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RNA N6-methyladenosine (m6A) is the most common and intensively studied

RNA modification that critically regulates RNA metabolism, cell signaling, cell

survival, and differentiation. However, the overall role of multiple m6A

regulators in the tumor microenvironment (TME) has not yet been fully

elucidated in acute myeloid leukemia (AML). In our study, we explored the

genetic and transcriptional alterations of 23 m6A regulators in AML patients.

Three distinct molecular subtypes were identified and associated with

prognosis, patient clinicopathological features, as well as TME

characteristics. The TME characterization revealed that m6A patterns were

highly connected with metabolic pathways such as biosynthesis of

unsaturated fatty acids, cysteine and methionine metabolism, and citrate

cycle TCA cycle. Then, based on the differentially expressed genes (DEGs)

related tom6Amolecular subtypes, our study categorized the entire cohort into

three m6A gene clusters. Furthermore, we constructed the m6Ascore for

quantification of the m6A modification pattern of individual AML patients. It

was found that the tumor-infiltrating lymphocyte cells (TILs) closely correlated

with the threem6A clusters, threem6A gene clusters, andm6Ascore. Andmany

biological processes were involved, including glycogen degradation, drug

metabolism by cytochrome P450, pyruvate metabolism, and so on. Our

comprehensive analysis of m6A regulators in AML demonstrated their

potential roles in the clinicopathological features, prognosis, tumor

microenvironment, and particularly metabolic pathways. These findings may

improve our understanding of m6A regulators in AML and offer new

perspectives on the assessment of prognosis and the development of

anticancer strategy.
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Introduction

Acute myeloid leukemia (AML) is a highly fatal

hematopoietic malignancy with excessive proliferation of

immature leukemic blasts and poor prognosis (Dohner et al.,

2017; Thomas and Majeti, 2017). The recurrence and mortality

rates of AML are still very high with currently available

therapeutics (Buckley et al., 2018; Koenig and Mims, 2020).

The scientists have been dedicated to developing more novel

and synergistic therapeutic targets of AML (Metzeler et al., 2016).

A lot of work has been done on the role of gene transcription in

leukemogenesis whereas the functional significance of

posttranscriptional regulation of gene expression such as RNA

modifications has received great attention from researchers in

recent years.

Methylation of N6 adenosine (m6A), which has been

discovered as reversible RNA methylation affecting the

regulation of post-transcriptional gene expression programs

and protein production, is one of the most abundant internal

marks on mammalian mRNA (Desrosiers et al., 1974; Fu et al.,

2014; Zhao et al., 2017; Shi et al., 2019). The biological functions

altered by m6A modifications are dynamically controlled by the

m6A methyltransferase complex (writers), m6A demethylases

(erasers), and m6A-binding proteins (readers) (Shi et al., 2019;

Zaccara et al., 2019). A deep understanding of these regulatory

proteins is essential to our comprehension of the mechanisms of

m6A in gene regulation. It has been reported that m6A

modification is an important regulator of the development

and regulation of normal and malignant hematopoiesis (Vu

et al., 2019). Emerging evidence also demonstrates the

involvement of m6A modification in physiological and

pathological processes of hematopoiesis and leukemogenesis

(Paris et al., 2019; Sheng et al., 2021). The m6A writers

[methyltransferase-like 3 (METTL3), methyltransferase-like 14

(METTL14)], erasers [α-ketoglutarate-dependent dioxygenase

AlkB homolog 5 (ALKBH5), and fat mass and obesity-

associated protein (FTO)], highly expressed in AML, were

involved in the development, differentiation, progression, and

maintenance of AML through various m6A-dependent

mechanisms (Barbieri et al., 2017; Li et al., 2017; Vu et al.,

2017; Weng et al., 2018; Shen et al., 2020). m6A reader gene

YT521-B homology (YTH) domain family protein 2 (YTHDF2)

is also upregulated and plays an important role in tumor

promotion in AML development/maintenance (Paris et al.,

2019).

The tumor microenvironment (TME), a complex ecosystem

that includes malignant and non-malignant cells, immune cells,

stromal cells, and other components, plays a crucial role in tumor

initiation and progression (Friedl and Alexander, 2011; Hanahan

and Weinberg, 2011; Binnewies et al., 2018). Accommodation of

tumor cells with their nearby milieu promotes to evolve

hallmarks related to the tumorigenesis, which is affected from

cellular differentiation state of immune and stromal cells,

normalizing this milieu will explore paths to therapy

(Mortezaee, 2021; Mortezaee and Majidpoor, 2021; Mortezaee

andMajidpoor, 2022). Also, cancer cells autonomously alter their

metabolic pathways since they need abundant energy and raw

materials required for proliferation and survival (Hanahan and

Weinberg, 2011; Li and Zhang, 2016). The researchers show that

the modification of m6A is also implicated in the regulation of

physiology and metabolism in tumors (Faubert et al., 2017; Choe

et al., 2018). Leukemia-associated alterations within the AML

niche such as increased hypoxia, inflammation and metabolic

reprogramming facilitate immune evasion and chemotherapy

resistance as well as contribute to AML progression (Mendez-

Ferrer et al., 2020). Liu et al. manifested that the m6A

demethylase FTO could regulate glycolytic metabolism which

induced tumors to escape immune surveillance (Liu et al., 2021).

Nevertheless, most studies focus on only individual or small

numbers of m6A regulators due to technical limitations. How

multiple m6A regulators mediate the micro-environmental

phenotype which may provide important insights for

understanding the underlying mechanism of AML

tumorigenesis is not well elaborated.

In this study, we obtained the datasets of AML from the

Cancer Genome Atlas (TCGA). Next, we constructed the three

m6A clusters, three m6A gene clusters, and a set of scoring

system step by step and comprehensively evaluated the

association of m6A modification patterns with clinical

outcomes, biological pathways, and TME characteristics. All in

all, we attempted to uncover the mechanism of m6A

modification patterns in the AML development, and

subsequently provided references for future research and a

basis for clinical treatment.

Materials and methods

Data acquisition

The multi-omics data of AML analyzed in Figure 1, including

copy number variation (CNV), single nucleotide variation

(SNV), and mRNA (RNAseq) data, were all downloaded from

the GDC of the TCGA portal (https://portal.gdc.cancer.gov/

repository). This TCGA AML data include bulk specimen

from diagnosed AML patients. Patients without survival

information were excluded and a total of 151 AML patients

were included for further evaluation. In Supplementary Figure
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S1B, we analyzed gene expression data from normal cell

populations, which was part of the Hemap data retrieved

from a previous publication (Dufva et al., 2020). These were

specimens of sorted immune cells. For Supplementary Figure

S1C, we assessed the expression of 23 m6A regulators in bulk

gene expression data from pan-hematological malignancies,

which was also part of the Hemap data. We also used a

published scRNA-seq data from 16 AML samples at diagnosis

consisting of 30,712 BM cells (Van Galen AML scRNA), which

were downloaded from GEO with accession GSE116256.

FIGURE 1
The panorama of genetic variations and expression patterns of m6A regulators in AML (A) The CNV variation frequency of 23 m6A regulators
was prevalent from the TCGA cohort. The height of the column denoted the alteration frequency. The amplification frequency was labeled as a red
dot. The deletion frequency was labeled as a blue dot (B) The location of CNV alteration of m6A regulators on chromosomes. The black dot, the red
dot, and the blue dot in the ring indicated no copy number change, amplification, and deletion respectively (C) The genetic alteration frequency
of 23 m6A regulators in 193 patients with AML. The upper bar plot showed TMB. The panel on the right represented the mutation frequency and
proportion of each variant type in each regulator (D) Correlation of the investigated m6A modification regulators (E) The differences of expression
levels of 23 m6A regulators between normal and AML samples (***p < 0.001).
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Consensus molecular clustering for
23 m6A regulators

A total of 23 acknowledged m6A regulators were analyzed for

identifying different m6A modification patterns. These 23 m6A

regulators comprised two erasers (ALKBH5, FTO), 13 readers

(YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, IGF2BP1,

IGF2BP2, IGF2BP3, HNRNPA2B1, HNRNPC, FMR1, LRPPRC,

ELAVL1), and 8 writers (METTL3, METTL14, RBM15,

RBM15B, WTAP, VIRMA, CBLL1, ZC3H13). We applied the

R package “ConsensusClusterPlus” to classify patients from the

TCGA AML cohort into distinct m6A modification patterns

according to the expression of 23 m6A regulators. Next, we

compared the relationships between m6A molecular subtypes

and clinicopathological characteristics including FAB subtypes,

cytogenetic risk, gender, age, and WBC.

Differentially expressed genes
identification

m6A modification-related DEGs were checked among

different m6A subtypes using the empirical Bayesian approach

of the limma R package. We categorized the cases into different

subtypes (gene cluster A, gene cluster B, and gene cluster C) for

further analysis. In practice, we used the voom algorithm to

normalize gene expression data and then input lmFit and eBayes

functions to calculate the statistics for differential expression with

a corrected p-value < 0.05. GO annotation for m6A phenotype-

related genes was performed in the R package “clusterProfiler”

with the cutoff value of FDR <0.05. Kaplan-Meier curves analysis

was employed tomeasure the discrepancy of overall survival (OS)

between different gene clusters.

Generation of m6A gene signature

The m6Ascore was set up to assess the m6A modification

patterns of individual patients with AML by using principal

component analysis (PCA). To be more specific, a total of

70 overlap DEGs were subjected to univariate Cox regression

analysis to identify a set of candidate prognostic genes. And we

screened out 25 genes with a p value less than 0.05 by the random

forest-recursive feature elimination (RFE) method with 10-fold

cross-validation in the R package “caret”. Then we conducted the

PCA analysis based on the expression profiles of the final

determined genes. Principal components 1 and 2 were both

selected as signature scores. As a result, the m6Ascore was

calculated as follows: m6Ascore = Σ(PC1i + PC2i), where i

was the expression of m6A phenotype-related genes (Zeng

et al., 2019). m6Ascore was the integral of a continuous

variable and the m6Ascore group was a binary variable

obtained according to the X tile method.

Gene set variation analysis and TME cell
infiltration estimation

We employed GSVA enrichment analysis to evaluate the

disparity involved in physiological processes and biological

functions among different m6A modification patterns by

using “GSVA” R packages. Additionally, we adopted the

CIBERSORT algorithm to calculate the relative abundance of

23 tumor-infiltrating lymphocyte cells (TILs) in different m6A

modification patterns with the gene expression profile (Newman

et al., 2015). And the 23 cell types included B cells, T cells,

dendritic cells, natural killer cells, eosinophil, macrophages,

monocyte, neutrophil, and myeloid subsets. A violin map

visualized the difference of immune cell abundance among

m6A modification patterns. To extract detailed mutational

information, Mutation Annotation Format data files based on

TCGA cohort were depicted by the waterfall function of the R

“maftools” package.

Statistical analyses

We generated statistical analyses in this study with R software

version 4.0.4 (https://www.r-project.org/). For comparison of

two continuous variables, statistical significance was evaluated

by the Chi-square test and Fisher’s exact test. Univariate Cox

regression and Kaplan-Meier curves were used to test the

prognostic effects of the different subtypes with the “survival”

and “survminer” R packages. Samples were allocated into high

and low m6Ascore subgroups with the surv-cutpoint function

from the “survminer” package. The two-sided p < 0.05 in all

comparisons was considered to indicate a statistically significant

difference.

Results

Genetic and transcriptional alterations of
m6A regulators in AML

We investigated a total of 23 m6A regulators including

8 writers, two erasers, and 13 readers in this study

(Supplementary Table S1). The differences in CNV of all

regulators were explored. The CNV of m6A regulators was

prevalent in AML. The CNV was found to be focused on the

deletion predominantly, while YTHDF2, YTHDF3, FTO,

YTHDF1, and ELAVL1 had more prevalent amplification

frequency (Figure 1A,Supplementary Table S2). The locations

of CNV alteration in 23 m6A regulators on their respective

chromosomes were displayed in Figure 1B (Supplementary

Tables S3, S4). Moreover, we compared AML samples to

normal samples using PCA analysis based on paired tumor-

normal specimens and found that AML samples were clearly
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distinguished from normal samples by the 23 m6A regulators

(Supplementary Figure S1A). After evaluating the incidence of

somatic mutations of 23 m6A regulators in AML, we concluded

that the alteration frequency was only 1.04% among

193 samples with two missense mutations identified in

METTL3 and RBMX (Figure 1C). Notably, m6A regulators

are widely known for their collaboration in cancer progression.

The relevance of the co-expression of regulators was therefore

analyzed, and LRPPRC and VIRMA owned a significant

correlation with the highest correlation coefficient (R = 0.66)

(Figure 1D, Supplementary Tables S5, S6). Intrigued by these

findings, we further compared the mRNA expression levels

between AML and normal tissues. The results displayed all of

the 23 m6A regulators showed significant differences between

AML and normal tissues except for YTHDF2 and METTL3

(Figure 1E). Beyond that, m6A highlighted distinct patterns in

different immune cell types, myeloid malignancies along with

lymphoid malignancies (Supplementary Figure S1B,C). The

observed clustering suggested that the cell-of-origin and

different disease groups influenced the repertoire of m6A

regulators. YTHDF3 presented relatively higher expression

compared with the other 22 m6A regulators in M2-

macrophage. At the same time, AML highly expressed

IGF2BP2.

FIGURE 2
m6A regulators subtypes and their clinicopathological characteristics in AML (A) The interaction among m6A regulators in AML. The lines
represented their interactions between regulators, and the thickness of lines showed the strength of the correlation. Effects of regulators on the
prognosis were represented with the circle size, and p-values were calculated by Log-rank test (p < 1, p < 0.05, p < 0.01, p < 0.001, P < 1e-04) (B)
Kaplan-Meier overall survival curves of 111 cases in m6A cluster A, 33 cases in m6A cluster B, and 7 cases in m6A cluster C from the TCGA AML
cohort (C) Differences in clinicopathological characteristics and expression levels of m6A among the three distinct m6A clusters. The m6A cluster,
FAB subtypes, cytogenetic risk, gender, age, and WBC were used as patient annotations.
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Identification of m6A subtypes in AML

151 patients from the TCGA dataset with available OS data

and clinical information were enrolled in our study for further

analysis (Supplementary Table S7). The results of univariate Cox

regression analysis revealed the prognostic values of 23 m6A

regulators in patients with AML (Supplementary Table S8).

Figure 2A showed the comprehensive landscapes of 23 m6A

regulators concerning their interactions, connections, and

prognostic values in AML in the form of a m6A regulator

network. Significant correlations existed among writers,

erasers, and readers. We further explored the expression

pattern of m6A regulators in AML and conducted the R

package of ConsensusClusterPlus to classify the patients based

on the expression level of 23 m6A regulators. It was clear that the

clustering model was optimal when K = 3 during the process of K

ranging from2 to 9 (Supplementary Figures S2A–S2C). The

entire TCGA AML cohort was eventually allocated into three

distinct modification patterns consisting of 111 cases in cluster A,

33 cases in cluster B, and 7 cases in cluster C (Figure 2B). The

Kaplan-Meier curves for the three main m6A modification

subtypes revealed the worst overall survival in patients with

m6Acluster A (p = 0.003, Figure 2B). The prognosis of

m6Acluster-B and m6Acluster C was similar in the Kaplan-

Meier analysis, so we combined m6Acluster B with m6Acluster C

and m6Acluster A was compared with it using univariate

analyses. m6Acluster A had significantly poorer prognosis

(HR = 0.3998, p < 0.01, Supplementary Table S9). Shen et al.

have also reported m6A-based subtypes were remarkably related

with overall survival in pan-cancer including AML (Shen et al.,

2021). Moreover, we validated the biological characteristics of

three m6A subtypes. The m6Acluster B was preferentially related

to FAB subtypes M3, and the m6Acluster C subtype was

markedly correlated with intermediate cytogenetic risk and

FTO (Figure 2C). It was reported that FTO played a critical

oncogenic role in AML (Li et al., 2017). We also observed

differential expression patterns of m6A regulators among

three clusters. For example, VIRMA, which plays an

oncogenic role in multiple human cancers (Zhu et al., 2021),

was more highly expressed in m6Acluster A compared with the

other two clusters. Another gene with relatively higher

expression in m6Acluster A-IGF2BP3-was recently found to

be specifically overexpressed in AML and contributes to

tumorigenesis and poor prognosis of this disease (Zhang

et al., 2022). These findings agreed favorably with the

observed negative prognostic influence of m6Acluster A.

Associations of TME with three m6A
subtypes

The association of 23 TILs with three m6A clusters was

investigated by using the CIBERSORT algorithm in the TME of

AML. We observed profound differences in immune cell

infiltration including activated B cell, CD56dim natural killer

cell, immature B cell, mast cell, regulatory T cell, type 1 T helper

cell, type 17 T helper cell, and type 2 T helper cell among the three

subtypes (Figure 3A). In addition, we performed GSVA

enrichment analysis to detect the biological characteristics of

three distinct m6A modification patterns. GSVA enrichment

analysis showed that m6Acluster A was significantly enriched

in metabolic pathways such as biosynthesis of unsaturated fatty

acids, propanoate metabolism, pyruvate metabolism, citrate cycle

TCA cycle, glyoxylate and dicarboxylate metabolism, pyrimidine

metabolism, purine metabolism, cysteine and methionine

metabolism (Figure 3B and Supplementary Table S10).

m6Acluster B presented enrichment pathways highly related

to metabolic pathways including linoleic acid metabolism

(Figure 3B and Supplementary Table S10), and carcinogenic

activation pathways such as ECM receptor interaction

(Figure 3C and Supplementary Table S11). Likewise,

m6Acluster C was prominently associated with metabolic

pathways which encompassed cysteine and methionine

metabolism, glyoxylate and dicarboxylate metabolism

(Figure 3C and Supplementary Table S11). What’s more,

m6Acluster A correlated with immune pathways and

immune-related diseases simultaneously, including antigen

processing and presentation, chemokine signaling pathway

activation, asthma, and systemic lupus erythematosus

(Figure 3D and Supplementary Table S12). Figure 3E

illustrated cell type assignment for the scRNA expressed genes

in AML.

m6A phenotype-related DEGs in AML

To further investigate the underlying m6A-related

transcriptional expression differences within three m6A

modification patterns, we did some further analysis. Actually,

we applied a Venn diagram to illustrate the DEGs among the

three m6A modification patterns and 70 m6A phenotype-related

overlap genes were presented (Supplementary Figure S3A,

Supplementary Tables S13–S16). To further elaborate on the

function of DEGs, we carried out a GO enrichment analysis. The

result elucidated that enrichment of the biological processes

related to embryonic organ morphogenesis/development

(Supplementary Figure S3B). Supplementary Table S17

showed the expression level of 70 overlap DEGs. Univariate

Cox regression study of 70 genes was analyzed and 25 genes with

p-value less than 0.05 were screened out (Supplementary Table

S18). Then we performed an unsupervised clustering algorithm

to classify the entire cohort into three m6A gene signature

subtypes, named as m6A gene cluster A-C, respectively

(Figure 4A). Further survival analysis indicated three m6A

genomic phenotypes showed significant prognostic differences

in AML samples, of which 45 cases were in gene cluster A,
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47 cases in gene cluster B, and 59 cases in gene cluster C (p =

0.002, Log-rank test, Figure 4B). Patients in gene cluster C were

proved to be related to a better prognosis, while patients in gene

cluster A and gene cluster B were associated with the outcome of

poorer prognosis. We also observed that m6A gene cluster C

patterns were associated with good cytogenetic risk, while m6A

gene cluster A presented poor cytogenetic risk and m6A gene

cluster B showed intermediate cytogenetic risk. Patients with

alive status were largely concentrated in the m6A gene cluster A

patterns. Interestingly, VSTM1 showed its highest expression

level in the m6A gene cluster C, whereas M1AP was expressed

lowest in the m6A gene cluster B (Figure 4C). High expression of

VSTM1 was reported to be associated with a more favorable

clinical outcome (Lai et al., 2021). The three m6A gene clusters

FIGURE 3
The interaction between TME and three m6A subtypes (A) The abundance of tumor-infiltrating lymphocyte cells in three m6A clusters. Violin
plots displayed the differences in the immune cell distribution across three distinct subtypes. *p < 0.05, **p < 0.01, ***p < 0.01, ns, not significant
(B–D) GSVA enrichment analysis of biological pathways in three distinct subtypes, visualized by the heatmap. B, m6Acluster A vs. m6Acluster B; C,
m6Acluster B vs. m6Acluster C; D, m6Acluster A vs. m6Acluster C. (E)Dot plot of cell type assignment for AML scRNA expressed genes. Dot plot
charts of the average expression were shown in different colors, and the percentage of cells with detectable expression was demonstrated in the size
of the dot.
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FIGURE 4
Construction of differential expression of m6A gene signatures (A) Unsupervised clustering of m6A phenotype-related genes in the TCGA
cohort and consensus matrices for k = 3 (B) Kaplan-Meier curves for overall survival of the m6A phenotype-related gene signatures (p = 0.002, Log-
rank test) (C) Relationships between clinicopathologic features and the three genomic subtypes. The gene clusters, m6A clusters, FAB subtypes,
cytogenetic risk, gender, age, white blood cell, and overall survival status were used as patient annotations (D) Differences in the expression of
23 m6A regulators in the three gene clusters. *p < 0.05; **p < 0.01; ***p < 0.001.
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indicated significant differences in the expression of VIRMA,

IGF2BP2, FMR1, IGF2BP3, ELAVL1, and YTHDC2 (Figure 4D).

In addition, the immune cell infiltration of activated B cell,

activated CD4 T cell, activated dendritic cell, macrophage, NK cell,

plasmacytoid dendritic cell and type 2 T helper cell showed

statistically significant differences across the three m6A gene

clusters (Figure 5A). Meanwhile, m6A gene cluster A was

prominently associated with metabolic pathways or biological

process including mucin type O glycan biosynthesis, nitrogen

metabolism, heme biosynthesis, lysine degradation, epinephrine

biosynthesis, glycogen degradation, pantothenate and CoA

biosynthesis, vitamin B6 metabolism, retinoic acid metabolism,

phenylalanine tyrosine and tryptophan biosynthesis (Figure 5B,

Figure 5C and Supplementary Table S19, Supplementary Table

S20). m6A gene cluster B was associated with retinoid

metabolism, glyoxylate and dicarboxylate metabolism, steroid

biosynthesis, nicotinamide adenine dinucleotide biosynthesis,

ubiquinone, and other terpenoid quinone biosynthesis, folate

biosynthesis, oxidative phosphorylation, glycogen degradation,

cysteine and methionine metabolism, phenylalanine tyrosine and

tryptophan biosynthesis, pantothenate and CoA biosynthesis,

pentose phosphate, primary bile acid biosynthesis, and retinoic

acid metabolism (Figure 5C, Figure 5D, and Supplementary Table

S20, Supplementary Table S21). m6A gene cluster C presented

enrichment pathways prominently associated with retinol

metabolism, ascorbate and aldrate metabolism, steroid hormone

biosynthesis and metabolism, porphyrin and chlorophyll

metabolism, metabolism of xenobiotics by cytochrome P450, drug

metabolism by cytochrome P450, epinephrine biosynthesis, lysine

degradation, and N glycan biosynthesis (Figure 5C, Figure 5D, and

Supplementary Tables S20, S21).

Construction of m6A score and the
relevance of clinical features

Considering the individual heterogeneity and complexity of

m6A modification, a scoring system based on the signature genes

FIGURE 5
Correlations of TME and three m6A gene clusters (A) The fraction of tumor-infiltrating lymphocyte cells in three m6A gene clusters using the
CIBERSORT algorithm. Violin plots illustrated the differences in the immune cell distribution across three m6A gene clusters. *p < 0.05, **p < 0.01,
***p < 0.01, ns, not significant (B–D) Heatmap was plotted to show the activation states of biological pathways in three m6A gene clusters via the
GSVA enrichment analysis. B, m6A gene cluster A vs. m6A gene cluster B; C, m6A gene cluster B vs. m6A gene cluster C; D, m6A gene cluster A
vs. m6A gene cluster C.
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related to m6A, named m6Ascore, was established to quantify the

m6A modification pattern of single AML patient (Supplementary

Table S22). Figure 6A illustrated an alluvial diagram of three m6A

clusters, three m6A gene clusters, m6Ascore, and OS status.

Remarkably, m6A cluster B exhibited the highest m6A score,

followed by m6A cluster A and m6A cluster C (Supplementary

Figure S4A). The results suggested that the m6Ascore of m6A gene

cluster B was the lowest, while that of m6A gene cluster C was the

highest (Supplementary Figure S4B). Spearman analysis was applied

to better understand the correlation between immune cells and the

m6Ascore (Supplementary Figure S4C and Supplementary Table

S23). m6Ascore was found to be positively associated with

regulatory T cell. To further shed light on the impact of

m6Ascore in AML, we next explored its potential value for

FIGURE 6
Construction of the m6A score in the training set and the relevance of clinical features (A) Alluvial diagram of subtype distributions in groups
with different m6A clusters, m6A gene clusters, m6A score, and OS status (B) Kaplan-Meier analysis for highm6A score and lowm6A score groups in
AML cohort (p = 0.001, Log-rank test) (C–D) Oncoplot visualized the frequently mutated genes in the high m6Ascore group (C) and the low
m6Ascore group (D). In the above two figures, the top 20mutated genes were distributed vertically by reducingmutation frequency from top to
bottom (E) Functional annotation for m6Ascore using GSVA enrichment analysis. The intensity of the colors represents the strength of correlation.

Frontiers in Genetics frontiersin.org10

Xu et al. 10.3389/fgene.2022.948079

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.948079


predicting clinical outcomes. Overall survival curves of Kaplan-

Meier analyses revealed that patients with high m6Ascore had a

significantly prominent prognosis (p = 0.001, Log-rank test,

Figure 6B). Similarly, by univariate analyses of the TCGA data

set, the high m6Ascore was significantly related to better OS (HR =

2.442, p < 0.01, Supplementary Table S24). To explore the

distribution variations of the somatic mutations between low

and high m6Ascore, we evaluated samples from the TCGA

dataset using the maftools package. The top five mutated genes

in the high m6Ascore group were CEBPA, KIT, FLT3, TET2, and

NRAS, in parallel, the top five mutated genes in the low m6Ascore

group were FLT3, DNMT3A, NPM1, IDH2, and IDH1 (Figures

6C,D). The Forest plot revealed the alteration frequencies of the top

five mutated genes in two groups using the chi-square test

(Supplementary Figure S4D). Delightfully, we found m6Ascore

correlated strongly with tryptophan metabolism, pyruvate

metabolism, glycogen degradation, cysteine and methionine

metabolism, arachidonic acid metabolism, and ADP ribosylation

(Figure 6E). There has been a study indicating that AML-related

metabolic differences involved in tryptophanmetabolism (Wang D.

et al., 2019).

Discussion

As one of the most common, abundant, and intensively

studied RNA modifications. m6A has been regarded as an

important epigenetic mark that critically regulates RNA

metabolism, cell signaling, cell survival, and differentiation

which impacts the behavior and phenotype of cells (Meyer

and Jaffrey, 2017; Roundtree et al., 2017). A recent wave of

studies has provided critical insights that m6A modifications

play an important part in leukemia (Elkashef et al., 2017; Vu

et al., 2017; Weng et al., 2018; Shen et al., 2020). Nevertheless,

most studies focus on the single regulator, and the overall

role of multiple m6A regulators has not yet been fully

elucidated. We aimed to characterize the association of

integrated m6A modification patterns with TME which

would offer us a deeper and richer understanding in the

prognosis and development of AML.

Our study discovered that the relative abundance of 23 TILs

closely correlated with the three m6A clusters, three m6A gene

clusters, and m6Ascore. Nowadays, m6A modification has been

found to play a critical role in tuning the immune response

(Shulman and Stern-Ginossar, 2020). It is demonstrated that

YTHDF1 is essential for durable neoantigen-specific immunity,

and YTHDF1-deficient mices show an elevated antitumor

response of tumor-infiltrating CD8+ T cell (Han et al., 2019).

METTL3-mediated mRNAm6Amodification participates in the

physiological promotion of dendritic cell activation (Wang H.

et al., 2019). Indeed, leukemic blasts abnormally express the

ligands for Immune Checkpoints (ICs) to escape immune

supervision and present a series of metabolic alterations that

could be involved in immunoregulation (Mougiakakos, 2019;

Toffalori et al., 2019).

The present study recognized evident features in 23 m6A

regulators at the transcriptional and genetic levels inAML.We also

constructed three distinct m6A methylation modification patterns

based on 23 m6A regulators. Compared to patients with m6A

cluster B and m6A cluster C, m6A cluster A group had a worse

outcome. The characteristics of the GSVA enrichment analysis

also differed significantly between the three subtypes. Our data

showed that m6Acluster A was significantly enriched in metabolic

pathways such as biosynthesis of unsaturated fatty acids, cysteine

and methionine metabolism, and citrate cycle TCA cycle. It has

been reported that METTL3 upregulates fatty acid synthase which

reduces hepatic insulin sensitivity (Xie et al., 2019). Fatty acid

metabolism disorders participated in AML-induced metabolic

reprogramming (Wang D. et al., 2019). Additionally,

METTL3 enhances lipid accumulation via downregulating

peroxisome proliferator-activator α (PPARα) expression (Zhong

et al., 2018). In previous studies, methionine metabolism was

reported to be strongly related to m6A methylation (Cao et al.,

2016). And the free methionine can be converted to

S-adenosylmethionine (SAM) (Anstee and Day, 2012).

Homeostatic regulation of SAM synthesis encompasses dynamic

m6A modifications in the MAT2A 3′ UTR of mammalian cells

(Shima et al., 2017). In recent years, the TCA cycle has also re-

emerged as a pivotal metabolic hub that supports tumor growth in

both mouse models of cancer and patients with cancer (Martinez-

Reyes et al., 2020; Krall et al., 2021).

Further, we identified three gene subtypes based on the DEGs

between the three m6A clusters. The results concluded gene

clusters could serve as valuable indexes for evaluating prognosis.

In addition, m6A gene cluster A was prominently associated with

biological process including glycogen degradation, and m6A

gene cluster C was prominently associated with drug

metabolism by cytochrome P450. Scholars have reported that

R-2-hydroxyglutarate (R-2HG) abates FTO/m6A/YTHDF2-

mediated upregulation of phosphofructokinase platelet (PFKP)

and lactate dehydrogenase B (LDHB) which suppress aerobic

glycolysis and exert an anti-tumor effect in R-2HG-sensitive

leukemia cells (Qing et al., 2021). Likewise, targeting FTO/

MYC/CEBPA signaling, R-2HG displays an intrinsic and

broad anti-tumor activity in leukemia (Su et al., 2018). On the

same lines, it is demonstrated that m6A modification regulates

the expression level of drug-metabolizing enzymes P450

(Nakano et al., 2020; Nakano and Nakajima, 2022). And

m6A modification affects drug and lipid metabolism by

regulating the regulation of CES2 (Takemoto et al., 2021).

All of this verified again that the DEGs were deemed to be

m6A phenotype-related gene signatures and the m6A

modification played an important role in shaping different

TME landscapes.

We next established a quantification system to define different

m6A modification patterns of individual patients. Patients with
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low- and high-risk m6Ascores exhibited significantly different

clinicopathological characteristics, prognosis, and mutation,

respectively. What’s more, m6Ascore correlated strongly with

tryptophan metabolism, pyruvate metabolism, nicotinate, and

nicotinamide metabolism, glycogen degradation, cysteine and

methionine metabolism, arachidonic acid metabolism, ADP

ribosylation, et al. Monocarboxylates such as lactate, pyruvate,

and the ketone bodies play essential roles in metabolism

(Halestrap, 2013). As reported in the literature, pyruvate can be

transformed into lactate via lactate dehydrogenase (LDH) which is

frequently upregulated in multiple cancers (Wang et al., 2012).

Moreover, pyruvate carboxylase (PC) which is essential for

primary and metastatic tumor growth catalyzes pyruvate to the

TCA cycle metabolite oxaloacetate (Christen et al., 2016). Wang

et al. tested nicotinamide adenine dinucleotide phosphate (NADP)

binds to FTO, which led to decreased m6A methylation in RNA

and adipogenesis (Wang et al., 2020). Altered metabolic program

has beenmainly described in solid tumors, and has recently gained

attention in hematological cancers, including AML. It was found

that AML cells presenting FLT3-ITD mutations have enhanced

glycolytic activity, primarily due to higher phosphorylation of

HK2 localized to mitochondria, favoring ATP transfer from

OxPHOS to glycolysis (Ju et al., 2017). It was also shown that a

combination of glycolytic inhibitors with FLT3-ITD inhibitors

produced encouraging results in vivo (Huang et al., 2016; Ju et al.,

2017). These findings showed an active involvement of metabolic

program in AML and the promise of targeting this process.

In this study, our comprehensive analysis based on 23 m6A

regulators suggested the association of the m6A modification

patterns with TME, clinicopathological features, and prognosis in

AML.Moreover, variousmetabolicmechanisms related to them6A’s

modification were discovered. Given metabolic reprogramming of

tumor cells plays an extremely important role in tumor initiation and

progression, focusing on m6A modification with altered metabolic

pathways may be a promising anticancer strategy. In the same

manner, elucidation of the significance of m6A in the regulation

of the TME is expected to lead to a deeper understanding of the

occurrence and development of AML.
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SUPPLEMENTARY FIGURE 1
Characterization analysis of the 23 m6A regulators. (A) Principal
component analysis 23 m6A regulators based on paired tumor-normal
specimens. (B, C) Expression heat map of 23m6A regulators in different
types of immune cells (B) and hematological malignancies (C).

SUPPLEMENTARY FIGURE 2
Unsupervised clustering of 23 m6A regulators in the TCGA cohort. (A, B)
Consensus clustering analysis presented the relative change in the area
under the cumulative distribution function (CDF) when k = 2−9. (C) The
samples were clustered into cluster1, cluster2, and cluster3 when k = 3.

SUPPLEMENTARY FIGURE 3
m6A phenotype-related DEGs in AML. (A) Venn diagram of 70 m6A-
related DEGs among three m6A clusters. (B) GO enrichment analyses of
m6A-related DEGs.

SUPPLEMENTARY FIGURE 4
Characteristics of m6A score in TCGA. (A) Differences in m6A score between
m6A clusters. (B) Differences in m6A score between m6A gene clusters. (C)
Correlations between m6A score and tumor-infiltrating lymphocyte cells
using Spearman analysis. (D) Forest plot of the alteration frequencies in two
m6A score groups using chi-square test.
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