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Aim: Face masks are an important addition to our arsenal in the fight against COVID-19. The aim of this
study is to present a novel method of measuring mask performance which can simultaneously assess both
fabric penetration and leakage due to poor fit. Materials & methods: A synthetic aerosol is introduced
into the lung of a medical dummy. A conical laser sheet surrounds the face of the dummy where it illu-
minates the aerosol emitted during a simulated breath. The system is demonstrated with five mask types.
Conclusions: The curved laser sheet highlights both penetration through the mask fabric and leakage
around the edges of the mask. A large variation in both material penetration and leakage was observed.

Graphical abstract:

Tweetable abstract: Face masks are an effective means of stemming the spread of COVID-19. However,
mask performance varies considerably depending on the fabric from which they are made, and how they
fit on the face.
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On 26 December 2019, a 41-year-old male was admitted to the Central Hospital of Wuhan, presenting with
fever, dizziness and an unproductive cough [1]. The patient, a worker at a seafood market in Wuhan, was one
of the first reported cases of a newly emerging severe respiratory disease, which we now know as COVID-19.
Metagenomic analysis of a sample of the patient’s bronchoalveolar lavage fluid revealed that the causative agent
of COVID-19 is a coronavirus (CoV); named SARS-CoV-2, owing to its phylogenetic relatedness to a group of
SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus).

SARS-CoV-2 is the seventh member of the Coronaviridae known to infect humans. The first CoV to achieve
international notoriety was SARS-CoV; linked to clusters of ‘atypical pneumonia’ (later named SARS; severe acute
respiratory syndrome) initially presenting in the Chinese Province of Guangdong, in 2003, before spreading first
to Hong Kong and then to some 26 countries; infecting more than 8000 people [2]. While SARS-CoV originated
from bats, with human transmission occurring via an intermediate host [3], the true origins of SARS-CoV-2 remain
unknown (though bats, pangolins and snakes have all been suggested [4]). As with SARS, COVID-19 spread rapidly
from its Chinese epicenter, though with a considerably farther reach and impact. On 11 March 2020, the WHO
declared the COVID-19 outbreak a global pandemic [5]. At the time of writing, 216 countries & territories and
two international conveyances have reported cases of COVID-19, with the total number approaching 64 million
and over 1.4 million associated deaths [6].

Previously we suggested that, in the absence of an effective vaccine, ‘do-it-yourself ’ (DIY) face masks were likely
to play an important role in stemming the spread of SARS-CoV-2 [7]. The scientific evidence appears to support
this, with several reports outlining the role of face coverings in stemming the spread of SARS-CoV-2 [8–13]. However,
as the world now faces an inevitable ‘second wave’, it is essential that we redouble our efforts to halt the spread of
the virus [14–16]. One approach is to refine and improve face masks, both in terms of fabric and fit.

Face masks worn in a pandemic function more effectively as source control rather than protection [17]. Particles
can escape from the mask in two ways- either direct penetration of the fabric, or leakage around the sides [18]. While
inward leakage testing is part of the requirements for personal protective equipment (PPE) masks in European
Standard (EN) 149, the standard for medical masks, EN 14683, does not have any requirement for a leakage test –
neither inward nor outward. The European Committee for Standardisation Workshop Agreement (CWA) 17553
for face coverings also has no quantitative fit test. In fact, to our knowledge, a standard test for outward leakage
does not exist. When both leakage and fabric penetration are considered for workplace usage of PPE, the result
is the assigned protection factor. These values typically show far lower protection than would be assumed from
the performance of the fabric alone. We propose a new metric to take into account outward leakage, which we
call outward suppression factor. One would expect outward leakage to be more challenging to fix as the exhaling
pressure potentially reduces the seal.

While many recent studies have focused on the penetration of aerosols through various domestic fabrics [19],
comparatively fewer studies have looked at outward leakage as opposed to inward leakage. Better fitting medical
or N95 masks have been found to significantly improve the source control of particles from a dummy head [17]

and better fits have been achieved with an improved mask design, petroleum jelly [20], adhesive tape or fluffed
polypropylene fibers [21]. For cloth masks, the only study explicitly addressing fit found a large benefit from wearing
a nylon stocking worn over the top of a mask [22], although they measured inward leakage only. Other studies that
measured the overall outward mask performance by collecting air around the head did not attempt to separate
leakage from fabric penetration as a parameter which contributes to the mask efficiency [23,24]. The extractive
techniques used in many of these studies cannot alone distinguish between leakage and penetration. Laser sheets,
on the other hand, can visualize the leakage in situ. A flat laser sheet is not optimal for this purpose, for example in
the study of Fischer et al. [25], it is not clear whether leakages would be detected in their laser beam.

Herein we describe, for the first time, the use of a curved laser sheet for simultaneous yet separable detection of
both mask leakage and penetration. We envisage this to be used as a tool for mask designers to improve performance
without diminishing the breathability of the mask fabric.

Materials & methods
The experimental setup is shown in Figure 1. The aerosol consisted of 10% NaCl in water from a nebulizer
(Omron NE-C28P, mass median aerodynamic diameter of 3 μm) fed through one of the lung ports of a dummy
head (Laerdal airway management trainer) lying face upward on an optical bench. Prior to measurement, the airway
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Figure 1. Photographs of the setup,
showing the laser cone on an unmasked
dummy. The extractor is turned off to
enhance laser appearance (A) view from the
left (B) view from top parallel to laser (C)
view from the right bottom.

Figure 2. Photographs of the test materials. (A) the unmasked dummy, (B) three-layer mask with middle filter layer
removed, (C) single-layer textile mask. Bottom row: (D) CE marked FFP1 personal protective equipment mask, (E) CE
marked Type 2 medical mask, (F) bandana.

was primed with aerosol by turning on the nebulizer briefly while squeezing the attached lung ten-times, then
waiting for 30 s for the exhaled aerosol to disperse. A fume extractor was running continuously above the head
(ULT Jumbo Filter Trolley 2.0 running at 0.3 m/s in a position 15 cm above the tip of the nose). After initiating
the camera acquisition, the lung was squeezed by hand to deliver a breath. These were measured to deliver 300 ml
quite reproducibly (wright respirometer). For the breath duration of 1 s, the average flow of 0.3 l/s is similar to
the peak flow for a normal breath 0.5 m/s [26]. The aerosol was visualized with a conical laser sheet generated with
a 488 nm DPSS laser (Coherent Sapphire 75 mW) and axicon lens (Thorlabs AX1220-A). The conical cyan sheet
surrounds the face at a distance of approximately 2.5 cm from the nose and at a closer distance at the cheek to
allow space for the masks. A beam block was used at the axicon’s aperture to prevent direct illumination of parts of
the dummy.

The camera was a 2048*2048 pixel sCMOS array (Andor Sona 4BV11) with Nikkor 50 mm F1.8 AI MF lens.
It recorded a sequence of 30 frames at 7 Hz (acquisition time of 10 ms). Raw 16-bit images were processed in
SAOimage DS9 by applying the ‘bb’ colormap on a value range of 100–20,000 counts using log scaling.

The masks and dummy used are shown in Figure 2. The three-layer mask in Figure 2B has two outer layers each
0.4-mm thick made of 80% polyester 20% elastane with the internal filter layer being 1.0 mm 100% polypropylene.
The filter covers the area of the mouth and nose but around chin, cheeks and nose bridge the fabric is just a single
layer. Compliance with the testing methods of the CWA 17553 was claimed by the supplier but packaging was not
marked accordingly.
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Figure 3. Testing mask fabric and fit. Top row: (A) no mask, (B) three-layer textile mask, (C) single-layer textile mask.
Bottom row: (D) CE marked FFP1 PPE mask, (E) CE marked Type 2 medical mask, (F) bandana. Intensity scaled to
100–20,000 counts with ‘bb’ colourmap.

The single layer mask in Figure 2C is of unknown 1.0-mm thick material, of a design which was cheaply
and widely available. Compliance with CWA 17553 was not claimed. The CE-marked FFP1 respirator mask in
Figure 2D has no exhalation valve and it is marked as complying with EN 149. The CE-marked type 2 medical
mask in Figure 2E had a metal nose clip which was cinched down firmly on the dummy. The packaging was marked
as complying with EN 14683. The bandana or neck gaiter in Figure 2(f ) was 0.33 mm thick 100% polyester and
was folded into three layers in these experiments. Dating from 2019 this was never intended for infection control,
although the same material has been seen to be used as a face covering.

Results
Figure 3A–F shows images of the unmasked dummy and with five different face coverings. The frames shown
here are the brightest of the sequence of 30 frames, corresponding to the peak particle emission. All other frames,
together with raw data, are available in the supplemental materials. Distinct differences in the effectiveness of the
various materials can be clearly seen. The unmasked dummy should have the highest particle emission, but the
scattering plume appears relatively dim (Figure 3A). This is because the narrow jet crosses the laser sheet quickly, so
that at any one-time there are few particles in the laser sheet. The three-layer mask shows some fabric penetration
directly in front of the mouth and some turbulent leakage from under the eyes which crosses the laser cone above
the forehead (Figure 3B). The single-layer mask shows very high penetration and some leakage (Figure 3C). The
brightness of the penetrating aerosol is around five-times greater than even the unmasked dummy, but this is due
to the slower, broader flow which fills the laser beam with aerosol.

Similarly, the bandana shows high penetration (Figure 3F). In this case, the leakage appears less intense, likely as
there is less resistance from the fabric that would otherwise force the breath to find a path of lower resistance. The
medical mask (Figure 3E) and FFP1 (Figure 3D) mask display no detectable penetration but instead show a few
turbulent jets from the cheek and eyes. The leakage at the cheek is easier to discern from inspection of the whole
time series (see supplemental materials). In the image of the FFP1 mask, the wisp in front of the mask can be seen
to originate at the cheek and did not penetrate the fabric. These leakage jets tend to be directed over the forehead,
or across the cheek, and are only partly moved into the laser cone by the extraction air current.
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Discussion
The FFP1 mask is the only one which must pass a fit test to be awarded a CE mark, and indeed it showed the
lowest leakage and undetected penetration. For the other mask types, the fabrics with lower penetration showed
higher leakage, indicating that these masks displayed a trade-off between fabric and fit.

The scattering of light by small particles is described by Mie theory [27], and is quite non linear. However, using
the experimental setup described herein, these nonlinearities will smooth over to a large extent due to the breadth
and angle of the laser cone, and wide distribution of particle sizes. The brightness can, therefore, be taken as
approximately proportional to the volume of material. Although it is possible to extract pseudo-quantitative results
from these images by merely summing up the brightness of each pixel, we caution against doing so for two reasons.
As seen in the no-mask image (Figure 3A), a narrow, fast-moving jet appears dim due to the small area of laser
sheet it covers, despite carrying a large volume. This weakness could be addressed by more complex image analysis.
Another caveat is that the results are dependent on the exact position of the laser sheet. In the configuration used
in the current study, for example, any leakage from under the chin would not be detected. However, when using
additional laser sheets, it is apparent that almost all leakage occurs around the eyes and cheeks for the masks we
tested. These additional laser sheets complicate the interpretation of the images, even if using different laser colors.
Directing the cone straight onto the face to form a laser ring around the masks results in a large background
scatter from the dummy skin. Although this background can be reduced by black paint and image processing, this
configuration would then require another laser sheet to detect penetration.

It is also important to note that the aerosol used in the current experimental setup has a mass median aerodynamic
diameter of 3 μm but is also a broad distribution with 10% of the mass in particles larger than 10 μm. This covers
the range of particle sizes emitted from speech [28], but whether this also correlates to the infectious particles is not
currently known. Most of the fabric testing to date has focused on submicron particles [29,30]. However, a study of
influenza in ferrets found the disease was transmitted in particles larger than 1.5 μm, but not smaller particles [31].
For SARS-CoV-2, we do not yet know which size of the aerosol is likely to carry the most infectious viral load.
Larger particles are more likely to be captured by the mask material. To an extent this is also true for leaks, as larger
particles are more likely to deposit due to impaction when passing around corners.

It is also unknown how different leakage patterns could affect infectivity. Even the worst performing single-layer
mask served to slow down the flow from the mouth, which would reduce the spread of particles even if they were
not captured. The fate of leakage jets directed to the side, or upward, would depend on the local airflow.

Furthermore, the dummy head used in this study is larger than 95% of adult male heads (tip of the nose to the
back of head 237 mm), meaning that the masks were a tighter fit than the average human head. The exact shape of
the nose would also have a potentially considerable influence on the leakage. Nonetheless, despite these limitations,
our preliminary findings are clear – mask efficacy is dependent on both fabric and fit.

Conclusion
Given that the reproduction rate of COVID-19 is super-linearly related to both the efficacy of face coverings and
the percentage of a population wearing face coverings, a small change in either will result in a large change in
disease transmission rates [32]. It is therefore critical that universal public masking will involve optimally suppressive
materials that are comfortable to wear for extended periods, can be produced in large quantities from common
household materials, and are re-usable and inexpensive. Importantly, such face coverings will not negatively impact
PPE supplies [33].

Testing of pandemic masks has been largely focused on the material only. We have demonstrated a technique
based on a curved laser sheet that suggests fit is an important parameter in determining mask performance.
Measurements like this could help mask designers make improvements simply by altering the design rather than
using a different fabric that may potentially be more expensive or have a lower breathability.

Quantitative analysis of the most efficient and effective face masks (in terms of both fit and fabric) will
undoubtedly help to stem the spread of not just SAR-CoV-2 but also any illness spread through respiratory
particles.
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Summary points

• The use of face masks has had a significant impact on limiting the spread of COVID-19.
• We provide qualitative evidence based on a novel curved laser sheet which suggests that there is considerable

variation in the efficacy of face masks depending not only on fabric type, but also on the fit around the face.
• These results highlight the pressing need for more quantitative analyses based on real life usage to define the

most effective face masks for controlling the spread of COVID-19.
• Improved face masks will not only help to suppress the spread of the disease but will also assist in preserving vital

personal protective equipment for essential frontline services.

References
1. Wu F, Zhao S, Yu B et al. A new coronavirus associated with human respiratory disease in China. Nature 579(7798), 265–269 (2020).

2. Sun J, He W-T, Wang L et al. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends Mol. Med. 26(5),
483–495 (2020).

3. Song H-D, Tu C-C, Zhang G-W et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human.
Proc. Natl Acad. Sci. USA 102(7), 2430–2435 (2005).

4. Ahn D-G, Shin H-J, Kim M-H et al. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease
2019 (COVID-19). J. Microbiol. Biotechnol. 30(3), 313–324 (2020).

5. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 91(1), 157–160 (2020).

6. Worldometer. COVID-19 coronavirus pandemic (2020). http://www.worldometers.info/coronavirus/.

7. Sleator RD, Darby S, Giltinan A, Smith N. COVID-19: in the absence of vaccination - ‘mask the nation’. Future Microbiol. 15(11),
963–966 (2020).

8. Smith GD, Ng F, Watson R. “Masking the evidence”: perspectives of the COVID-19 pandemic. J. Clin.
Nurs. doi:10.1111/jocn.15401 (2020) (Epub ahead of print).

9. Zhai J. Facial mask: a necessity to beat COVID-19. Build. Environ. 175, 106827 (2020).

10. Cheng VC, Wong S-C, Chuang VW et al. The role of community-wide wearing of face mask for control of coronavirus disease 2019
(COVID-19) epidemic due to SARS-CoV-2. J. Infect. 81(1), 107–114 (2020).

11. Liu X, Zhang S. COVID-19: face masks and human-to-human transmission. Influenza Other Respi. Viruses 14(4), 472–473 (2020).

12. Burnett ML, Sergi CM. Face masks are beneficial regardless of the level of infection in the fight against COVID-19. Disaster Med. Public
Health Prep. 1–4 (2020).

13. Sergi CM, Leung AK. The facemask in public and healthcare workers–a need not a belief. Public Health 183, 67–68 (2020).

14. Xu S, Li Y. Beware of the second wave of COVID-19. Lancet 395(10233), 1321–1322 (2020).

15. Wise J. Covid-19: risk of second wave is very real, say researchers. BMJ 369 (2020).

16. Middleton J, Lopes H, Michelson K, Reid J. Planning for a second wave pandemic of COVID-19 and planning for winter. Int. J. Public
Health 65, 1–3 (2020).

17. Mansour MM, Smaldone GC. Respiratory source control versus receiver protection: impact of facemask fit. J. Aerosol Med. Pulm. Drug
Deliv. 26(3), 131–137 (2013).

18. Lai A, Poon C, Cheung A. Effectiveness of facemasks to reduce exposure hazards for airborne infections among general populations. J. R.
Soc. Interface 9(70), 938–948 (2012).

10.2217/fmb-2020-0292 Future Microbiol. (Epub ahead of print) future science group

http://www.worldometers.info/coronavirus/


Mask efficacy Short Communication

19. Clase CM, Fu EL, Ashur A et al. Forgotten technology in the COVID-19 pandemic. filtration properties of cloth and cloth masks: a
narrative review. Mayo Clin. Proc. 95(10), P2204–2224 (2020).

20. Patel RB, Skaria SD, Mansour MM, Smaldone GC. Respiratory source control using a surgical mask: an in vitro study. J. Occup.
Environ. Hyg. 13(7), 569–576 (2016).

21. Huang J, Huang V. Evaluation of the efficiency of medical masks and the creation of new medical masks. J. Int. Med. Res. 35(2),
213–223 (2007).

22. Mueller AV, Eden MJ, Oakes JM, Bellini C, Fernandez LA. Quantitative method for comparative assessment of particle removal
efficiency of fabric masks as alternatives to standard surgical masks for ppe. Matter 3(3), 950–962 (2020).

23. Asadi S, Cappa CD, Barreda S, Wexler AS, Bouvier NM, Ristenpart WD. Efficacy of masks and face coverings in controlling outward
aerosol particle emission from expiratory activities. Sci. Rep. 10(1), 1–13 (2020).

24. Leung NH, Chu DK, Shiu EY et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26(5), 676–680
(2020).

25. Fischer EP, Fischer MC, Grass D, Henrion I, Warren WS, Westman E. Low-cost measurement of face mask efficacy for filtering expelled
droplets during speech. Sci. Adv. 6(36), eabd3083 (2020).

26. Gupta JK, Lin CH, Chen Q. Characterizing exhaled airflow from breathing and talking. Indoor Air 20(1), 31–39 (2010).

27. Wriedt T. Mie theory: a review. In: The Mie Theory. Springer 53–71 (2012).

28. Johnson G, Morawska L, Ristovski Z et al. Modality of human expired aerosol size distributions. J. Aerosol Sci. 42(12), 839–851 (2011).

29. Rengasamy S, Eimer B, Shaffer RE. Simple respiratory protection—evaluation of the filtration performance of cloth masks and common
fabric materials against 20–1000 nm size particles. Ann. Occup. Hyg. 54(7), 789–798 (2010).

30. Van Der Sande M, Teunis P, Sabel R. Professional and home-made face masks reduce exposure to respiratory infections among the
general population. PloS ONE 3(7), e2618 (2008).

31. Zhou J, Wei J, Choy K-T et al. Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proc. Natl Acad. Sci.
USA 115(10), E2386–E2392 (2018).

32. Howard J, Huang A, Li Z et al. Face masks against COVID-19: an evidence review. Preprints doi:
10.20944/preprints202004.0203.v1 2020) (Epub ahead of print).

33. Maia Chagas A, Molloy JC, Prieto-Godino LL, Baden T. Leveraging open hardware to alleviate the burden of COVID-19 on global
health systems. PLoS Biol. 18(4), e3000730 (2020).

future science group 10.2217/fmb-2020-0292



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 400
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 400
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'PPG Indesign CS4_5_5.5'] [Based on 'PPG Indesign CS3 PDF Export'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks true
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions false
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 600
        /LineArtTextResolution 2400
        /PresetName (Pureprint flattener)
        /PresetSelector /UseName
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.835590
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


