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Abstract: In the oil and gas industries, predicting and classifying oil and gas production for hydrocar-
bon wells is difficult. Most oil and gas companies use reservoir simulation software to predict future
oil and gas production and devise optimum field development plans. However, this process costs an
immense number of resources and is time consuming. Each reservoir prediction experiment needs
tens or hundreds of simulation runs, taking several hours or days to finish. In this paper, we attempt
to overcome these issues by creating machine learning and deep learning models to expedite the
process of forecasting oil and gas production. The dataset was provided by the leading oil producer,
Saudi Aramco. Our approach reduced the time costs to a worst-case of a few minutes. Our study
covered eight different ML and DL experiments and achieved its most outstanding R2 scores of 0.96
for XGBoost, 0.97 for ANN, and 0.98 for RNN over the other experiments.

Keywords: oil, gas and water production prediction; machine learning; deep learning; random forest;
recurrent neural network; artificial neural network; well performance production

1. Introduction

The ability to forecast oil wells’ production prior to drilling is a critical element in
oil companies’ decision making. To do so, most oil companies, such as Saudi Aramco,
use simulation. However, despite its accuracy, this method is time consuming due to the
vast computational power required to perform such a task. What we offer in this paper is
an alternative approach that will ease this step significantly and dramatically reduce the
computational power needed. Figure 1 below shows a comparison between simulation and
our proposed solution to this problem, which is making an AI model. Simulation processes
require significant time, and result in an inconsistent accuracy, whereas our solution uses AI
to provide accurate predictions promptly without compromising accuracy. The AI system
will be able to make such predictions using ML and DL on the provided dataset and, with
the trained system, the AI will be able to forecast the production of oil wells based on a few
geological features.

We started our research by data collection. The data were provided by the well-known
oil company Saudi Aramco. The data consist of a sample of simulation data representing
the multiple reservoirs of oil wells with different numbers of wells. A total of five different
reservoirs’ data were received as the dataset. These phases are illustrated in Figure 2.
Data preprocessing, and the other steps shown in Figure 2, will be covered in detail in the
upcoming sections.
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2. Related Works

Many researchers in the oil industry have adopted machine learning and deep learning
to predict the future with previous knowledge (supervised learning), such as reservoir
history matching, forecasts for oil, gas, and water production, pattern recognition in well
test analyses, and so on. In this section, we will cover work related to the application
of machine learning in predicting oil, water, and gas production, as well as predicting
the well pressure and well oil/gas/water ratio. The well production prediction process
with the current methods used, such as simulation, takes a long time and is very costly
in computational resources. Since our dataset is a continuous (time-series) problem type
we had to look in-depth and explore the possibility of achieving high results with our
dataset [1]. The current methods used create a bottleneck effect in building new wells. As
technology has progressed, many different ML and DL techniques have been implemented
to enhance production prediction performance. Moreover, this section was organized
based on a preliminary search and understanding of the relevant machine learning studies
dealing with well performance classification and prediction. Furthermore, the studies were
thoroughly reviewed, and various ideas that are related to the main idea were gathered
from different articles. Our next step was to break the literature review down into multiple
areas of oil production relevant to our subject.

2.1. Oil Flowrate Prediction

A recent study related to artificial intelligence calculated the amount of oil flowing as
a function of operational variables and choke size. The study used two different datasets
for critical and subcritical flow: choke size, upstream pressure, temperature, gas/oil ratio,
and water cut for critical flow. The subcritical dataset had the same dataset as the critical
flow dataset, plus downstream pressure. The study then put a variety of AI techniques
to the test, including artificial neural networks, fuzzy logic, and functional networks, as
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well as commonly used methods such as Gilbert correlation. When compared to current
correlation approaches, which have a maximum correlation value of 0.30, the ANN system
showed significant accuracy with a correlation coefficient of 0.89 [2].

A recent study discussed the oil flow rate through an orifice flow meter that was
predicted using machine learning algorithms. Pressure, temperature, viscosity, square
root of differential pressure, and oil-specific gravity were used as inputs from a dataset of
1037 data records. The ML methods used (adaptive neuro-fuzzy inference system (ANFIS),
least squares support vector machine (LSSVM), radial basis function (RBF), multilayer
perceptron (MLP), and gene-expression programming (GEP)) all achieved high levels of
accuracy, with correlation coefficients ranging from 0.90 to 0.99 [3].

The authors described a state that tight gas fields are a substantial source of hydro-
carbons for the energy industry. The process generates a large amount of information. As
a result, data may be evaluated and predicted using machine learning methods., as well
as being used to identify patterns between dependent and independent variables. The
artificial neural network (ANN) and the generalized linear model (GLM) were employed
in this study. The study’s goal is to figure out how well-planned new wells will recover.
For production data, a dataset of 224 wells was examined. The results of these models were
compared to the wells’ actual first gas production rate. Consequently, analysis found that a
GLM model had a mean square error of 1.57 and an ANN model had a mean square error
of 1.24. Furthermore, the performance index of the ANN model revealed that reservoir
thickness was responsible for 36.5 percent of the initial gas output, followed by flowback
rate (29%). As a result, when it came to estimating gas production and looking back, the
ANN model outperformed the GLM model [4].

The authors described the predictions of the oil production flow rate in situations
when direct measurement is difficult, which is a problem faced by petroleum engineers
in several parts of the world. This study employs an artificial neural network approach
to develop a new methodology for estimating oil flow rate in two-phase oil and gas flow
through wellhead chokes. The artificial neural networks (ANNs) model is used to estimate
oil flow rate as a function of the following parameters: choke upstream pressure, choke
size, and the producing gas-to-oil ratio. The suggested model’s accuracy was compared to
a number of well-known empirical correlations, and the results demonstrated that the new
model’s predicted oil flow rates are very close to actual observed data. Furthermore, when
compared to empirical correlations with more than three input parameters, this model
takes less time to estimate the oil flow rate, with an accuracy rate of around 87% [5].

2.2. Well Production

A study has been proposed that discusses a hybrid model based on a mix of CNN
and LSTM networks for time series forecasting of oil production. First, the CNN layer
of the model is applied to the current time window, extracting the features, and then the
LSTM is used to forecast the relationship between the time windows. The purpose of
this research is to employ deep neural networks to construct a system that can accurately
predict oil production based on well debt data. They arrive to the following conclusion: the
CNN + LSTM model’s root mean squared logarithmic error (RMSLE) value is 0.186891 [1].

The authors described their work as not only developing a proxy model, but also
testing it using field data from 1239 horizontal wells. The following findings were obtained
as a result of this research. Initially, the exploratory data analysis (EDA) technique was
utilized to investigate the datasets, which included outlier analysis, categorical and nu-
merical variable analysis, and correlation analysis. Through EDA, 1150 wells were used as
training data from 1239 wells. Second, principal component analysis (PCA) was utilized to
reduce the input variable’s size. Finally, VIA used the RF, GBM, and XGBoost algorithms to
identify independent variables that had a substantial impact on cumulative gas production
over a 12 month (CGP12) forecast. The average relevance ranking of the independent
variables was obtained using this method. Finally, hyperparameter sensitivity analysis is
used to construct DNN models that are more predictive [6].
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A recent study that discussed the use of RNN-LSTM to estimate oil, gas, and water
outputs of wells based on injection patterns in a time-series manner was investigated by the
author. The RNN-LSTM model was able to estimate oil, water, and gas production with a
first-year accuracy of over 90% and production values for up to 5 years with a 73.63 percent
accuracy [7].

The authors described their work by proposing an automated method for assisting
technical teams in increasing data quality in production data analysis using machine
learning techniques, improving reliable production forecasting, reducing operating costs,
and optimizing drilling schedules. Reservoir pressure, water cut, wellhead pressure,
choke size, and rate were all used as input features in this study. The following machine
learning approaches were used to efficiently eliminate outliers and noisy data. The K-
means clustering algorithm, for example, is used to find outliers or abnormalities. Second,
support vector regression (SVR) is a powerful tool for removing noise from data during the
analysis stage. The adoption of the aforementioned strategies can improve the accuracy of
production forecasting [8].

The research was conducted to describe the advocates’ use of artificial neural networks
to forecast oil, water, and gas output in water-injected reservoirs. To train the ANN
model, the researchers employed the Bayesian regularization approach. A coefficient of
determination of more than 0.9 was achieved by the ANN model. The researchers also
discovered that the delay in the time-step term is a significant element that can improve
the model’s prediction because other models ignore it [9].

A study has been proposed that discusses the notion that many elements, including
geology and completion, play a role in gas output. We can create a production prediction
model and determine the most important element affecting production using machine
learning approaches. The Duvernay formation was targeted with 159 horizontal wells.
Then, grey-connection analysis and Pearson correlation were used to find the essential
factors. Finally, multiple linear regression (MLR), support vector regression (SVR), and
Gaussian process regression were used to create three statistical models (GPR). Cumulative
oil and gas production were forecast for the first six months of production [10].

A study has been proposed that discusses a hybrid model using the attention mecha-
nism and combining it with the convolutional neural network (CNN) and the long short-
term memory neural network, thus creating (attention-CNN-LSTM). The data used for this
study are collective daily data for two wells in an oilfield in southern China. T1 well data
have been collected over 23 years, each day is a different record, and for T2 well data it
was for only 17.5 years. Other algorithms have been tested as well, such as support vector
regression (SVR), back-propagation neural network (BP), regular CNN LSTM, and more.
However, according to three different comparison measures, attention-CNN-LSTM appears
to have the lowest score uncontested which means it provides the highest accuracy among
all other models with an RMSE (root mean square error) score of 0.315 and 0.402, an MAE
score of 0.218 and 0.303, and a MAPE (mean absolute percentage error) score of 0.008 and
0.005 for T1 and T2 wells, respectively [11].

A recent study discusses the proposed methodology for estimating oil production
from a single well. They used the LSTM method. However, the model itself has been
modified and manipulated to achieve a better result. The training speed and generalization
capabilities of the model can be increased by using several optimization strategies, such
as the batch normalization layer, which improves prediction accuracy. The used dataset
contains 1275 wells, from January 1973 to May 1995. Moreover, the used dataset contained
43 features. The author also introduced a data-labeling method depending on the different
water cut stages. With four phases, each well must belong to at least one. The tool also
offers other labeling methods, such as well type. After the data preprocessing by the tool,
they selected 65 wells from the dataset, which has been divided into 90/10, 1409 samples
for the training. The remaining 157 samples were considered for the test set. As well as
the LSTM, the author used RF and SVM to compare them. The used metrics are RMSE,
MAS, and R2. For the RMSE, LSTM has the lowest value of 383.33 which indicates a better
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performance. Furthermore, in MAE, LSTM has the lowest value of 285.34. the R2 of LSTM
was the highest of 0.786 of all the methods [12].

According to the article, the three ANNs architectures were developed based on
simulation data from 370 reservoir simulations, hydraulic fracture design parameters, and
fracture network properties, including fracture spacing and fracture conductivity. These
parameters significantly affect shale gas production. Based on another set of 92 simulations,
the testing results ensured a high correlation between input and objective functions, with
an R2 > 0.86. In addition, good agreement was found between measured and predicted
cumulative gas production over 1, 5, 10, and 15 years, with an R2 > 0.94, and with error
rates under 15%. Using the peak production rate can improve prediction accuracy for wells
that have been producing for a short time [13].

2.3. Well Production Enhancement Prediction

A study has been proposed that discusses a unique deep recurrent neural network that
was constructed to be used by petroleum engineers to analyze the features of producing oil
wells. In addition, this paper used the deep structure of a GRU recurrent neural network
that serves as the foundation for the model and compares the most popular time-series
models. The paper aims to analyze and compare the strength and precision of the layered
DGRU model to the most popular time-series models. After pre-processing the dataset,
they end up with a collection comprising 21,000 observations of US oil production data
spanning 90 years. The entire collection of the dataset is separated into three subgroups:
training 40%, validation 20%, and testing 20%. Furthermore, this approach may be used
to measure the trained model’s performance as well as the stacked deep GRU model’s
performance using the testing dataset (unknown new data). Moreover, the DGRU model
compared accuracy and performance to different time-series models. The models included
in this study are multi-RNN, single GRU, Multi-GRU/ANN, Multi LSTM. The overall
accuracy performance results, using R2 measurement with 10 steps prediction, were:

• Multi-RNN: 5.523%
• Single GRU: 55.078%
• Multi-GRU/ANN: 72%
• Multi LSTM: 51%
• Stacked DGR: 70%

They found that the model’s construction is substantially simpler than that of LSTM
and RNN. Because of its low-complexity structure and ability to handle long-interval
time-series datasets, our DGRU model outperforms other conventional models. As a result,
our DGRU model may be used for the long-term dependencies of a complicated time series
dataset [14].

2.4. Pressure Gradient Prediction

Research was conducted to describe the use of a multilayer feed-forward ANN and
was able to predict the horizontal oil–water flow pressure gradient using five inputs which
are: oil superficial velocity, water superficial velocity, pipe diameter, pipe roughness, and oil
viscosity. Using 765 experimental data, the data were divided into three sections: training
(60%), validation (20%), and testing (20%). The ANN model had an APE of 0.30 percent, an
AAPE of 2.9 percent, and an SD of 7.6 percent, which is extraordinarily low when compared
to the other approaches studied (two-fluid model, homogeneous model, and correlation),
which had an average AAPE of 22.88 percent [15].

The authors described their work by proposing machine learning algorithms that
were carried out. The pressure gradient in a liquid–liquid flow was determined using
six different approaches: support vector machine (SVM), Gaussian process (GP), random
forest (RF), artificial neural network (ANN), k-nearest neighbor (kNN), and a fusion model
are among the algorithms used. Seven predictor values were chosen as the best collection
of predictors with the fewest mistakes using SVM. Oil and water velocities, FP, input
diameter, oil and water density, and oil viscosity are the seven predictors. In comparison to



Sensors 2022, 22, 5326 6 of 22

other models, the GP model had the highest prediction accuracy, with the exception of the
ML-fusion model, which had a (p < 0.05) [16].

2.5. Fault Prediction

Research was conducted to describe the preliminary construction of a machine learning
(ML) model for early defect prediction of a centrifugal pump in the oil and gas industry
that is simple and easy to deploy. The selected machinery’s process and equipment sensors
were used to examine real-time historical data. To train the model, raw sensor data, mostly
from temperature, pressure, and vibration probes, were denoised, pre-processed, and
sequentially coded. This paper compares two algorithms: support vector machine (SVM)
and multilayer perceptron (MLP). The SVM algorithm noted a high accuracy value of 98.1%.
The MLP algorithm recorded an overall accuracy of 98.2%, which was slightly higher than
the SVM algorithm. This study’s primary purpose is not to create high-accuracy ML
models but rather to demonstrate that it is possible to have good forecasts with a simple
and intuitive ML algorithm. Overall, the results suggest that the proposed algorithms
perform well in identifying the health status of the monitored machine, providing good
overall classification performance [17].

A study has been proposed that discusses a novel hybrid LSTM–SAE learning method
that will be used to overcome the weaknesses of RNN training and the use of a single
technique individually, as well as increase the fault detection accuracy. The DCS of the
electrical generator provides all of the vibration signals. Before being fed to the proposed
DL framework, approximately 2000 samples were separated into a training dataset (80%)
and a testing dataset (20%). These samples are divided into two categories: faulty and
non-faulty training-and-testing datasets. The sample data were chosen and used to train
and test RNN-LSTM for usage in the proposed DL framework’s fault detection phase. This
study planned to purpose the following primary contributions to the current work:

• Based on the RNN-LSTM, SAE, and particle swarm optimization (PSO) approaches, a
novel DL fault detection with a simple and effective framework is created to balance
the three steps of parameter optimization, fault feature extraction, and fault detection.

• A novel hybrid mathematical approach can improve learning ability by addressing RNN
training limitations such as decaying error, deficit, gradient vanishing, and backflow.

• The DL framework provides strong autonomous deep learning for unlabeled data,
allowing the proposed DL approach to not only adapt the relevant features, but also
to realize patterns without saving the prior sequence inputs.

• The suggested deep learning framework contributes to the field of electrical gas
generator defect detection, which could be valuable for future industrial deep learning
applications, particularly in dangerous environments.

Due to benefits in the feature extraction and fault detection stages, the proposed
framework outperforms competing approaches, with a detection accuracy of 99.67 percent.
Furthermore, the results reveal that the proposed deep learning system can recognize
faults in industrial data without labels. This can professionally assist data engineers in
automatically extracting features, and avoid reliance on human experience based on the
unsurprised defect detection approach. Moreover, we can see according to this study that
the accuracy of the proposed framework is the highest when compared to other approaches,
which are RNN, and ANN with the accuracy of (69.0%), and (49.5%), respectively. When
compared to existing approaches, the suggested DL framework has a higher time efficiency
with a faster detection time (0.17 s) [18].

2.6. Bottom-Hole Pressure Prediction

In order to determine the pressure drop in wells, it is important to calculate the bottom
hole pressure (BHP). The author used ANN with a hybrid genetic algorithm and particle
swarm optimization (HGAPSO) to predict the BHP. There are nine inputs used: oil flow rate,
gas flow rate, water flow rate, oil API, depth, tubing diameter, temperature at the surface,
wellhead pressure, and bottom-hole temperature [19]. Testing this model on a population
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of size 150 has yielded results with a maximum error of 10%. Although other methods
have been tested, such as GA-ANN and PSO-ANN, the hybrid method HGAPSO-ANN has
shown the greatest success rate. Another method to calculate BHP is demonstrated in the
article [20]. The author used gradient tree boosting (GTB) and extreme learning machine
(ELM). The dataset used consisted of eight parameters: wellhead pressure, oil flow rate,
water flow rate, gas flow rate, average deviation, average angle, measured depth, and true
vertical depth. The use of these two methods has yielded a mean relative error lower than
4%. Furthermore, a recent study discusses the ANN, KNN, and random forest to predict the
flowing bottom hole pressure (FBHP). Using these methods with the following nine inputs:
flowing oil rate, flowing gas rate, flowing water rate, production tubing internal diameter,
well perforation depth, oil gravity, surface temperature, well bottom hole temperature, and
wellhead pressure has yielded an error rate of 2.5%, 3.6%, and 4% for ANN, random forest,
and KNN, respectively [21].

2.7. Reservoir Characterization

Using machine learning and dynamic production data, research was conducted to
describe and suggest an alternate technique for predicting vertical heterogeneity in reser-
voirs. They used numerical simulation techniques to gather dynamic production data from
a variety of heterogeneous reservoir conditions. In comparison to traditional approaches,
the machine learning model demonstrated outstanding predictive accuracy on vertical
permeability, with an RMSE of 12.71 MD, effectively estimating the permeability of the
whole reservoir rather than a specific point. Eventually, the trained machine learning
models can accurately invert reservoir permeability. The total AARD of the prediction
result generated by the CNN technique was controlled at 11.51 percent based on model
validation, which was lower than the BP and LSTM network in calculating error. Simulta-
neously, the prediction time of the three neural networks was extremely fast, at around 1 s.
As a result of the complete study of accuracy and prediction time, CNN may be chosen
as the best model. With a derivation of less than 10%, the machine learning technique
can forecast permeability contrast with excellent accuracy in a variety of heterogeneous
reservoir conditions [22].

A study has been proposed that discusses, without any well-specific calibration and/or
other inadequacies of existing approaches, the use of ANN to forecast gas hydrate saturation
using a dataset consisting of porosity, bulk density, and compressional wave (P-wave)
velocity well logs. According to three independent studies, the proposed method has
an accuracy of 84 percent in estimating gas hydrate saturation, which is higher than the
75 percent accuracy of the currently utilized methodologies: seismic and electrical resistivity
approaches [23].

A recent study that discusses using deep mutual information classifiers and a multi-
feature-extraction approach proposes a novel integrated well-testing interpretation model
(MFE-DMIC). The data in this report come from Huabei Oilfield’s well-testing platform.
Special lithology, structural cracks, and powerful edge water characterize the reservoirs.
A total of 4004 stage samples of oil testing data, and the accompanying operating stages,
are considered in the study. The training set to testing set ratio was 6:4. Therefore, they
identified 2402 stage samples as the training set and 1602 stage samples as the testing
set at random. They started by employing four typical feature-extraction methods to
retrieve the basic characteristics. They then employed a deep belief network to eliminate
feature redundancy before achieving feature purification using the maximum information
coefficient method. Finally, they used a hybrid particle-swarm optimization–support vector
machine classification method to calculate the interpretation findings. This will reduce the
efforts of oil analysts and allow for accurate sample labeling to be predicted. They achieved
98.18% stage classification accuracy [24].

The authors described their work by proposing a new well-testing stage classification
method based on a deep vector learning model (DVLM) which is a combination of multi-
feature extraction, deep learning, and feature vector mapping. The data used in this article
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come from the Huabei Oilfield’s well-testing platform. Special lithology, structural cracks,
and forceful edge water are all features of the reservoirs. The study takes into account a
total of 4004 stage samples of oil testing data as well as the associated operation stages.
They randomly categorized 2402 stage samples as the training set and 1602 stage samples
as the testing set in a 6:4 ratio. They began by extracting the data’s basic features using four
standard feature extraction methods. They then used a five-layer deep belief network with
the mutual information coefficient approach to extract more features and clean the data.
Lastly, the data are classified using the optimized learning vector quantization classifier, so
the predicted tags are output. This will decrease the efforts of oil analysts and help to predict
accurate sample labeling, with a total result of 98.065% stage classification accuracy [25].A
study has been proposed that discusses anticipated deliverability. Researchers used a
dataset from the US Energy Information Administration (EIA), which had 864, 432, and
216 records for the years 2017 to 2020, respectively. Total field capacity, base gas, working
gas, and capacity are all handled in the data record. Support vector machine (SVM),
artificial neural network (ANN), and random forest (RF) machine learning (ML) methods
were used in this study to predict the deliverability (dependent variable) of UNGS in
salt caves, as measured by (Mcf/day), which stands for million cubic feet per day. The
result demonstrates that the RF model outperforms the ANN and SVM models on all data
samples [26].

2.8. Related Work Summary

To conclude, machine learning is incapable of handling non-linear complex problems.
On the other hand, deep learning is most optimal for complex non-linear problems; there-
fore, our system will use deep learning to predict the oil/water/gas production rates as
a first step. After completing the first step we look to expand the system to offer more
deep-learning-supported solutions to predicting vital parameters in oil extraction such as:
predicting oil/water ratio, predicting the well pressure, and predicting the flow rate. We
aim to explore the use of RNN, as it is perfect for our problem type (time-series). Other
methods, such as ANN and CNN, are not as viable; CNN excels at image recognition and
can be used with RNN to improve results of the RNN module and, although ANN is viable
for the prementioned task, it is less efficient in a time-series problem. However, more
exploration with different methods will be needed to increase the efficiency of the system.

3. Methods and Materials

For our methods, we used eight different methods to compare them and try to find
the best out of them. We will briefly explain each method in general and the formulas as
well. Moreover, we will go through the dataset and the materials we used that helped us
build the AI model.

3.1. Dataset

The five datasets we received are samples from Saudi Aramco of five well reservoirs
with a different number of surrounding wells to predict oil/gas/water productions over
almost three years. We combined all five datasets into one custom dataset in order to
let the models learn the effect number of surrounding wells had on productions. The
final combined custom dataset had 12 features and 280 dependent variables and a total of
1968 data points to work with. We can see each column and the description for it in Table 1
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Table 1. Dataset Description.

Column Name Description

Well location
Each well will have an index that represents the location

of the well in the X and Y axis. The column name for
X axis is I, and for Y is J.

Contact
We have a contact zone for oil, water, and gas. Each

column will have a fraction that represents how much
the well is in contact with each attribute.

Permeability average
This feature tells us about the average in three directions:
X, Y, and Z, of how much the material under the well

such as rooks, can transmit fluids.

Volume The volume is how much of oil, water, and gas is around
the well, and it is represented in numeric values.

Production
Each well will have 35 columns for the oil, water, and
gas. Every column will represent a value of oil, water,
gas production rate for a three-year simulation period.

Wellhead and bottomhole pressure

Both these features will have 35 values over the
three-year simulation period. Wellhead pressure is the

pressure at the top of the well, and bottom-hole pressure
is the pressure at the bottom of the hole of the well.

Ratio We will have ratios for gas and oil (GOR), gas and water
(GWR), and oil and water (OWR).

3.2. Tools

For our experiment we used Anaconda Spyder and Google Collaboration online com-
pilers as environments to program in Python. This section will describe each library we
used and why we used it. Sklearn is the main machine learning library. It includes most
of the classification, regression, and clustering techniques, along with dataset splitting
and fitting into multiple ML models. Tensorflow and Keras are libraries that facilitate
the programming process for DL models and allows parameter tuning along with num-
ber of neurons and hidden layers. NumPy is a library that allows the use of arrays in
Python. The Pandas library allows importing and splitting of datasets, and the Matplotlib
library provides visual representations of the datasets. It can provide static, interactive, or
animated graphs.

3.3. Methods
3.3.1. MLR

As we know that regression is a way to predict the nature of the relationship between
different variables, we use multiple linear regression (MLR) to find the relationships of
a dependent variable with numerous independent or predictive factors. In MLR we can
predict the dependent variable by two or more variables. As a result, MLR examines
the correlation between numerous independent variables and the dependent variable.
MLR can also help us know the value of the dependent variable at a specific independent
variable value, we can use this information to acquire any dependent variable at any given
point [27], the general for multiple regression is shown in Equation (1):

Y = a + b1(x1) + b2(x2) + b3(x3) + · · ·+ bn(xn)+ ∈ (1)

where Y refers to the dependent variable, x1, x2, x3, . . . , xn are the independent variables,
b1, b2, b3, . . . , bn are the regression coefficients, a is the constant, and ε if the error. The
regression coefficients in this equation stand for the independent contributions made
by each independent variable to the forecasting of the dependent variable. Given the
independent variables (X), the regression line expresses the most accurate forecast of the
dependent variable (Y). There is usually a significant variance of the observed points around
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the fitted regression line since nature is rarely entirely predictable. The term “residual
value” refers to the departure of a certain point from the regression line. Model fit is
measured using R square, also called the coefficient of determination, which is equal to
1 minus the residual variability ratio.

3.3.2. PLR

Polynomial linear regression (PLR) is one of the types of linear regression, and it can
solve the problem when the relation between the variables is non-linear. It can help us
determine the independent and dependent variables’ curvilinear relationship. PLR works
by fitting the data into the model as a polynomial of the nth degree. We use PLR when the
linear regression cannot capture the point in the data and fails to describe the best result.
This will help us because the relation in our dataset is not linear [28], the polynomial linear
regression is shown in Equation (2):

Y = a0 + a1(x1) + a2(x1)
2 + . . . + an(x1)

n (2)

One downside for PLR is that, as the polynomial degree increases, the time cost of the
model also increases. A very high-degree PLR model can provide highly accurate results
but, in some cases, may cause the models to overfit. A low-degree model may cause the
model to underfit as it will not learn or extract all the features in the dataset. We can solve
this problem by using the Bayes information criterion (BIC), which is an external algorithm
that can help us in determining the best degree for the PLR model.

3.3.3. SVR

SVM is a well-known machine learning method that is used in classification for
predicting one output. However, in our experiment, we will be using SVR which is
an extension of SVM that allows it to handle regression problems, as it was limited to
classification. SVR uses a function f (x) to transform a low-dimensional non-linear dataset
into a high-dimensional linear problem in feature space by mapping the data with the
function [29,30]. We still faced a problem as SVM/SVR both predict only one output
whereas our experiment required us to predict 35 different outputs for oil, gas, and water
predictions each collecting around three years of predictions. The use of a multi-output
regressor is necessary, as it allows the model to act like other multi-target regression
methods. The regression model of SVR can be written as follows, after numerous processes
to the regression model. The Equation (3) of SVR is:

f (x) =
m

∑
i=1

(a∗i − ai) δ
(
xi, xj

)
+ b (3)

where δ(x) refers to kernel functions which differ depending on the use of the model.
According to our experiment we used a radial basis function (RBF).

3.3.4. DTR

Considering that our dataset is regression data, we decided to implement decision-tree
regression using Python. A few reasons for choosing this ML method are how simple it is
to implement and validate. Moreover, the computational cost to using the tree is relatively
low, being [31], as shown in Equation (4).

O(log ntraining samples) (4)

Moreover, the regression tree is somewhat more complex than the classification tree.
The decision tree regression optimally splits up the data into sections called leaves by using
the value of the threshold to answer the following questions:

• Does performing the split increase the amount of information we have about our dataset?
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• Does it add some value to the approach we would like to group our data points
(information entropy)?

The algorithm does stop when it has reached a certain minimal amount of accepted
information. Then the following information is used to create a decision tree according
to the data that come from each split with the parameters; lastly, the algorithm takes the
average of the terminal leaves points (Y) within each split, so when a new point comes
(x1, x2, ...) the model predicts its results with the average of (Y) value with the following
Equation (5):

Y =
1
n ∑

i∈n
(Yi) (5)

Let n be the number of samples. This algorithm improves accuracy by splitting the
points, then taking the average of all points in each split, which generally results in a much
higher prediction outcome for the new element [32].

3.3.5. RFR

Random forest regression (RFR) is a regression technique based on machine learning
techniques. Bagging and random subspace approaches are at the core of it. Bagging
is used to generate a variety of decision trees, which are then ensembled to obtain the
overall prediction. To train the learner trees, several independent bootstrap samples were
constructed from the primary training data. Each bootstrap sample Db is made up of N
instances drawn in D. The general Equation (6) for random forest regression prediction is:

RFR prediction =
1
K ∑K

k=1 hk(x) (6)

Db is approximately 2/3 the size of D and does not contain any duplicate instances.
For bootstrap samples with input vector x, a total of K number of independent decision trees
are created using the DTR method discussed above. Moreover, the replacement of examples
is possible while contracting bootstrap samples. High variance and low bias characterize
the regression trees. In regression tasks, the random forest prediction is generated using
the mean prediction of K regression trees, hk(x) [33].

3.3.6. XGBoost

We can simply define XGBoost as a set of decision trees constructed sequentially.
In XGBoost, weights are very significant. All of the independent variables are given
weights, which are subsequently fed into the decision tree, and which may be used to
solve issues including regression and classification. The weight of factors that the tree
predicted incorrectly is increased, and these variables are fed into the second decision
tree. Individual classifiers are then combined to form a more powerful and precise model.
XGBoost was created with careful consideration of both system optimization and machine
learning techniques. The purpose of this model is to push machines to their boundaries in
terms of computing in order to create a flexible, portable, and accurate model.

XGBoost is a kind of gradient-boosted decision tree (GBM) that is optimized for both
performance and speed. XGBoost has many features such as gradient tree boosting. In
Euclidean space, standard optimization methods cannot enhance the tree ensemble of
classifiers. The model is instead taught in an incremental approach. Moreover, regularized
learning aids in smoothing the final learned weights, preventing over-fitting from the
dataset size, etc. The regularized target will favor models that use basic and predictive
functions. Friedman proposed the very first approach, reduction, and column dimension
reduction, which are two more approaches used to avoid overfitting in addition to the
regularized aim. After each stage of tree boosting, shrinkage adjusts recently added weights
by a ratio. Reduction, like a learning rate in stochastic optimization, decreases each tree’s
influence while allowing future trees to enhance the model. When the number of features
in the training set is smaller than the number of observations in the training set, or if the
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dataset exclusively contains numeric features, XGBoost is utilized. XGBoost works in a
similar way to a decision tree in that it creates a specific number of trees depending on the
issues, but it does it one by one, with each following tree using the knowledge obtained
by the previous tree to enhance it [34]. To put it another way, any new tree will correct the
mistakes caused by the prior tree. XGBoost uses the following Equation (7): [34]
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3.3.7. ANN

Artificial neural network (ANN) is a method that simulates how the biological brain
works. It is a deep learning method that consists of three types of layers: input layer, hidden
layers (number varies between different models), and output layer. The input layer receives
the inputs from the dataset, assigns weight values to them, and passes them to the hidden
layers. An activation function is assigned to each neuron and a bias variable is added
to the data. The output of the neuron is then sent to the next neuron in the next hidden
layer. Each hidden layer can use different activation functions. At the end, all outputs are
collected into the output layer where the last process on data is done to predict where the
data belong. For our experiment we used 35 output neurons for each experiment since we
are trying to obtain 35 different outputs, predicting the productions of oil, gas, and water
productions over three years. Basically, ANN uses a collection of interconnected neurons
through multiple layers that receive inputs xi with weights value related to each input wij
and a bias value, which allows shifting the activation function by adding a constant with
its related weight as we can see Equation (8):

Nj =
n

∑
i=1

wij(xi) + bj (8)

where Nj represents the set of data coming from the j-th neuron. The neuron output is
computed by the various activation functions. The output of the j-th neuron and the
activation function can thus be represented as in Equation (9):

Outputj = f
(

Nj
)

(9)

where f varies among the choice of activation function, which is based on the type of
problem the model is built to answer [27].

3.3.8. RNN

RNN is a type of artificial neural network that processes sequential data to recognize
patterns and predicts the final outcome. A similar calculation takes place for each element
of a sequence, and the following output is based on a preceding calculation of the result. As
part of its internal memory, RNN can remember or memorize the information of the input
it received, which helps it to gain context and predict the next step. In order to anticipate
the output of a layer, RNN saves the output of that layer and feeds it back into the input,
and that is how RNN works. Moreover, it is one of the most powerful models when it
comes to recognizing sequences of words and paragraphs, as well as predicting time series
problems [35].

4. AI Model

Figure 3 shows the model that we are building. We divided the dataset between the
training and the test to 80% and 20% respectively. The AI model will use 80% of the dataset
for training and 20% for testing. After finishing the training process, the evaluation process
comes to measure the model. Hence, when the validation process takes place, it will use
the split to ensure that the model is achieving accurate results. After finishing these two
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processes, we will be at the output trained files. Here we will use 20% of the remaining
dataset to verify the result we obtained from the model.
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5. Result and Analysis

For comparing the results of our eight experiments, we used the R2 (correlation
coefficient) score to determine which of the models had the best performance. Later, we
applied other testing measures such as MAE (mean absolute error), MSE (mean squared
error), and RMSE (root mean squared error) to the best-performing models. Table 2 shows
all the used parameters in the study for all the eight models we experimented on. These
parameters were optimized by applying a grid search algorithm that compared the results
of the models for multiple different combinations. These parameters have resulted in the
R2 scores for each model as the next sections will show.

Table 2. All methods parameters optimized.

Method Parameter Parameters Value

MLR
Fit_intercept True

Positive True

PLR
Fit_intercept True

Positive True

SVR

Kernel Rbf

Gamma scale

C 475

Epsilon 0.01

Max_iter −1

Tol 0.1
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Table 2. Cont.

Method Parameter Parameters Value

DTR

Criterion ‘absolute_error’

max_depth 6

max_features ‘auto’

RFR

criterion ‘squared_error’

n_estemators 100

max_features ‘auto’

XGBoost

Max_depth 2

Learning rate 0.4

Booster ‘gnlinear’

Gamma 0

ANN

Optimizer ReLu

Activation Adam

Init_mode Normal

Epochs 1000

Batch-size 10

Learn rate 0.3

RNN

Optimizer Adam

dropout 0.2

Dense 35

Epochs 400

Batch-size 50

verbose 0

5.1. MLR

For MLR testing we used Sklearn LinearRegression to implement the model in Python.
The model has a few parameters such as normalize and fit_intercept. However, those
parameters are irrelevant to our model, as well as the fact that the data received are
ideal state and the fact that normalization does not affect linear regression. Therefore, no
further modification to the model or the data was implemented. For the train/test split
we performed for the dataset is 80% for training, and 20% for testing and this is true for
all methods. The model was used to predict the oil production, all productions (oil, water,
and gas), as well as all dependent variables (all production + oil/water/gas ratio). Using
k-fold cross-validation of five folds and five repeats, the model produced adequate results
for the most part, with R2 of 0.834 for oil production, 0.7684 for gas production, and 0.6666
for water production, and a bad result of −0.02 for all dependent variables as shown in
Figure 4.
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5.2. PLR

We tested polynomial regression using the LinearRegression model from the Sklearn
library. As for MLR there is no modification to the model or the data. However, we tested
the model using different degrees (from two to eight). As with MLR, three tests were
conducted on oil, all production, and all dependent variables. The model performed better
with an R2 score of 0.966 for oil production, 0.9185 for gas production, and 0.8199 for water
production, all by using the degree of four in the experiment as shown in Figure 5.
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5.3. SVR

The SVR model experiment resulted in some good findings. However, these results
were the lowest among all the other models. A repeated k-fold algorithm of five splits
and five repeats was used in a grid search algorithm to tune the parameters of SVR. The
parameters we found to achieve high results are: kernel with ‘Rbf’, Gamma ‘scale’, C ‘475’,
Epsilon ‘0.01’, Max_iter ‘−0.1’, and Tol ‘0.1’. The model achieved great results with an
R2 score of 0.9659 for oil productions, a score of 0.8129 for gas productions, and a score
of 0.7543 for gas productions. An overall R2 score of 0.7401 was found for all dependent
variables. All these results have been achieved after standardizing the data for the model
as shown in Figure 6.
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5.4. DTR

For testing the decision tree regression model, we apply sklearn.tree to implement
the model using Python. We also implemented standardization and normalization for the
dataset. Moreover, we applied the grid search technique to optimize the model parameters
and increase the model accuracy as much as possible. We found that these parameters
produce the highest results: Criterion ‘absolute_error’, Max_depth ‘6’, Max_features ‘auto’.
Furthermore, the decision tree regression model has shown the result using R2 with K-fold
cross-validation to predict all of the oil production, all productions (oil, water, and gas), as
well as all dependent variables (all production and oil/water/gas ratio) with five folds, five
repeats, and with random_state = 1 for standardization. The highest results were for the
pure with R2 of 0.9225 for oil, 0.88 for all production, and 0.87 for all dependent variables
as shown in Figure 7.
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5.5. RFR

For testing the random forest regression model, we apply sklearn.tree to implement
the model using Python. We also implemented standardization and normalization for the
dataset. Moreover, we applied the grid search technique to optimize the model parameters
and increase the model accuracy as much as possible. With this set of features, we achieved
the highest results with: Criterion ‘squared_error’, n_estemators ‘100’, and Max_features
‘auto’. Furthermore, the random forest regression model has shown the result using R2 with
K-fold cross-validation to predict all of the oil production, all productions (oil, water, and gas),
as well as all dependent variables (all production and oil/water/gas ratio) with five folds,
five repeats, and with random_state = 1 for standardization. The highest results in R2 were
0.9355 for oil, 0.9247 for gas, and 0.8029 for water production, as shown in Figure 8.
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5.6. XGBoost

As for the XGBoost training, we used the same procedures as the previous methods.
We again used k-fold cross-validation of five folds and five repeats, grid search, and
fitting of the model itself. We used the XGBoost library to implement it easily, and we
also implemented standardization and normalization for the data. XGBoost contains
many parameters that can affect the result so, by using the gird search on the method
several times in some parameters, we then took the best parameters and their values:
Max_depth ‘2’, Learning Rate ‘0.4’, booster ‘gnlinear’, Gamma ‘0’. The model was used to
predict the oil production, all productions (oil, water, and gas), all dependent variables (all
production + oil/water/gas ratio), as well as the oil, water, and gas separately. XGBoost
managed to achieve an R2 score of 0.9561 for the oil, 0.9336 for all gas, and lastly 0.8141 for
water production as shown in Figure 9.
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5.7. ANN

For the ANN model, we began our experiment using a grid search with an abundance
of parameters to fit the best combination possible. We used a sequential classifier of three
layers into k-fold cross-validation with five splits and three repeats, we increased the
number of epochs to 1000 to ensure better results. The set of parameters are: optimizer
‘ReLu’, Activation ‘Adam’, Init_mode ‘Normal’, Epochs ‘1000’, Batch-size ‘10’, and Learn
rate ‘0.3’. This collection of parameters appears to give the best results in predicting the oil
production through all three years with a great correlation coefficient score of 0.9697, and
thus we applied these parameters to the other tests. Using this model to predict all the gas
productions across three years has yielded a score of 0.9185, and low results for the water
productions with an R2 score of 0.5631. Lastly, we tested how well the model does through
all outputs–all productions and ratios–and obtained a good score of 0.8506 compared with
the other models as shown in Figure 10.
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5.8. RNN(LSTM)

In RNN we used LSTM from the Kkeras library. We started with an LSTM input layer
with 104 hidden nodes. Then we added 200 nodes in the hidden layer, a dropout of 0.2,
and a dense output layer consisting of 35 nodes representing each month. Based on our
tests for ANN we used adam as an optimizer and mean_squared_error for loss. The model
was trained with a batch size of 50 and 400 epochs. The model performed well with an R2
score of 0.9785 for oil prediction as shown in Figure 11.
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Lastly, we used other evaluation metrics in our ANN model, as its performance is one
of the best in our experiments. As shown in Table 3 we can see the results of MAE, MSE,
and RMSE.

Table 3. Other evaluation measures on the ANN model.

Oil Gas Water

MAE 0.1223 0.1563 0.2732

MSE 0.0318 0.0597 0.1798

RMSE 0.1777 0.2212 0.3706

The oil results are the best-performing according to the results of our experiments in
Figure 12, followed by the gas results. The water results show a small drop compared to oil
and gas, which is caused by the nature of the dataset as it is more focused on oil and gas.
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5.9. Experiments Discussion

The main advantage this paper provides is a fast and accurate prediction of a well’s
production and characteristics in comparison with the current simulation methods, which
take much more time and require more computational power. However, this is limited by
the need for many records of wells or simulations of wells with different properties and
geological features to accurately represent future wells.

The main limitation of this paper’s experiments is the dataset. The dataset represents
wells in Saudi Arabia and, based on the location, the geological features differ, such as the
porosity and permeability of rocks. This limits the application of this research to wells with
similar properties. This limitation, however, can be overcome by acquiring datasets that
represent different types of reservoirs and their production records and features. Another
issue with the dataset is that the water productions are not as consistent as the gas and oil
productions which lead to a significant drop in water production prediction compared to
oil and gas production predictions. XGBoost and RNN, however, showed us the greatest
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water results according to Figure 12. We are planning to experiment more on these two
models and more similar new methods to overcome the water’s low prediction issue.

6. Conclusions

In this paper, we attempted to accelerate the process of predicting oil and gas produc-
tion using ML and DL methods. The models were passed through a series of transform
functions that were applied to the data. Below are the main highlights of our findings:

• The results we achieved with ANN, XGBoost, and RNN are the highest, with a mean
R2 for oil, gas, and water of 0.9627, 0.9012, and 0.926, respectively. We found that
ML algorithms performed best with the default dataset while the other algorithms
performed better in the custom dataset. Some methods had more significant results
if the data were standardized before experimenting, such as SVR with a mean R2
of 0.9014. Other algorithms, however, performed better with a pure dataset such
as RFR with a mean R2 of 0.8848. Normalizing the dataset for both the default and
the custom datasets did not yield good results and was outperformed by pure and
standardized data.

• After experimenting with the dataset and examining the results for every method
selected, it is hard to say that these are the best results we can obtain. There is still
plenty of room for improvement to achieve even better results by exploring different
methods or a combination of methods. Nevertheless, the results we acquired are
satisfactory considering the complexity of the problem.

7. Future Work

The progress and the results that we obtained are not final. We aim to improve and test
on different set of methods, and even return to the previous ones and perform further tests
to achieve better results. One of the of ideas we want to work toward is creating a system
that can select an ML or DL models depending on the dataset type, features, and more.
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