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Abstract

Objectives

The use of antioxidant therapy in the treatment of oxidative stress-related diseases such as

cardiovascular disease, diabetes or obesity remains controversial. Our aim is to demon-

strate that antioxidant supplementation may promote negative effects if used before the

establishment of oxidative stress due to a reduced ROS generation under physiological lev-

els, in a mice model of obesity.

Methods

C57BL/6J mice were fed with a high-fat diet for 14 weeks, with (OE group) or without (O

group) vitamin E supplementation.

Results

O mice developed a mild degree of obesity, which was not enough to induce metabolic alter-

ations or oxidative stress. These animals exhibited a healthy expansion of retroperitoneal

white adipose tissue (rpWAT) and the liver showed no signs of lipotoxicity. Interestingly,

despite achieving a similar body weight, OE mice were insulin resistant. In the rpWAT they

presented a reduced generation of ROS, even below physiological levels (C: 1651.0 ±
212.0; O: 3113 ± 284.7; OE: 917.6 ±104.4 RFU/mg protein. C vs OE p< 0.01). ROS decay

may impair their action as second messengers, which could account for the reduced adipo-

cyte differentiation, lipid transport and adipogenesis compared to the O group. Together,

these processes limited the expansion of this fat pad and as a consequence, lipid flux shifted

towards the liver, causing steatosis and hepatomegaly, which may contribute to the marked

insulin resistance.
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Conclusions

This study provides in vivo evidence for the role of ROS as second messengers in adipogen-

esis, lipid metabolism and insulin signaling. Reducing ROS generation below physiological

levels when the oxidative process has not yet been established may be the cause of the con-

troversial results obtained by antioxidant therapy.

Introduction

The prevalence of obesity is increasing at an alarming rate worldwide. Current trends suggest

that by 2025 it may reach 50% in the USA and 30–40% in Australia or the United Kingdom

[1]. Obesity is clinically relevant as it has been identified as a risk factor for a number of condi-

tions, some of which are listed among the leading causes of death worldwide, including cardio-

vascular disease, type 2 diabetes and some types of cancer [2].

Traditionally, obesity has been linked to an increase in the formation of reactive oxygen

species (ROS) [3–6], which can oxidize macromolecules such as lipids, proteins or nucleic

acids, modifying their structure and function. While several mechanisms have been described

to increase the formation of ROS in obesity, such as mitochondrial leak [7] or endoplasmic

reticulum stress [8], the enhanced activity of NADPH oxidases may be responsible for most of

the superoxide anion and hydrogen peroxide production [3,4]. In addition, a loss in the capac-

ity of endogenous antioxidant systems to restore the redox balance has been observed [4].

Both enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic

(glutathione, vitamin E) antioxidant systems have been reported to be depleted in obesity

[4,9,10], although there are differences in extent depending on the tissue and the degree of

obesity [5].

In obesity, a positive correlation between body mass index (BMI) and markers of oxidative

damage to lipids (such as malondialdehyde or 8-epi-prostaglandin F2alpha) [11], proteins

(advanced oxidation protein products or AOPP) [12] and DNA (8-hydroxy 2’-deoxy-guano-

sine) [13] has been described, while various weight loss strategies have been found to be effec-

tive at reducing oxidative damage [12,14]. We have recently shown how antioxidant therapy

reduces oxidative stress, inflammation, extracellular matrix remodeling and insulin resistance

in a mice model of diet-induced obesity for 7 months [15]. However, clinical trials using

antioxidant therapy, and vitamin E in particular, in the treatment of oxidative stress-related

diseases have shown contradictory results and their usefulness in the prevention of cardiovas-

cular disease, diabetes or obesity remains controversial [16–19]. In fact, a meta-analysis

revealed that vitamin E supplementation at doses higher than 400 UI/day may increase the

risk of all-cause death [17].

In recent years, several studies in cellular models have revealed the role of ROS as second

messengers in many processes, some of them present during the development of obesity. H2O2

generation has been indicated as necessary for differentiation of adipocytes and adipogenesis

[20], in a process that is susceptible to be blocked by antioxidant supplementation [21,22]. In a

similar manner, ROS may also act as intermediates in the insulin signaling pathway [23,24],

which highlights the necessity of maintaining their concentration within a physiological range

to preserve metabolic homeostasis.

Therefore, we hypothesize that the use of antioxidants prior to the establishment of the oxi-

dative process may block ROS production, negating their function as second messengers. As a

result, adipose tissue expansion and insulin signaling may be compromised, which may be a
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possible mechanism of antioxidant therapy failure. Our results show that blocking ROS-medi-

ated adipogenesis in retroperitoneal white adipose tissue (rpWAT) is enough to promote

hepatic fat inclusion and insulin resistance.

Materials and methods

Animals and diets

Four-week old male C57BL/6 mice were purchased from Harlan Laboratories (UK). After 2

weeks of acclimatization, mice were randomized into 3 groups (at least 10 mice per group).

The control group (C) received a low fat diet (LF) that provides 10% calories from fat (Purina

TestDiet 58V8, Testdiet, USA). The obese group (O) received a high fat diet (HFD) that pro-

vides 45% calories from fat (Purina TestDiet 58Y2, Testdiet, USA) and the same volume of the

vehicle of dissolution of vitamin E by oral gavage twice a week. The supplemented group (OE)

was fed the same HFD, and received 150 mg of vitamin E (DL-α Tocopherol acetate; Sigma,

Spain) twice a week by oral gavage [25] for 14 weeks. All animals had free access to food and

water. This study was carried out in accordance with the recommendations of the Spanish

Animal Care and Use Committee according to the guidelines for ethical care of experimental

animals of the European Union (2010/63/EU) and was approved by the Ethical Committee of

Universidad San Pablo-CEU (CEBA-CEU USP).

Food intake and weight of the animals were recorded weekly. After 14 weeks mice were

sacrificed by decapitation after 8 h fasting. Then, liver and retroperitoneal adipose tissue

(rpWAT) were immediately dissected and stored in formaldehyde (for histological proce-

dures), RNA later (for RNA extraction) or snap frozen in liquid nitrogen and stored at -80˚C

for protein determination. Blood was collected using tubes containing Na2EDTA. Plasma was

obtained by blood centrifugation and stored at -20˚C until analysis of glucose, triglycerides

and insulin.

Plasma analysis and estimation of insulin resistance

Glucose and triglycerides were determined by enzymatic colorimetric test (GOD-PAP and

LPL/GOP-Trinder, Roche Diagnostics, Barcelona, Spain). Plasma levels of insulin were mea-

sured using a Milliplex MADPK-71K adipokine kit according to manufacturer´s description

(Millipore). For estimation of insulin resistance HOMA index was calculated as previously

described [26]. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzy-

matic activities were measured using an commercial kit (GPT/ALT and GOT/AST, Sinreact,

Spain).

Vitamin E determination

α-tocopherol was detected by a HPLC using a routine method in our laboratory [27]. Briefly,

50 mg of tissue was disrupted. Vitamin E was extracted from the tissue in a 1:1 ethanol/water

mix. A Nucleosil C-18 column (5μm, 15x46 mm) placed in an oven at a constant temperature

of 40˚C was used for the separation. A mixture of 95:5 methanol/water was used as a mobile

phase at a constant flux of 2mL/min. The chromatograph system was a Beckman Mod. 126

coupled to a UV detector (Beckman Mod. 168) in line with a fluorescence detector (Waters

474). All the solvents used were high purity for chromatography purchased from Scharlau

(Spain).
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Sample preparation for oxidative stress analysis

rpWAT and liver samples were homogenized in a buffer containing 50 mM Tris and 5mM

EDTA. 5 mM BHT was added to avoid oxidation of the aliquots intended to be used for oxida-

tive damage determination. Tissue disruption was achieved in a Tissuelyser (Qiagen, Spain) as

described above and the obtained lysates were stored at -80˚C until analysis of antioxidant

enzymes activity and oxidative damage markers.

Reactive oxygen species determination (ROS/RNS)

The OxiSelect In Vitro ROS/RNS Assay Kit (Cell Biolabs Inc., San Diego, CA) containing a

specific ROS/RNS probe, dichlorodihydrofluorescein DiOxyQ (DCFH-DiOxyQ), was used to

measure the total amounts of reactive oxygen and nitrogen species. In this assay, the probe was

oxidized by ROS/RNS to generate a fluorescent product dichlorofluorescein (DCF). The assay

was performed according to manufacturer’s instructions in rpWAT and liver homogenates

prepared in PBS. The fluorescence of DCF was measured with a Varioskan spectrophotometer

(Thermo Scientific) at excitation/emission wavelengths 480/530 nm. The concentration of

ROS/RNS was determined fluorometrically against the DCF standards.

Lipid peroxidation products (LPO)

Lipid peroxidation in rpWAT and liver was determined using a commercial kit (Bioxytech

LPO-586) from OxisResearch (USA). The method is based on the reaction of malondialdehyde

and 4-hydroxyalkenal, the major end-by reaction products of lipid peroxidation, with a chro-

mogen in acidic conditions. Lipoperoxides concentration was expressed as nmoles/mg tissue.

Assay of advanced oxidation protein products (AOPP)

AOPP were determined in rpWAT and liver according to Witko-Sarsat´s method [28] with

minor modifications. Briefly, under acidic conditions, AOPP promote the transformation of

iodide to diatomic iodine, this reaction that can be spectrophotometrically followed at 340 nm

(Beckman DU-640 spectrophotometer). Samples were prepared as follows: 50 μL of sample,

50 μL of 1.16 M potassium iodide and 100 μL of acetic acid were mixed in 950 μL of 10 mM,

pH = 7.4 phosphate buffer. A calibration curve was prepared under the same conditions using

chloramine-T (Sigma, Spain) as standard. AOPP concentration was expressed as micromoles

of chloramine-T equivalents per mg analyzed tissue.

Antioxidant enzymes

Catalase (CAT) activity was measured by monitoring the disappearance of hydrogen peroxide

at 240 nm along time. Glutathione peroxidase (GPx) activity assay is based on the oxidation

of glutathione by GPx. Oxidized glutathione is regenerated by glutathione reductase using

NADPH + H+ as a cofactor. The reaction rate was measured following the disappearance of

NADPH + H+ at 340 nm. Superoxide dismutase (SOD) activity assay is based on the inhibition

of cytochrome C oxidation by a superoxide generation system. Every enzyme activity was

determined in rpWAT and liver homogenates and the specific activity was calculated as U/mg

protein.

Histology

rpWAT and liver were fixed in 4% paraformaldehyde and embedded in paraffin. rpWAT slides

were stained with hematoxylin and eosin and the area of the adipocytes was measured. A total

number of 4 mice were used for the analysis, and at least 300 adipocytes per sample were
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measured. Hepatic fibrosis was analyzed by Trichrome Masson Staining. Samples were ana-

lyzed using a Leica DM2700 P microscope (40x). Snap shots were taken (Leica DFC495 Cam-

era) using MetaMorph 6.1 software and the measurement of the area of the adipocyte was

determined through ImageJ software (NIH, USA).

Cytokines determination

The tissue levels of IL-6, TNF-α, leptin and MCP-1 were measured using a Mouse Luminex

Screening Assay (Mouse premixed multianalyte kit, R&D Diagnostics, Minneapolis, USA)

with polystyrene beads and analyzed with a Luminex100 system and the accompanying Bio-

Plex ManagerTM Software 6.1(Bio-Rad, Hercules, California, USA) according to manufac-

turer´s instructions.

Western blot

Liver was homogenized in a lysis buffer and disrupted in a Tissuelyser (Qiagen, Spain) in 2

cycles of 2 min at 40 Hz. Samples were placed on ice for 15 minutes to achieve a complete cel-

lular lysis, and then centrifuged at 12000 rpm for 30 min. Supernatant was stored at -80˚C

until further use.

25 micrograms of each sample (n = 4) were subjected to SDS-PAGE. After transference to

PVDF membrane, blocking was performed with 10% milk-TBST (tris buffer saline tween).

Rabbit anti-IRS1, rabbit anti-PI3K (Merck Millipore antibodies) were used. Secondary anti-

bodies conjugated to horseradish peroxidase were obtained from Sigma (Spain). Protein bands

were observed by addition of ECL western blotting detection system (GE Healthcare, Spain).

For quantification of band intensities, ImageJ (NIH, USA) was used.

RNA extraction

Total RNA was isolated from rpWAT and liver using Trizol Reagent (Invitrogen, Spain). The

samples were processed using an RNeasy Mini Kit (Qiagen, Spain). The concentration and

purity of the extracted RNA were determined by measuring the absorbance at 260 nm and 280

nm using a Nanovue spectrophotomer (GE healthcare, Spain). The integrity of the RNA was

assessed by gel electrophoresis. Reverse transcription was performed on 500 ng of RNA with

iScript cDNA synthesis kit (BioRad, Spain) using random hexamer primers.

Real-time PCR (qPCR)

Optimal annealing temperature and amplicon size were checked. qPCR analyses were per-

formed in a LightCycler 480 Instrument (Roche). Four samples of each group were run in trip-

licate and the mRNA levels were determined using intron-skipping primers, tata-box binding

protein (Tbp) as a housekeeping gene and SYBR Green Master Mix (Applied Biosystems).

Sequences are listed in the Table 1.

Statistical analysis

Results are presented as mean ± SEM. Statistical significance of differences between groups

was assessed by one-way analysis of variance (ANOVA) followed by post hoc Tukey’s multiple

comparison tests using Graph-Pad Prism (version 5.03 for Windows, GraphPad Software, Cal-

ifornia, USA). Differences were considered statistically significant when p<0.05. � Indicates

differences between obese groups (O and OE) compared to C. + Indicates differences between

the two obese groups (OE vs. O).
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Results

Vitamin E supplementation for 14 weeks induces weight gain and

hepatomegaly in mice fed a high-fat diet

In this study, we used a diet-induced obesity (DIO) mouse model to investigate the conse-

quences of interrupting ROS generation in early stages of obesity development, as ROS have

been found to play a key role as second messengers in adipogenesis, adipose tissue remodeling

and insulin signaling in various cellular models. We supplemented obese animals with vitamin

E (α-tocopherol), a lipid-soluble antioxidant from the beginning of the study. Mice fed a high-

fat diet (HFD) for 14 weeks (O and OE groups) increased their body weight more than the

control (C) group, which was fed a low fat (LF) diet (Fig 1A). Statistical differences were found

from week 3 (OE vs. C) and week 5 (O vs. C). At sacrifice, OE animals weighed more than O

and C (OE: 43.00 ± 1.37 g vs 37.35 ± 0.59 g; p< 0.01; C: 29.94 ± 1.12 g; p < 0.001). No differ-

ences in food or energy intake were seen among the groups (data not shown). The fate of the

lipid deposit varied in the two HFD fed groups. While the O group managed to preferentially

accumulate fat within the adipose tissue, the OE group was not able to efficiently expand its

rpWAT (Fig 1B). This may result in an increased flow of lipids towards ectopic tissues, such as

the liver. In fact, liver weighed a similar amountin groups C and O, but it was heavier in the

vitamin E supplemented animals (Fig 1C).

Feeding a 45% fat diet for 14 weeks was not enough to induce changes in glucose homeosta-

sis. Both glucose and insulin levels were comparable to the C group. Nonetheless, vitamin E

Table 1. List of primers used for the gene expression analysis by qPCR.

Gene Forward Reverse

Arg 5´-CTCCAAGCCAAAGTCCTTAGAG-3´ 5´-AGGAGCTGTCATTAGGGACATC-3´

Bip 5´-ACTTGGGGACCACCTATTCCT-3´ 5´-ATCGCCAATCAGACGCTCC-3´

Cd36 5’-TTGTACCTATACTGTGGTAAATGAGA-3’ 5’-CTTGTGTTTTGAACATTTCTGCTT-3’

Cebpa 5’-AAACAACGCAACGTGGAGA-3’ 5’-GCGGTCATTGTCACTGGTC-3’

Chop 5´-CCCTGCCTTTCACCTTGG-3´ 5´-CCGCTCGTTCTCCTGCTC-3´

Col1a1 5´-CATGTTCAGCTTTGTGGACCT-3´ 5´-GCAGCTGACTTCAGGGATGT-3´

Col3a1 5´-TCCCCTGGAATCTGTGAATC-3´ 5´-TGAGTCGAATTGGGGAGAAT-3´

Col4a1 5´-TTAAAGGACTCCAGGGACCAC-3´ 5´-CCCACTGAGCCTGTCACAC-3´

Col6a1 5´-GCAAGGATGAGCTGGTCAA-3 5´-GTCCACGTGCTCTTGCATC-3´

Cpt1a 5’-GACTCCGCTCGCTCATTC-3’ 5’-AAGGCCACAGCTTGGTGA-3’

Fabp4 5’-GGATGGAAAGTCGACCACAA-3’ 5’-TGGAAGTCACGCCTTTCATA-3’

Fas 5’-CAGATGATGACAGGAGATGGAA-3’ 5’-CACTCACACCCACCCAGA-3’

Hif1a 5´-´GCACTAGACAAAGTTCACCTGAGA-3´ 5´-CGCTATCCACATCAAAGCAA-3´

Il-6 5´-GATGGATGCTACCAAACTG-3´ 5´-CCAGGTAGCTATGGTACTCCAGGA

Mgl1 5´-AGGCCACAGGTATTTTGTCG-3´ 5´-GACCACCTGTAGTGATGTGGG-3

Mmp2 5´-TAACCTGGATGCCGTCGT-3´ 5´-TTCAGGTAATAAGCACCCTTGAA-3´

Nrf2 5’-CATGATGGACTTGGAGTTGC-3’ 5’-CCTCCAAAGGATGTCAATCAA-3’

Pgc-1a 5’-GAAAGGGCCAAACAGAGAGA-3’ 5’-GTAAATCACACGGCGCTCTT-3’

Ppara 5’-CACGCATGTGAAGGCTGTAA-3’ 5’-CAGCTCCGATCACACTTGTC-3’

Srebp-1c 5’-CGGAGGCTGTCGGGGTAG-3’ 5’-GGCCAGAGAAGCAGAAGAGA-3’

Srebp-2 5´-CACCTGTGGAGCAGTCTCAA-3´ 5´-TGGTAGGTCTCACCCAGGAG-3´

Tbp 5’-ACCCTTCACCAATGACTCCTATG-3’ 5’-TGACTGCAGCAAATCGCTTGG-3’

Timp1 5´-GCAAAGAGCTTTCTCAAAGACC-3´ 5´-AGGGATAGATAAACAGGGAAACACT-3´

https://doi.org/10.1371/journal.pone.0186579.t001
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Fig 1. Vitamin E supplementation impairs rpWAT expansion and promotes liver enlargement in HFD fed mice. (A) Changes in body weight in

response to a HFD (45% energy from fat) during 14 weeks in non-supplemented animals (O; n = 12) and supplemented with 150 mg of vitamin E twice

a week by oral gavage (OE; n = 12). HFD fed mice were statistically heavier than the controls fed on a standard diet (C; n = 10) from week 3. (B) rpWAT

weight relative to 100 g of animal. (C) Liver weight relative to 100 g of animal. Plasmatic concentration of (D) glucose (E) insulin and (F) triglycerides.

(G) Homeostasis Model Assessment (HOMA) used as insulin resistance indicator. Results are represented as mean + SEM. Results are represented

as mean + SEM.

* p<0.05; ** p<0.01 *** p< 0.001 (O, OE vs. C)
+ p<0.05; ++ p<0.01 +++ p< 0.001 (OE vs. O)

https://doi.org/10.1371/journal.pone.0186579.g001
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supplementation produced metabolic deregulation characterized by hyperglycemia (Fig

1D) and hyperinsulinemia (Fig 1E) and a trend towards hypertriglyceridemia (Fig 1F),

which are typical features of insulin resistance, as confirmed by the increased HOMA values

(Fig 1G).

Vitamin E reduces ROS generation under physiological levels in

retroperitoneal adipose tissue after 14 weeks of treatment

We studied oxidative stress through three different approaches: 1) ROS/RNS direct determina-

tion, together with the expression of ROS-generating enzyme NADPH oxidase, 2) measuring

products of oxidative damage to macromolecules and 3) assessing endogenous antioxidant

activity. In the rpWAT, HFD increased the levels of ROS/RNS, although it did not have a

remarkable impact on oxidative damage to macromolecules (Fig 2). However, vitamin E sup-

plementation reduced the generation of ROS (Fig 2A), the transcription of Nox4 (Fig 2B) and

the levels of lipoperoxides (LPO) (Fig 2C), even below the control levels observed in the C

group. No changes were observed in the oxidation of proteins (Fig 2D).

No differences were observed between the O group and the control group in the content of

vitamin E (Fig 2E). However, in the OE group, the dose and frequency of α-tocopherol admin-

istration to the obese mice was enough to produce a 3-fold increase in tissue levels in rpWAT.

Regarding antioxidant defense, obesity induction for 14 weeks increased the expression of the

antioxidant response transcription factor Nrf2 (Fig 2F), although this was not reflected in

increased activity of antioxidant targets, such as superoxide dismutase (SOD) (Fig 2G), catalase

(CAT) (Fig 3H) or glutathione peroxidase (GPx) (Fig 2I). Vitamin E supplementation pre-

vented the upregulation of Nrf2 transcription. In addition, SOD, CAT and GPx activities were

decreased in the OE group, even below the physiological levels detected in control animals, in

parallel to the observed reduction in the formation of ROS.

Vitamin E impairs adipogenesis in high-fat induced obesity in

retroperitoneal adipose tissue

Next, we analyzed the effect of ROS inhibition on the expansion of rpWAT (Fig 3A and 3B).

As expected, HFD promoted an increase in the size of the adipocytes in comparison with the C

group. Interestingly, adipocytes from vitamin E-supplemented animals were the largest of the

3 groups on average (Fig 3C), with a reduced percentage of small adipocytes (< 3000 μm2).

Since hypertrophy of adipocytes is closely related to extracellular matrix remodeling, we

analyzed the expression of extracellular matrix components to evaluate its role in the expan-

sion of rpWAT (Fig 3D). HFD only promoted the transcription of Col1a1 compared to C. In

the OE group, both Col1a1 and Col3a1 showed a 15-fold and 2-fold increase respectively

(p<0.05). Col4a1, one of the most abundant types of collagen in adipose tissue together with

collagen type VI, had reduced expression while Mmp2, a matrix metalloproteinase that has col-

lagen type IV as a substrate, increased.

To further investigate the effect of vitamin E on the hypertrophy of adipocytes, we analyzed

the transcription of the key enzymes involved in lipid metabolism of the rpWAT (Fig 3E).

HFD promoted downregulation of Pparγ expression, and upregulation of Cpt1a and HIF-1α
in the O group compared to C. In comparison to O mice, α-tocopherol supplementation

reduced the mRNA levels of key genes implicated in several lipid metabolism processes such

as differentiation (Cebpa), lipid transport (Fabp4, Cd36), lipid oxidation (Cpt1a) and the hyp-

oxia response (Hif-1α).
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Fig 2. Vitamin E supplementation prior to oxidative stress establishment reduces ROS generation below physiological levels in rpWAT

of HFD fed mice. Markers of ROS generation and oxidative damage were measured in the rpWAT. (A) Reactive oxygen species, expressed as

nmol of DFU per g of protein. (B) mRNA levels of Nox4 gene relative to Tbp expression as a housekeeping gene. (C) Combined detection of

malondialdehyde and 4-hydroxynonenal as major lipid peroxidation by-products, expressed together as lipoperoxides (LPO). (D) Concentration of

advanced oxidation protein products (AOPP). (E) Vitamin E content. (F) mRNA levels of antioxidant transcription factor Nrf2 gene relative to Tbp

expression as a housekeeping gene. Antioxidant activity of the enzymes superoxide dismutase (G), catalase (H) and glutathione peroxidase (I).

Results are represented as mean + SEM.

* p<0.05 (O, OE vs. C)

+ p<0,05; ++ p<0,01 (OE vs. O)

https://doi.org/10.1371/journal.pone.0186579.g002
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Fig 3. The reduction in ROS generation by vitamin E supplementation impairs adipose tissue expansion in the rpWAT of HFD fed mice. 5 μm

paraffin sections of rpWAT were used. (A) Representative images of hematoxylin and eosin staining. Images were taken at 40x magnification. (B)

Frequency distribution of adipocyte cell surface area. n = 4 per group. >250 cells were measured for each mouse. (C) Average adipocyte area in μm2.

qPCR assays were carried out for a range of white adipocyte genes (D) Extracellular matrix components Col1a1, Col3a1, Col4a1, Col6a1, Mmp2 and

Timp1 mRNA levels in rpWAT. (E) Lipid metabolism key enzymes Cebpa, Fabp4, Cd36, Pparg, Srebp-1c, Fas, Ppara, Cpt1a, Pgc1α and Hif-1a mRNA

fold change. Values represent 4 biological replicates and are shown relative to Tbp expression as a housekeeping gene. The expression of C group for

each gene was set as 1 and is represented by the dashed line. Results are represented as mean + SEM.

* p<0.05; ** p<0.01 *** p< 0.001 (O, OE vs. C)

+ p<0.05; ++ p<0.01 +++ p< 0.001 (OE vs. O)

https://doi.org/10.1371/journal.pone.0186579.g003
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Vitamin E supplementation for 14 weeks does not cause major changes

in the hepatic oxidative balance of obese mice

In the liver, no differences were seen in the concentration of ROS (Fig 4A) or in the transcrip-

tion of the Nox4 gene among any of the three groups (Fig 4B). However, although obesity

Fig 4. Mild obesity does not increase hepatic oxidative damage. Markers of ROS generation and oxidative damage were measured in the liver. (A)

Reactive oxygen species, expressed as nmol of DFU per g of protein. (B) mRNA levels of Nox4 gene relative to Tbp expression as a housekeeping

gene. (C) Combined detection of malondialdehyde and 4-hydroxynonenal as major lipid peroxidation by-products, expressed together as lipoperoxides

(LPO). (D) Concentration of advanced oxidation protein products (AOPP). Antioxidant defense was also reduced by vitamin E supplementation (E)

Antioxidant transcription factor Nrf2 gene relative to Tbp expression as a housekeeping gene. Antioxidant activity of the enzymes superoxide dismutase

(F), catalase (G) and glutathione peroxidase (H). Results are represented as mean + SEM.

* p<0.05; *** p< 0.001 (O, OE vs. C)

+ p<0,05 (OE vs. O)

https://doi.org/10.1371/journal.pone.0186579.g004
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alone did not cause any oxidative damage, vitamin E supplementation reduced both LPO and

AOPP compared to O and C (Fig 4C and 4D).

Regarding antioxidant defense, vitamin E was significantly higher in the OE group than in

C and O (Fig 4E). We also found that HFD feeding in the O group for 14 weeks did not pro-

mote an increase in the antioxidant defense (Fig 4F–4I). Even CAT activity was lower in the O

group. Nonetheless, vitamin E treatment reduced CAT and GPx activities to levels even lower

than those found in the control group (Fig 4G and 4I).

Vitamin E supplementation for 14 weeks induces fat inclusion in liver of

obese mice

Next, we analyzed whether the reduction in the oxidant environment in the OE group was

related to an increase in liver weight. When we observed the liver histology, we found that a

HFD promoted the infiltration of fat into the liver in the O group. However, more surprisingly,

vitamin E supplementation induced a higher deposit of lipids in this organ. The lipid vacuoles

in this group were more abundant and larger than those observed in the O group (Fig 5A–

above-). This histological observation is paired with the results obtained when we extracted

and measured the hepatic lipid content. The OE group exhibited a nearly 2-fold increase in

lipid content compared to the O and C groups (Fig 5B). However, the dietetic treatment was

not enough to push the progression from fatty liver to hepatic fibrosis. Masson’s trichrome

staining did not reveal the presence of fibrotic areas in any of the 3 groups (Fig 5A–below-),

which was confirmed by the unchanged levels of mRNA transcription of Col4a1 (Fig 5C), one

of the peptide chains that belongs to the main type of collagen present in the liver.

Next, to check that the high-dose of vitamin E did not affect hepatic function, we measured

the activity of the plasmatic transaminases ALT (Fig 5D) and AST (Fig 5E). No differences

were found in the levels of ALT among any of the three groups. AST activity was approxi-

mately 35% higher in the OE group than in the two other groups.

Regarding lipid metabolism, HFD enhanced lipid transport to the hepatocytes and choles-

terol synthesis, as inferred by the increased levels of Cd36 and Srebp2 mRNA (Fig 5F). Vitamin

E supplementation not only achieved a higher increase in Cd36 transcription, but Pparα,

Pparγ and Cpt1a were also overexpressed. These data reflect an increase in lipid transport,

lipogenesis and lipid oxidation.

Besides lipid metabolism, we analyzed the protein levels of some intermediates in the insu-

lin signaling pathway. No differences were observed in IRS-1 (Fig 5G) or PI3K (Fig 5H) in the

O group compared to C. However, an approximate 50% reduction was observed in both pro-

teins in the OE group, which may account for the insulin resistance seen in these animals.

To study the influence of inflammation on hepatic insulin resistance, we determined the

levels of MCP-1, C-reactive protein (CRP), IL-6 and TNF-α. No changes were observed in

MCP-1 (Fig 5I) or CRP (Fig 5J) among any of the three groups. Nevertheless, the concentra-

tion of IL-6 (Fig 5K) and TNF-α (Fig 5L) showed a non-significant trend to increased values in

the O group compared to C. Vitamin E supplementation managed to reduce the concentration

of both cytokines, which suggests that hepatic inflammation is not responsible for insulin

resistance.

Discussion

Oxidative stress, usually defined as an imbalance between free radical formation and its scav-

enging, has been widely reported in several models of cellular, animal and human obesity

[4,5,29]. Many studies have been dedicated to the use of antioxidants in the treatment of this

disease, with controversial results [17–19]. The mechanisms leading to this therapeutic failure
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Fig 5. Vitamin E supplementation promotes hepatic fat inclusion by enhancing lipid transport and synthesis. 3 μm paraffin

sections of liver were used. (A) Representative images of hematoxylin and eosin staining (up) and Masson´s trichrome staining (down).

The arrows point at perivascular collagen, stained in blue color. Images were taken at 10x magnification. (B) Quantification of the total

hepatic lipid content. (C) Col4a1 mRNA levels in the liver. (D) Plasma ALT enzymatic activity, expressed as percent increase over the

control. (E) Plasma AST enzymatic activity, expressed as percent increase over the control. (F) Lipid metabolism key enzymes Cd36,

Fabp4, Pparg, Srebp-1c, Srebp-2, Fas, Ppara, Cpt1a and Pgc1αmRNA levels. Values represent 4 biological replicates and are shown
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are not fully identified, but we and others [30,31] hypothesize that administering antioxidants

as a preventive strategy, before the establishment of an oxidative insult, may interfere with the

action of ROS as second messengers.

From the outset of this study, we administered a high dose of vitamin E to mice with diet-

induced obesity in an attempt to mimic the conditions of the adverse clinical trials. Supple-

mented obese animals showed reduced formation of ROS in the rpWAT via inhibition of

NADPH oxidase 4 expression, even below the physiological levels of the lean control animals.

Our finding is consistent with previous reports showing the inhibitory effect of vitamin E over

iNOS and NADPH oxidases as major contributors to ROS formation [32].

A reduction in ROS generation is relevant as ROS act as second messengers many physio-

logical processes, such as adipocyte differentiation and adipogenesis [20–22]. In addition to

the reduced amount of rpWAT in vitamin E-supplemented animals, in our model there was a

lower frequency of small adipocytes and their average size was larger than those of non-supple-

mented mice. This phenotype was confirmed by the downregulation in the transcription of

genes involved in adipocyte differentiation, including CEBPα, that requires the action of ROS

as second messengers [21], lipid transport and lipid oxidation. Thus, we suggest that the

underlying mechanism of the defective differentiation of adipocytes within rpWAT is a vita-

min E-mediated reduction in the generation of ROS. This effect has already been described in
vitro with the use of mitochondrial-targeted antioxidants [21] and N-acetylcysteine [20].

The ability of adipose tissue to expand has been pointed out in recent years as a key feature

defining obesity-related complications [33–36]. The adipose tissue expandability hypothesis

claims that there is an individual threshold of fat storage capacity within the adipose depots.

Once this limit is surpassed, lipids begin to accumulate in ectopic tissues such as the skeletal

muscle or the liver, where they promote inflammation and disrupt insulin signaling, among

other lipotoxic effects. One of the mechanisms that controls adipose tissue expansion is extra-

cellular matrix remodeling, which creates a stiff scaffold that avoids adipocyte hypertrophy. In

our model, qPCR analysis revealed the increased expression of different types of collagen in

vitamin E-supplemented animals, which may eventually create a stiff extracellular matrix that

makes adipocyte growth difficult [36,37]. These data are consistent with previous reports. For

instance, Col6 KO mice fed on HFD bypass the fibrotic process in adipose tissue, which was

reflected in a metabolic improvement [38]. This hypothesis may explain the presence of what

are known as “metabolically healthy obese individuals”, who, despite presenting elevated BMI,

do not show the typical characteristics of metabolic syndrome. The adipose tissue of these

patients has an enhanced ability to store lipids, and it is characterized by presenting more and

smaller adipocytes, reduced fibrosis and macrophage infiltration, which may account for the

metabolic improvement [39], while adipocyte hypertrophy has been connected to insulin resis-

tance or defective lipid metabolism [34,35].

Other common processes in obesity, such as inflammation and endoplasmic reticulum

(ER) stress, were also investigated as potential effectors of the reduced expansion of rpWAT in

vitamin E-supplemented mice (S1 Fig). In these animals, cytokine levels and ER stress markers

remained unchanged or even reduced in comparison to non-supplemented obese animals.

relative to Tbp expression as a housekeeping gene. The expression of C group for each gene was set as 1 and is represented by the

dashed line. (G) Insulin receptor and (H) PI3K relative protein levels using β-actin as loading control measured by Western.

Immunoblots shown are representative of 4 independent samples. Hepatic levels of the cytokines MCP-1 (I), C-Reactive protein (J),

Interleukin-6 (K) and TNF-α (L). Results are represented as mean + SEM.

* p<0.05; ** p<0.01; *** p< 0.001 (O, OE vs. C)

+ p<0.05; +++ p< 0.001 (OE vs. O)

https://doi.org/10.1371/journal.pone.0186579.g005
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This suggests that both inflammation and ER stress are not responsible for detrimental

rpWAT expansion.

When we analyzed glucose homeostasis, we observed that feeding the animals with HFD

(45% kcal fat) for 14 weeks was not enough to promote changes in insulin sensitivity. Glucose,

insulin and triglyceride levels in obese animals were similar to those found in the lean mice.

However, vitamin E supplementation completely unbalanced glucose metabolism, causing

hyperglycemia, hypertriglyceridemia and hyperinsulinemia. Several studies have indicated the

role of ROS in insulin signaling [40] by oxidizing and inhibiting protein tyrosine phosphatases

[41,42]. However, we did not see any changes in the main components of the insulin signaling

pathway when we measured them by Western Blot in the rpWAT (S2 Fig). Altogether, our

data suggest a different origin of insulin resistance.

Thus, we decided to analyze the liver to evaluate the possible systemic origin of insulin

resistance. In OE mice, besides the increased incoming flux of lipids entering the hepatocytes

via enhanced expression of the CD36 receptor, endogenous adipogenesis and cholesterol syn-

thesis were upregulated by vitamin E supplementation, contributing to the development of an

early stage of fatty liver without fibrosis, with a reduction in the IRS/PI3K signal pathway. A

similar effect has been observed in several models of lipodystrophy [43,44], in which defective

adipose tissue expansion promoted hepatomegaly, hepatic steatosis and insulin resistance.

Unfortunately, we were not able to find the underlying mechanism that connects hepatic stea-

tosis with defective insulin signaling beyond the IRS1/PI3K reduction. According to the

expandability hypothesis, the lipotoxic effects of lipids stored in ectopic tissues, such as the

liver, may trigger inflammation and insulin resistance [45,46]. However, in our model the

redox balance was maintained in the liver of obese supplemented animals, and the pro-inflam-

matory cytokines were similar to those found in the lean control animals.

The timepoint was carefully chosen according to previous reports using this type of mouse

strain and diet[47]. It is considered that the C57BL6 strain on a 60% fat diet usually takes 14

weeks for weight differences to be evident and 18 weeks for insulin resistance. Thus, we

decided to use a 45% fat diet and a shorter time to generate a mouse model of mild obesity

without the typical clinical features so we could investigate the action of vitamin E supplemen-

tation as a preventive strategy rather than as a therapeutic tool.

We used a similar model in a previous report [15], but extended both the dietary and the

antioxidant treatments up to 28 weeks. In that paper, we found a beneficial effect of vitamin E

supplementation, improving the metabolic, inflammatory and oxidative markers of the obese

mice. At that time point, after 7 months of DIO, the obese mice showed clear signs of meta-

bolic impairment, oxidative damage and systemic inflammation. With that background, the

vitamin E supplementation successfully managed to reduce oxidative stress, inflammation,

adipose tissue fibrosis and insulin resistance.

However, in the present paper, 45% HFD treatment for 14 weeks was not long enough to

promote these detrimental effects over the O group, as no signs of metabolic, inflammatory or

oxidative damage were observed. Thus, we administered the preventive antioxidant treatment

before the main alterations that are linked to obesity appeared.

The high dose of vitamin E that was administered to obese mice might be considered a pos-

sible limitation of this study. Nonetheless, the purpose of this dosage was to assure vitamin E

storage in the adipose tissue, where it was less than 3-fold higher than in lean mice, and in the

liver, where it was nearly 2-fold higher. Hepatic toxicity markers in the OE group, such as plas-

matic ALT and AST, were measured. ALT activity was normal and AST was slightly elevated,

which can be an effect of steatosis as others have reported [48]. Other inflammatory parame-

ters, such as C-reactive protein or IL-6 were comparable to the lean control group. Further-

more, we have the same dosage in longer studies without detecting toxicity problems. Even
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after 10 months, we did not find an increase in the death rate, inflammatory markers or histo-

logical alterations caused by vitamin E supplementation.

In summary, HFD-fed animals developed a mild degree of obesity in 14 weeks, without

exhibiting major changes in adipose tissue structure, metabolic profile or oxidative balance. In

contrast, vitamin E-supplemented obese animals showed a marked insulin resistance. Our

data suggest that the mechanism involves a decrease in ROS generation in rpWAT, even below

physiological levels. The loss of ROS function as second messengers inhibited CEBPα-depen-

dent adipocyte differentiation, blocking the expansion of rpWAT and forcing the accumula-

tion of lipids within the liver. Hepatic lipotoxicity may be the mechanism involved in the

observed insulin resistance. Thus, administering antioxidants before the establishment of the

oxidative process may be the wrong strategy in obesity prevention. However, this hypothesis is

based on our in vivo data and more mechanistic experiments will be required in the future to

confirm these results.

Supporting information

S1 Fig. Inflammation and endoplasmic reticulum stress in rpWAT. (A) Expression of Il-6,

Arg and Mgl1 as markers of M2 and M1 phenotypes of macrophages in rpWAT. Expression

values represent four biological replicates and are shown relative to Tbp expression as a house-

keeping gene. The expression of C group for each gene was set as 1 and is represented by the

dashed line. Tissue inflammation was evaluated according to the tissue levels of (B) MCP-1,

(C) Il-6, (D) TNF-a and (E) Leptin cytokines. (F) Expression of endoplasmic reticulum stress

markers, Chop and Bip, relative to Tbp expression as a housekeeping gene. The expression of C

group for each gene was set as 1 and is represented by the dashed line. Results are represented

as mean + SEM.
�p<0.05; ��p<0.01; ���p<0.001 (O, OE vs. C).

+p<0.05, ++p<0.01 (OE vs. O).

(TIF)

S2 Fig. Inmunoblot analysis of proteins involved in insulin signaling in rpWAT. (A) Insu-

lin receptor, (B) Insulin receptor substrate 1 (C) PI3K relative protein levels using β-actin as

loading control measured by Western blot. (D) phosphylated p38 relative to total p38 mea-

sured by Western blot. Immunoblots shown are representative of 3 independent samples.

Results are represented as mean + SEM.

(TIF)

Author Contributions

Conceptualization: Martin Alcala, Marta Viana.

Data curation: Martin Alcala, Maria Calderon-Dominguez, Dolors Serra, Marta Viana.

Formal analysis: Martin Alcala, Maria Calderon-Dominguez, Laura Herrero.

Funding acquisition: Dolors Serra, Laura Herrero, Maria P. Ramos.

Investigation: Martin Alcala, Maria Calderon-Dominguez, Marta Viana.

Methodology: Martin Alcala, Marta Viana.

Project administration: Dolors Serra, Maria P. Ramos.

Resources: Dolors Serra, Maria P. Ramos.

Supervision: Laura Herrero, Maria P. Ramos, Marta Viana.

Reducing ROS generation alters insulin sensitivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0186579 October 13, 2017 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186579.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0186579.s002
https://doi.org/10.1371/journal.pone.0186579


Validation: Laura Herrero, Marta Viana.

Visualization: Marta Viana.

Writing – original draft: Martin Alcala.

Writing – review & editing: Martin Alcala, Maria Calderon-Dominguez, Dolors Serra, Laura

Herrero, Maria P. Ramos, Marta Viana.

References
1. WHO (2011) Obesity and overweight [Internet]. Geneve.

2. Nguyen NT, Magno CP, Lane KT, Hinojosa MW, Lane JS (2008) Association of hypertension, diabetes,

dyslipidemia, and metabolic syndrome with obesity: findings from the National Health and Nutrition

Examination Survey, 1999 to 2004. J Am Coll Surg 207: 928–934. https://doi.org/10.1016/j.

jamcollsurg.2008.08.022 PMID: 19183541

3. Jiang F, Lim HK, Morris MJ, Prior L, Velkoska E, Wu X, et al. (2011) Systemic upregulation of NADPH

oxidase in diet-induced obesity in rats. Redox Rep 16: 223–229. https://doi.org/10.1179/

174329211X13049558293713 PMID: 22195989

4. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. (2004) Increased oxida-

tive stress in obesity and its impact on metabolic syndrome. J Clin Invest 114: 1752–1761. https://doi.

org/10.1172/JCI21625 PMID: 15599400

5. Noeman SA, Hamooda HE, Baalash AA (2011) Biochemical study of oxidative stress markers in the

liver, kidney and heart of high fat diet induced obesity in rats. Diabetol Metab Syndr 3: 17. https://doi.

org/10.1186/1758-5996-3-17 PMID: 21812977

6. Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, et al. (2007) Prolonged reactive

oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate

meal in the obese. J Clin Endocrinol Metab 92: 4476–4479. https://doi.org/10.1210/jc.2007-0778

PMID: 17785362

7. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen

species. Free Radic Biol Med 47: 333–343. https://doi.org/10.1016/j.freeradbiomed.2009.05.004

PMID: 19427899

8. Yuzefovych LV, Musiyenko SI, Wilson GL, Rachek LI (2013) Mitochondrial DNA damage and dysfunc-

tion, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and

apoptosis in high fat diet-induced insulin resistance mice. PLoS One 8: e54059. https://doi.org/10.

1371/journal.pone.0054059 PMID: 23342074

9. Chrysohoou C, Panagiotakos DB, Pitsavos C, Skoumas I, Papademetriou L, Economou M, et al.

(2007) The implication of obesity on total antioxidant capacity in apparently healthy men and women:

the ATTICA study. Nutr Metab Cardiovasc Dis 17: 590–597. https://doi.org/10.1016/j.numecd.2006.05.

007 PMID: 16901682

10. Reitman A, Friedrich I, Ben-Amotz A, Levy Y (2002) Low plasma antioxidants and normal plasma B vita-

mins and homocysteine in patients with severe obesity. Isr Med Assoc J 4: 590–593. PMID: 12183861

11. Keaney JF Jr., Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. (2003) Obesity and sys-

temic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler

Thromb Vasc Biol 23: 434–439. https://doi.org/10.1161/01.ATV.0000058402.34138.11 PMID:

12615693

12. Krzystek-Korpacka M, Patryn E, Boehm D, Berdowska I, Zielinski B, Noczynska A (2008) Advanced

oxidation protein products (AOPPs) in juvenile overweight and obesity prior to and following weight

reduction. Clin Biochem 41: 943–949. https://doi.org/10.1016/j.clinbiochem.2008.04.024 PMID:

18501708

13. Al-Aubaidy HA, Jelinek HF (2011) Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur J

Endocrinol 164: 899–904. https://doi.org/10.1530/EJE-11-0053 PMID: 21436346

14. Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda W, et al. (2001) The suppressive

effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by

leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 86: 355–362. https://

doi.org/10.1210/jcem.86.1.7150 PMID: 11232024

15. Alcala M, Sanchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, et al. (2015) Vitamin E reduces

adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity.

Obesity (Silver Spring) 23: 1598–1606.

Reducing ROS generation alters insulin sensitivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0186579 October 13, 2017 17 / 19

https://doi.org/10.1016/j.jamcollsurg.2008.08.022
https://doi.org/10.1016/j.jamcollsurg.2008.08.022
http://www.ncbi.nlm.nih.gov/pubmed/19183541
https://doi.org/10.1179/174329211X13049558293713
https://doi.org/10.1179/174329211X13049558293713
http://www.ncbi.nlm.nih.gov/pubmed/22195989
https://doi.org/10.1172/JCI21625
https://doi.org/10.1172/JCI21625
http://www.ncbi.nlm.nih.gov/pubmed/15599400
https://doi.org/10.1186/1758-5996-3-17
https://doi.org/10.1186/1758-5996-3-17
http://www.ncbi.nlm.nih.gov/pubmed/21812977
https://doi.org/10.1210/jc.2007-0778
http://www.ncbi.nlm.nih.gov/pubmed/17785362
https://doi.org/10.1016/j.freeradbiomed.2009.05.004
http://www.ncbi.nlm.nih.gov/pubmed/19427899
https://doi.org/10.1371/journal.pone.0054059
https://doi.org/10.1371/journal.pone.0054059
http://www.ncbi.nlm.nih.gov/pubmed/23342074
https://doi.org/10.1016/j.numecd.2006.05.007
https://doi.org/10.1016/j.numecd.2006.05.007
http://www.ncbi.nlm.nih.gov/pubmed/16901682
http://www.ncbi.nlm.nih.gov/pubmed/12183861
https://doi.org/10.1161/01.ATV.0000058402.34138.11
http://www.ncbi.nlm.nih.gov/pubmed/12615693
https://doi.org/10.1016/j.clinbiochem.2008.04.024
http://www.ncbi.nlm.nih.gov/pubmed/18501708
https://doi.org/10.1530/EJE-11-0053
http://www.ncbi.nlm.nih.gov/pubmed/21436346
https://doi.org/10.1210/jcem.86.1.7150
https://doi.org/10.1210/jcem.86.1.7150
http://www.ncbi.nlm.nih.gov/pubmed/11232024
https://doi.org/10.1371/journal.pone.0186579


16. Mann JF, Lonn EM, Yi Q, Gerstein HC, Hoogwerf BJ, Pogue J, et al. (2004) Effects of vitamin E on car-

diovascular outcomes in people with mild-to-moderate renal insufficiency: results of the HOPE study.

Kidney Int 65: 1375–1380. https://doi.org/10.1111/j.1523-1755.2004.00513.x PMID: 15086477

17. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005) Meta-analysis:

high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142: 37–46.

PMID: 15537682

18. Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ (2011) Vitamin E and all-cause mortal-

ity: a meta-analysis. Curr Aging Sci 4: 158–170. PMID: 21235492

19. Sutherland WH, Manning PJ, Walker RJ, de Jong SA, Ryalls AR, Berry EA (2007) Vitamin E supple-

mentation and plasma 8-isoprostane and adiponectin in overweight subjects. Obesity (Silver Spring)

15: 386–391.

20. Kanda Y, Hinata T, Kang SW, Watanabe Y (2011) Reactive oxygen species mediate adipocyte differen-

tiation in mesenchymal stem cells. Life Sci 89: 250–258. https://doi.org/10.1016/j.lfs.2011.06.007

PMID: 21722651

21. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, et al. (2011) Mitochon-

drial complex III ROS regulate adipocyte differentiation. Cell Metab 14: 537–544. https://doi.org/10.

1016/j.cmet.2011.08.007 PMID: 21982713

22. Higuchi M, Dusting GJ, Peshavariya H, Jiang F, Hsiao ST, Chan EC, et al. (2012) Differentiation of

Human Adipose-Derived Stem Cells into Fat Involves Reactive Oxygen Species and Forkhead Box O1

Mediated Upregulation of Antioxidant Enzymes. Stem Cells Dev.

23. Iwakami S, Misu H, Takeda T, Sugimori M, Matsugo S, Kaneko S, et al. (2011) Concentration-depen-

dent dual effects of hydrogen peroxide on insulin signal transduction in H4IIEC hepatocytes. PLoS One

6: e27401. https://doi.org/10.1371/journal.pone.0027401 PMID: 22102892

24. Contreras-Ferrat A, Llanos P, Vasquez C, Espinosa A, Osorio-Fuentealba C, Arias-Calderon M, et al.

(2014) Insulin elicits a ROS-activated and an IP(3)-dependent Ca(2)(+) release, which both impinge

on GLUT4 translocation. J Cell Sci 127: 1911–1923. https://doi.org/10.1242/jcs.138982 PMID:

24569874

25. Viana M, Aruoma OI, Herrera E, Bonet B (2000) Oxidative damage in pregnant diabetic rats and their

embryos. Free Radic Biol Med 29: 1115–1121. PMID: 11121718

26. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. (2000) Quantitative insulin sen-

sitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endo-

crinol Metab 85: 2402–2410. https://doi.org/10.1210/jcem.85.7.6661 PMID: 10902785

27. Ruperez FJ, Barbas C, Castro M, Martinez S, Herrera E (1998) Simplified method for vitamin E determi-

nation in rat adipose tissue and mammary glands by high-performance liquid chromatography. J Chro-

matogr A 823: 483–487. PMID: 9818422

28. Witko-Sarsat V, Friedlander M, Capeillere-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, et al.

(1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int

49: 1304–1313. PMID: 8731095

29. Long EK, Olson DM, Bernlohr DA (2013) High Fat Diet Induces Changes in Adipose Tissue trans-4-

Oxo-2-Nonenal and trans-4-Hydroxy-2-Nonenal Levels in a Depot-Specific Manner. Free Radic Biol

Med.

30. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4: 180–183.

https://doi.org/10.1016/j.redox.2015.01.002 PMID: 25588755

31. Castro JP, Grune T, Speckmann B (2016) The two faces of reactive oxygen species (ROS) in adipocyte

function and dysfunction. Biol Chem 397: 709–724. https://doi.org/10.1515/hsz-2015-0305 PMID:

27031218

32. Calvisi DF, Ladu S, Hironaka K, Factor VM, Thorgeirsson SS (2004) Vitamin E down-modulates iNOS

and NADPH oxidase in c-Myc/TGF-alpha transgenic mouse model of liver cancer. J Hepatol 41: 815–

822. https://doi.org/10.1016/j.jhep.2004.07.030 PMID: 15519655

33. Lancha A, Rodriguez A, Catalan V, Becerril S, Sainz N, Ramirez B, et al. (2014) Osteopontin deletion

prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodel-

ing and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS One 9: e98398.

https://doi.org/10.1371/journal.pone.0098398 PMID: 24871103

34. Hammarstedt A, Graham TE, Kahn BB (2012) Adipose tissue dysregulation and reduced insulin sensi-

tivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol Metab Syndr 4: 42.

https://doi.org/10.1186/1758-5996-4-42 PMID: 22992414

35. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. (2007) Obesity-associ-

ated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 117: 2621–

2637. https://doi.org/10.1172/JCI31021 PMID: 17717599

Reducing ROS generation alters insulin sensitivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0186579 October 13, 2017 18 / 19

https://doi.org/10.1111/j.1523-1755.2004.00513.x
http://www.ncbi.nlm.nih.gov/pubmed/15086477
http://www.ncbi.nlm.nih.gov/pubmed/15537682
http://www.ncbi.nlm.nih.gov/pubmed/21235492
https://doi.org/10.1016/j.lfs.2011.06.007
http://www.ncbi.nlm.nih.gov/pubmed/21722651
https://doi.org/10.1016/j.cmet.2011.08.007
https://doi.org/10.1016/j.cmet.2011.08.007
http://www.ncbi.nlm.nih.gov/pubmed/21982713
https://doi.org/10.1371/journal.pone.0027401
http://www.ncbi.nlm.nih.gov/pubmed/22102892
https://doi.org/10.1242/jcs.138982
http://www.ncbi.nlm.nih.gov/pubmed/24569874
http://www.ncbi.nlm.nih.gov/pubmed/11121718
https://doi.org/10.1210/jcem.85.7.6661
http://www.ncbi.nlm.nih.gov/pubmed/10902785
http://www.ncbi.nlm.nih.gov/pubmed/9818422
http://www.ncbi.nlm.nih.gov/pubmed/8731095
https://doi.org/10.1016/j.redox.2015.01.002
http://www.ncbi.nlm.nih.gov/pubmed/25588755
https://doi.org/10.1515/hsz-2015-0305
http://www.ncbi.nlm.nih.gov/pubmed/27031218
https://doi.org/10.1016/j.jhep.2004.07.030
http://www.ncbi.nlm.nih.gov/pubmed/15519655
https://doi.org/10.1371/journal.pone.0098398
http://www.ncbi.nlm.nih.gov/pubmed/24871103
https://doi.org/10.1186/1758-5996-4-42
http://www.ncbi.nlm.nih.gov/pubmed/22992414
https://doi.org/10.1172/JCI31021
http://www.ncbi.nlm.nih.gov/pubmed/17717599
https://doi.org/10.1371/journal.pone.0186579


36. Lackey DE, Burk DH, Ali MR, Mostaedi R, Smith WH, Park J, et al. (2014) Contributions of adipose tis-

sue architectural and tensile properties toward defining healthy and unhealthy obesity. Am J Physiol

Endocrinol Metab 306: E233–246. https://doi.org/10.1152/ajpendo.00476.2013 PMID: 24302007

37. Pasarica M, Gowronska-Kozak B, Burk D, Remedios I, Hymel D, Gimble J, et al. (2009) Adipose tissue

collagen VI in obesity. J Clin Endocrinol Metab 94: 5155–5162. https://doi.org/10.1210/jc.2009-0947

PMID: 19837927

38. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M, Abate N, et al. (2009) Metabolic dysregulation

and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 29: 1575–1591. https://doi.org/10.1128/

MCB.01300-08 PMID: 19114551

39. Kloting N, Fasshauer M, Dietrich A, Kovacs P, Schon MR, Kern M, et al. (2010) Insulin-sensitive obe-

sity. Am J Physiol Endocrinol Metab 299: E506–515. https://doi.org/10.1152/ajpendo.00586.2009

PMID: 20570822

40. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. (2009) Reactive oxygen species enhance

insulin sensitivity. Cell Metab 10: 260–272. https://doi.org/10.1016/j.cmet.2009.08.009 PMID:

19808019

41. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312: 1882–1883.

https://doi.org/10.1126/science.1130481 PMID: 16809515

42. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell

Biol 7: 833–846. https://doi.org/10.1038/nrm2039 PMID: 17057753

43. Lee PL, Tang Y, Li H, Guertin DA (2016) Raptor/mTORC1 loss in adipocytes causes progressive lipody-

strophy and fatty liver disease. Mol Metab 5: 422–432. https://doi.org/10.1016/j.molmet.2016.04.001

PMID: 27257602

44. Safar Zadeh E, Lungu AO, Cochran EK, Brown RJ, Ghany MG, Heller T, et al. (2013) The liver diseases

of lipodystrophy: the long-term effect of leptin treatment. J Hepatol 59: 131–137. https://doi.org/10.

1016/j.jhep.2013.02.007 PMID: 23439261

45. Slawik M, Vidal-Puig AJ (2007) Adipose tissue expandability and the metabolic syndrome. Genes Nutr

2: 41–45. https://doi.org/10.1007/s12263-007-0014-9 PMID: 18850138

46. Spencer M, Unal R, Zhu B, Rasouli N, McGehee RE Jr., Peterson CA, et al. (2011) Adipose tissue

extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol

Metab 96: E1990–1998. https://doi.org/10.1210/jc.2011-1567 PMID: 21994960

47. Yang Y, Smith DL Jr., Keating KD, Allison DB, Nagy TR (2014) Variations in body weight, food intake

and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity (Silver Spring)

22: 2147–2155.

48. Cruz MA, Cruz JF, Macena LB, de Santana DS, Oliveira CC, Lima SO, et al. (2015) Association of the

Nonalcoholic Hepatic Steatosis and Its Degrees With the Values of Liver Enzymes and Homeostasis

Model Assessment-Insulin Resistance Index. Gastroenterology Res 8: 260–264. https://doi.org/10.

14740/gr685w PMID: 27785306

Reducing ROS generation alters insulin sensitivity

PLOS ONE | https://doi.org/10.1371/journal.pone.0186579 October 13, 2017 19 / 19

https://doi.org/10.1152/ajpendo.00476.2013
http://www.ncbi.nlm.nih.gov/pubmed/24302007
https://doi.org/10.1210/jc.2009-0947
http://www.ncbi.nlm.nih.gov/pubmed/19837927
https://doi.org/10.1128/MCB.01300-08
https://doi.org/10.1128/MCB.01300-08
http://www.ncbi.nlm.nih.gov/pubmed/19114551
https://doi.org/10.1152/ajpendo.00586.2009
http://www.ncbi.nlm.nih.gov/pubmed/20570822
https://doi.org/10.1016/j.cmet.2009.08.009
http://www.ncbi.nlm.nih.gov/pubmed/19808019
https://doi.org/10.1126/science.1130481
http://www.ncbi.nlm.nih.gov/pubmed/16809515
https://doi.org/10.1038/nrm2039
http://www.ncbi.nlm.nih.gov/pubmed/17057753
https://doi.org/10.1016/j.molmet.2016.04.001
http://www.ncbi.nlm.nih.gov/pubmed/27257602
https://doi.org/10.1016/j.jhep.2013.02.007
https://doi.org/10.1016/j.jhep.2013.02.007
http://www.ncbi.nlm.nih.gov/pubmed/23439261
https://doi.org/10.1007/s12263-007-0014-9
http://www.ncbi.nlm.nih.gov/pubmed/18850138
https://doi.org/10.1210/jc.2011-1567
http://www.ncbi.nlm.nih.gov/pubmed/21994960
https://doi.org/10.14740/gr685w
https://doi.org/10.14740/gr685w
http://www.ncbi.nlm.nih.gov/pubmed/27785306
https://doi.org/10.1371/journal.pone.0186579

