Figure 2).

To identify the biological pathways that were active in the

source tissue of C. hainanensis, the 39,416 annotated sequences

were mapped to the reference pathways in the KEGG database

[24]. In total, 9,355 unigene sequences could be assigned to 290

KEGG pathways. The dominating pathways were classified as

metabolic pathways (2,307 unigenes), biosynthesis of secondary

metabolites (1,082 unigenes), microbial metabolism in diverse

environments (398 unigenes), and spliceosome (351 unigenes). We

also specifically investigated the assembled unigenes with respect

to paclitaxel synthesis, and we could identify 72 unigenes with a

putative role for the terpenoid backbone biosynthesis. These

annotations provided a valuable resource to investigate specific

processes, functions, and pathways linked with paclitaxel synthesis

in C. hainanensis (some representatives are shown in Table 2, see

also Table S4).

Frequency and distribution of EST-SSRs
In total, 4,489 sequences containing 5,314 SSRs were identified

from the 39,416 consensus sequences, with 644 of these EST

sequences containing more than one SSR (Table S5). The EST-

SSR frequency in the C. hainanensis transcriptome was 11.39%,

and the distribution density was 1,652.23 per Mb. The most

abundant type of repeat motif were tri-nucleotides (2,719, or

51.16%), followed by mono-nucleotides (1,936, or 36.43%),

whereas di-nucleotides, hexa-nucleotides, tetra-nucleotides (83,

or 1.66%), and penta-nucleotides were rare (Table 3). SSRs with

four tandem repeats were the most common (Table 4), followed by

five, and six tandem repeats. The dominant repeat motives were

AGG/CCT (453, or 15.36%), AAG/CTT (447, or 15.16%), and

GAT/GCT (414, or 14.04%) as shown in Table 4. In contrast,

not a single CG/CG repeat was discovered in the entire database.

Based on these parameters, 3,806 primer pairs were designed that

are now available to screen Cephalotaxaceae germplasm for

polymorphisms (Table S6).
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Prediction and experimental verification of the paclitaxel
pathway in Cephalotaxus

To verify exemplarily the quality and potential of the newly

constructed molecular resource, sequences potentially related to

paclitaxel biosynthesis were searched and compiled specifically.

Data from this study were compared with sequences from the

String data base, and as shown in Table 2, a number of putative

homologues to genes known to act in paclitaxel biosynthesis could

be identified, including taxadiene synthase, geranyl geranyl

diphosphate synthase (GGPPs), phenylalanine aminomutase

(PAM), taxane 2-alpha hydroxylase, taxane 7-beta hydroxylase,

taxane 5-alpha hydroxylase, taxane 10-beta hydroxylase, taxane

13-alpha hydroxylase. The presence of these sequences predicted

that paclitaxel biosynthesis is functional also in Cephalotaxus.
To verify this prediction experimentally, the presence of

paclitaxel and its precursor baccatin III in extracts from C.
hainanensis was investigated by HPLC. In fact, 24.35 mg of

paclitaxel per g fresh weight (corresponding to 0.0096% dry

weight), and 17.81 mg of baccatin III per g fresh weight

(corresponding to 0.004% dry weight) could be detected in leaf

extracts from C. hainanensis respectively. Thus, paclitaxel content

in this species is comparable to that in the bark of Taxus brevifolia
(with a dry-weight content of 0.004–0.01% paclitaxel) [25], which

up to 1993 was the predominant source for paclitaxel. By elicitation

with 1 mM of MeJA, the content of paclitaxel can be stimulated

rapidly and significantly (P,0.001) by almost 60% compared to the

ground level (Figure 3). Interestingly, the paclitaxel precursor,

baccatin III shows a more or less constant steady state level, which

means that the stimulated conversion into paclitaxel is compensated

by an equivalent formation of baccatin III. The induction of

paclitaxel accumulation is transient with a maximum at around 1 d

after elicitation and subsequent return to the ground level.

Discussion

We used high-throughput RNA sequencing to construct the

transcriptome of Cephalotaxus hainanensis, an endangered

gymnosperm species, for which very little molecular data are

available. By this approach we could expand the sequence

information available for the Cephalotaxaceae by more than 50

times as compared to the information available in public

databases. As a proof-of-principle to verify quality and usefulness

of this novel molecular resource, we could predict the presence of

the paclitaxel pathway in C. hainanensis and subsequently verified

experimentally the presence of paclitaxel and its precursor

baccatin III in leaf extracts from this species.

Paclitaxel was first found in Pacific Yew and other Taxus
species. Later, endophytic fungi of Taxus species were also found

to contain paclitaxel [26,27]. Although more than ten of the genes

involved in paclitaxel biosynthesis have been cloned and identified,

it is still unrealistic to produce it by molecular farming using

recombinant microbes, since the information on the genes relevant

for this pathway has remained sketchy [28]. Currently, paclitaxel is

produced commercially by plant cell culture (www.phytonbiotech.

com). The original approach, to use leaves and twigs of different

species of Yews as source, has brought some of these slowly

growing trees to the verge of extinction.

The transcriptome database for C. hainanensis provides novel

tools for the biotechnological use of an organism which contains

multiple interesting metabolites with anticancer activity. By

combining the strategy to generate compounds by plant cell

culture (which has been successful for the case of Taxus), it should

also be possible to produce both paclitaxel and other Cephalotaxus
alkaloids with medical potential in cell cultures of C. hainanensis.
Even a partial insight into interesting genes of the pathway would

allow searching conditions, by which the production of these

compounds can be boosted. Our findings that methyl jasmonate

can induce paclitaxel accumulation [29], and also promotes the

dynamic equilibrium of its precursor baccatin III indicate that

the entire pathway can be activated by jasmonate signalling. Since

the induction of paclitaxel, and the concomitant changes in the

dynamic equilibrium of baccatin III are already observed at the

first measured time point (30 min after induction with MeJA), they

are unlikely to be caused by gene activation, but rather must be

caused by posttranslational regulation of enzymatic activities or

substrate availability. Since jasmonate signalling has been inves-

tigated intensively, it is now possible to identify the respective

molecular players from Cephalotaxus and to identify the bottle-

necks that constrain the accumulation of these valuable alkaloids.

Careful analysis of the promoter motives responsible for these

bottlenecks might be used to generate elite cell strains with

elevated alkaloid synthesis.

One issue that has received little attention is, why plant synthetize

these metabolites with antitumor activity. This question is highly

relevant for biotechnological applications, because it is linked with

the so far modest yields obtained for paclitaxel. The fact that

paclitaxel content can be induced in response to both abiotic and

biotic signals, favors this hypothesis [30,31]. However, the target of

paclitaxel is beta tubulin [32], a fairly conserved molecule. In fact,

the beta tubulin from C. hainanensis shows almost 95% similarity

on the amino acid level, when compared to tubulins from other

species (data not shown). So, the paclitaxel produced by these plants

is expected to bind their native tubulin and to affect the function of

microtubules, which may be one reason for the extremely slow

growth of these trees and the constrained synthesis of this product.

Based on the molecular resource generated in the current work, it is

possible to search for signals that could be used as efficient inducers

of the pathway, which would allow tailoring metabolic activity for

the needs of bio fermentation.

Conclusions

The wealth of plant secondary metabolism, so far, has only been

partially exploited for biotechnological applications. One of the

Figure 3. Time course of paclitaxel and baccatin III accumula-
tion in leaves of C. hainanensis after induction with 1 mM MeJA.
Mean values and standard errors from three independent experimental
series are shown. * Significantly different from the untreated control at
the 95% confidence level, ** significantly different form the untreated
control at the 99% confidence level.
doi:10.1371/journal.pone.0106900.g003
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reasons for this drawback has been the limited availability of

molecular information that over many years has been confined to

few canonical model organisms such as thale cress or rice.

Unfortunately, this small group of canonical model plants does not

cover those species that are of interest with respect to their

pharmacological potential. The advent of next-generation se-

quencing technology has made it feasible to elucidate genomes and

transcriptomes also for these non-canonical systems. The current

study adopts this strategy and provides the first comprehensive

sequencing and functional annotation for the rare, but medically

interesting species C. hainanensis. As exemplarily shown for

paclitaxel synthesis, this molecular resource can be used to identify

the molecular players responsible for the synthesis of valuable

compounds. In the next step, the regulatory features of these

molecular players will be characterized to identify constraints and

bottlenecks. By genetic engineering and/or manipulation of

cellular signaling, these constraints can be removed or controlled

to give rise to cellular systems that allow for the synthesis of these

compounds in an inducible manner as further step towards

sustainable molecular farming.
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