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When analysing new emerging infectious disease outbreaks, one typically

has observational data over a limited period of time and several parameters

to estimate, such as growth rate, the basic reproduction number R0, the case

fatality rate and distributions of serial intervals, generation times, latency

and incubation times and times between onset of symptoms, notification,

death and recovery/discharge. These parameters form the basis for predict-

ing a future outbreak, planning preventive measures and monitoring the

progress of the disease outbreak. We study inference problems during the

emerging phase of an outbreak, and point out potential sources of bias,

with emphasis on: contact tracing backwards in time, replacing generation

times by serial intervals, multiple potential infectors and censoring effects

amplified by exponential growth. These biases directly affect the estimation

of, for example, the generation time distribution and the case fatality rate,

but can then propagate to other estimates such as R0 and growth rate.

We propose methods to remove or at least reduce bias using statistical

modelling. We illustrate the theory by numerical examples and simulations.
1. Introduction
During the last decades, several new disease outbreaks have caused worldwide

alarm, e.g. SARS, foot and mouth disease, H1N1 influenza, and, more recently,

Ebola. What these outbreaks have in common is the need for estimation of key

parameters early on, in order to plan interventions and monitor the progress of

the disease. Thus estimation must be performed in the emerging phase of an out-

break, when the number of infected individuals is in the hundreds or at most

thousands, while the community fraction of infected is still small. Typically,

the early numbers grow exponentially, as also predicted by mathematical

epidemic models [1].

There may be many complicating or limiting factors related to incomplete-

ness of data, lack of detailed knowledge about the disease and other issues

when analysing data from the early phase of an outbreak. Despite these com-

plicating factors, the conclusions drawn from early analyses, often based on

simple models, are usually highly valuable. The aim of the present paper is

to identify and highlight some of the potential biases in the statistical analysis

of emerging outbreaks and to illustrate how they can propagate to parameter esti-

mates and predictions. A further aim is to give some fairly simple suggestions for

how to reduce, or even remove, such biasing effects.

The typical available data consist of reported numbers of cases per day or

week, some case histories illustrating the course of the disease and some contact

tracing data containing information about possible durations between onset of

symptoms of infected individuals and their infectors. The epidemic models

used in the statistical analyses are often of simple form, neglecting various het-

erogeneities. The use of simple models in these situations is motivated by the

lack of detailed information but has also recently been studied [2], showing

that neglecting population structures when making inference in emerging
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outbreaks has little effect. However, estimation in simple

models can still be quite complicated. The complications are

mainly due to three factors: (1) important events, such as

times of infection, are usually unobserved, but instead

some proxy measures such as onset of symptoms are avail-

able, (2) estimation of parameters of the epidemic process is

based on observations up to some fixed time, implying that

events occurring later are censored and (3) the population

of infectives is increasing (exponentially) with time.

In our investigation, we assume a simple, homogeneously

mixing, model of an outbreak (the model would have to be

different if one had knowledge of household size distri-

bution, contact network, spatial heterogeneity, etc.) and we

first discuss the effects of estimating the generation time dis-

tribution from observations of generation times observed

backwards in time using contact tracing, i.e. the time between

the infection time of an individual (the infectee) and that of

his/her infector (rather than the infection time of the individ-

uals he/she infects). The second problem we study is the

effect of replacing generation times (the time between infec-

tions of an infector and an infectee) with the more commonly

observed serial intervals (the time between onset of symptoms

of an infector and an infectee). A third problem we discuss is

how to treat the common situation, when contact tracing, of

finding more than one potential infector of a case, with the

implication that the backward generation time or incubation

time (time from infection to symptoms) is one out of several

possible values. As it turns out, the potential biasing effects

of these problems all go in the same direction and, for example,

the basic reproduction number R0 (the average number of

infections in a fully susceptible population) can be quite signifi-

cantly underestimated. We also point out some general stability

properties of ratios during exponential growth that may be

useful for inference. We then quantify the various biases that

can arise in realistic parameter settings, both theoretically and

by simulation, mostly using parameters freely adapted from

the recent Ebola epidemic in West Africa [3].

In the next five sections, we describe the theory behind

our results. In §7, we illustrate our findings with numerical

examples and report some interesting simulation results. Sec-

tion 8 is a brief discussion and, finally, mathematical details

and proofs as well as detailed numerical and simulation

results are collected in the electronic supplementary material.

Computer code for simulations is available in separate files.
2. The underlying model and some key
epidemiological quantities

We start by presenting the basic underlying epidemic model.

We assume that individuals are at first susceptible and later

may become infected, and that infected individuals may

then infect other individuals. The infection ends with death

or recovery. The population is assumed to be a homoge-

neously mixing community of homogeneous individuals.

Since we model the initial phase of the outbreak, the

depletion of susceptibles is considered as negligible. Also,

we assume that individuals do not change their behaviour

over the considered time period as a consequence of the

ongoing outbreak, nor are there yet any control measures

put in place by health authorities or similar. Finally, we

assume that there are no seasonal changes in transmission.

Predictions are made assuming that the disease spreading
mechanism continues unaltered, reflecting what would pre-

sumably happen in the absence of control measures (these

predictions should then be compared with predictions

including various preventive measures).

Traditionally, the population effects of such an infection

have been modelled using compartmental models with

separate states, for example, susceptible, latent (historically

called exposed and hence abbreviated by E), infectious or

recovered/removed individuals (SI, SEI, SIR and SEIR

models; e.g. [1,4]). Recently, modelling has reverted to some-

thing akin to the original Kermack & McKendrick [5]

formulation, with emphasis on one single quantity, b(s), the

average rate at which an infected individual infects new

individuals s time units after his/her time of infection,

denoted the infection rate or infectivity function. The

assumption of a homogeneous community implies that b(s)

is the same for all individuals, and the assumptions of no

depletion of susceptibles, no preventive measures and no

seasonal effects imply that b(s) is independent of the time

of infection of the individual. The previously mentioned com-

partmental models can all be translated to this framework.

While the original treatment of the Kermack–McKendrick

model was deterministic (Volterra-type integral equations),

statistical modelling requires a stochastic formulation

which, in this case, corresponds to a Crump–Mode–Jagers

branching process [6] in the initial phase of spread. It should

be noted that the infectivity functions in a stochastic model

may be different from individual to individual, although the

average behaviour is the same, and that different stochastic

models may have the same average behaviour [7].

The average infection rate b(s) completely determines the

basic reproduction number R0 (the average number of new

infections caused by one infectious individual in a completely

susceptible population), as is well known in epidemic modelling

[1] and branching process theory [7].

The basic reproduction number R0 is given by

R0 ¼
ð1

0

b(s) ds: (2:1)

It is well known that an epidemic can take off if and only if

R0 . 1, which we from now on assume.

Another important quantity is the so-called generation time
distribution fG(s), which is simply the infection rate scaled to

make it a probability density:

fG(s) ¼ b(s)

R0
¼ b(s)Ð1

0 b(u) du
: (2:2)

The generation time distribution is the probability distri-

bution of the time between the moment of infection of a

randomly chosen infective and that of his/her infector.

In what follows we will write R0fG(s) instead of b(s).

Let i(t) denote the expected incidence at t (time since the

start of the outbreak, assumed to have been started by one

infective individual), i.e. the average community rate of

new infections. Since we assume that individuals infected s
time units ago (at time t 2 s if present time equals t) will

infect new individuals at rate R0fG(s) we have the following

renewal equation for i(t) (see [1, p. 212]):

i(t)¼
ðt

0

i(t� s)R0fG(s)dsþR0fG(t)¼
ðt

0

R0fG(t� s)i(s)dsþR0fG(t):

(2:3)
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Figure 1. Initial stages of 10 simulated epidemics with R0 ¼ 1.7 and generation time G being Gamma distributed with mean ¼ 15 days and standard
deviation ¼ 8.7 days, resulting in r ¼ 0.03873. Cumulative incidence of notified cases over time in log-scale. Black line represents expected slope (line with
equation y ¼ rx). It is seen that incidence grows exponentially (linear on log-scale) but that there is a random time-shift before the epidemic takes off in
the different simulations. As explained in the electronic supplementary material, simulations were continued until 4500 cumulated cases (¼3.65 in log-scale)
and then for further six weeks or until week 36. (Online version in colour.)
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The additive term in the above equation derives from the

initial infective that is supposed to have started the outbreak

at t ¼ 0. It is well known that the incidence i(t) will quickly

approach exponential growth i(t) � C ert, where r is the so-

called Malthusian parameter, the exponential growth rate,

defined as the solution to the Euler–Lotka equation

1¼
ð1

0

e�rtR0fG(t)dt: (2:4)

To simplify matters, we will assume that this exponential

growth of new cases holds from the start. The validity of

this assumption will be shown by subsequent simulations.

In figure 1, 10 simulated epidemics are plotted over time

showing the exponentially growing feature (clearly visible

on the log-scale).

Thus, knowing the generation time distribution fG( � ) and

one of R0 and r allows the determination of the other one

(cf. [8]), e.g. using equation (2.4). For this reason, estimation

of the generation time distribution fG( � ) becomes paramount

in this model formulation and will be extensively discussed

in following sections. Also, various rather general con-

clusions about the effects of varying the components of

(2.4) related to the directions of biases in the estimation of

these components can be drawn. The mathematical details

are given in the electronic supplementary material and the

specific results will be discussed in the relevant sections.

There are other approaches to the estimation of R0 and r.

The exponential growth rate can be directly estimated from

case data and R0 through modelling approaches (e.g.

[9–12]), assuming the generation time distribution to be

known, or in the so-called ‘First Few Hundred’ studies,

usually restricted to transmission in households (e.g.

[13–15]). In [16], the joint estimation of R0 and the generation

time distribution is contemplated, but the authors suggest

that these methods do not work well during the early
phase of an epidemic. In this paper, we assume that the

generation time distribution, as well as the incubation time

distribution and also distributions of time from notification

to recovery/death, will be estimated by limited contact tracing

or specific samples during the initial phase of the disease

spread and that, otherwise, just counts of cases in various

stages are available.

In the model description above, the expected incidence

i(t) is a time-continuous deterministic function. The true inci-

dence is, of course, integer-valued and, in most situations,

observations are not made continuously but are aggregated

in discrete time units such as days or weeks. A related dis-

crete time model is obtained by suitably discretizing

equation (2.3) so that the expected incidence I(t þ 1) in time

(interval) t þ 1 is expressed as

I(tþ 1) ¼
Xt

s¼1

I(tþ 1� s)R0pG(s) ¼
Xt

s¼1

R0pG(tþ 1� s)I(s),

(2:5)

where pG is a discrete probability distribution for the

generation time corresponding to the continuous-time distri-

bution fG. A natural statistical model for data collected daily

or weekly is then to assume that the number of newly infected

I(t þ 1), given previous incidence, follows a Poisson distribution

with mean parameter as in equation (2.5) (e.g. [3]).

Finally, the quantitative evaluation of many theoretical

results requires explicit assumptions about the involved prob-

ability distributions and other parameters typical of the

disease under study. As illustrations, we have chosen to use

Gamma distributions, where possible, because of their flexi-

bility and analytical properties, and parameters compatible

with the recent 2014 West Africa Ebola epidemic [3]. Various

formulae related to these assumptions are collected in the

electronic supplementary material.
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Figure 2. Relationship between generation time G and serial interval S of an
infector and its infectee. The infector is infected at time t0 and then infects
the infectee at t1. The red circles indicate end of latent period and start of
infectious period, the black circles indicate onset of symptoms, and black
boxes end of infectious period (either by death or recovery). In the figure,
the infectious period starts slightly before onset of symptoms, but, in general,
the relationship between these event times is disease-dependent. In the illus-
tration, the serial interval is shorter than the generation time, S , G, but the
opposite relation could equally well happen. (Online version in colour.)
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3. Looking backwards rather than forwards
in time

The generation time distribution fG(t) ¼ b(t)/R0 describes the

variability of the (random) time between the moment of

infection of an individual and the moments that this individ-

ual infects other individuals. When trying to estimate this

distribution from outbreak data, the most common situation

is where infected cases are contact-traced, i.e. the infectors

of cases are identified, and the duration between the infection

times of infector and infectee is ascertained (at least in theory,

but see also next section). This seemingly innocent choice of

looking backwards rather than forwards in time (measuring

duration backwards from an infectee rather than forwards

from an infector) actually modifies the distribution of

observed times in the early stage of an outbreak when the

epidemic grows at an exponential rate (e.g. [17–19]). The

reason is that, by looking backwards in time, long generation

times will be underrepresented and short generation times

will be overrepresented because exponential growth implies

that there are many more recently infected individuals who

are potential infectors compared to those infected longer

ago. As a consequence, if the generation time distribution is

estimated from a sample of backward generation times, the

resulting distribution fB(s) will be different from the true

generation time distribution fG(s).

In fact, it can be shown that the backward generation time

has density fB(t) ¼ e2rtR0fG(t) (note that equation (2.4) implies

that this function integrates to 1). It can also be shown that

this density is stochastically smaller than fG and thus has

smaller mean than fG (see the electronic supplementary

material). We can in fact say more. One can predict the

effect on estimating R0 of using fB(t) instead of fG(t) assuming

that the growth rate r is known or approximately known

through observations. Since incidence essentially is R0 � a

weighted sum of previous incidence (cf. equation (2.5)) and

fB(t) attributes too much weight to recent incidence (shorter

generation times), which is higher than earlier incidence,

there will be a compensatory underestimation of R0 (see §7

for illustrations). This effect also takes place using the

Euler–Lotka equation (2.4).

If instead fB(t) is used to calculate the exponential growth

rate in equation (2.4), assuming that the correct value of R0 is

used, the resulting growth rate rB will always be larger than r.

The exact relation is model specific, but as an example one

may consider the simple Markovian SIR model, where the

infectious period has an exponential distribution with

expected value 1/g and the infectious contacts, in the initial

phase of the epidemic, occur with intensity b during the infec-

tious period. The resulting R0 is b/g, r¼ b 2 g, fG(t)¼ g e2gt

and fB(t)¼ be2bt. Then, the resulting rB equals R0 r. With typical

values of R0 being between 1.5 and 2, this means that the expo-

nential growth rate will be grossly overestimated (50–100%),

when using equation (2.4).

Finally, if an estimate f̂B(t) has been obtained from gener-

ation times observed backwards and the exponential increase

rate r is known or has been estimated from observations,

then, in theory, the density fG(t) could simply be estimated

as C ertf̂B(t) where C is a suitable normalizing constant. How-

ever, since this method risks overweighting large observations,

it is maybe preferable to do the correction within a suitable

parametric form. For instance, if fG is a Gamma distribution

with parameters a and l, then fB is again a Gamma
distribution, now with parameters a and l þ r (see the elec-

tronic supplementary material). By inverting this relation, a

suitable correction procedure can be obtained.

The above analysis of the potential bias in ascertaining

generation times in the early stage of an outbreak is focused

on ‘backward’ contact tracing, because this is the most

common situation studied in theory and used in practice,

i.e. finding potentially infectious contacts that have occurred

in the past. One could, in theory, consider the case of ‘for-

ward’ contact tracing and potential sources of bias in that

situation, but many assumptions would be needed for, e.g.

how infectivity after discovery would be related to infectivity

prior to discovery, for how long the tracing would go on, etc.

There is also a theoretical problem, namely that the ‘forward’

generation times do not have the same distribution as ‘back-

ward’ times (e.g. [18]), even in the absence of the exponential

growth bias illustrated above.
4. Replacing generation times with serial
intervals

As described earlier, the generation time is defined as the

time between moments of infection of an infector–infectee

pair. However, in real life, the infection times are rarely

known. Instead, typically, the onset of symptoms is observed.

For this reason, the serial interval, which is defined as the

time between symptom onsets in the two individuals men-

tioned above, is often used as a surrogate for the generation

time.

We now study the effects of using serial intervals instead

of ‘true’ generation times when estimating the generation

time distribution fG( � ) and on derived quantities, such as r
and R0.

Considering the disease and infectivity history of an indi-

vidual, starting from the moment of infection, several time

periods are of interest (see also figure 2). We denote the

time of infection of this individual by t0, there may be a

latent period of length ‘0 until start of infectivity followed

by an infectious period of length i0, and a time from infection
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to symptoms (incubation period) of length s0. Assume that

another individual is infected by the first one after a time g�
within the infectious period i0, i.e. at time t1 ¼ t0 þ ‘0 þ g�,
and that this second individual shows symptoms at time s1

after infection. Then, the generation time is G ¼ (t0 þ ‘0þ
g�)� t0 and the serial interval S¼ (t1þ s1) 2 (t0þ s0) (see

figure 2 for an illustration).

Although much work has been devoted to estimating the

distributions of incubation, latent and infectious periods for

various diseases, relatively little has been done regarding

their joint distribution. It will be seen below that this joint dis-

tribution plays an important role for the relationship between

G and S. Let us only assume, for a start, that the involved

times are independent between different individuals and

that corresponding periods have identical marginal distri-

butions for different individuals. We may then rewrite the

above expressions as

G ¼ s0 þ (‘0 þ g� � s0) and S ¼ s1 þ (‘0 þ g� � s0): (4:1)

These representations are quite unnatural, but show the

common structure of G and S. For instance, we see that S ¼
G þ (s1 2 s0) and thus the expected values of G and S will

be equal since s0 and s1 are assumed to have identical

expected values. We also see in equation (4.1) that S is the

sum of two independent components (since they regard

different individuals) and thus its variance will be the sum

of the variances of these components, while the variance of

G will consist of the sum of the same two variances and a

further term, 2Cov(s0, ‘0 þ g� � s0), by the rule for variances

of sums.

Depending on assumptions, we can now have different

results. Under quite usual assumptions of independence

between s0, ‘0 and i0 and also Var(s0) . 0, the covariance

above will be negative, implying that Var(S) . Var(G). If

we, instead, want the variances of G and S to be the same,

we must require Cov(s0, ‘0 þ g� � s0) ¼ 0, which is a rather

special balance between various parameters in the joint distri-

bution of (s0, ‘0, i0) (to simplify matters slightly, one can note

that assuming g� to have a uniform distribution in i0 leads to

Cov(s0, g�) ¼ Cov(s0, i0)=2; see the electronic supplementary

material). However, it is also theoretically possible to have

the reverse relation, e.g. if s0 ¼ ‘0 and Cov(s0, i0) . 0.

One may also investigate whether the distributions of

S and G can be identical, as argued in [3], under the assump-

tion that s0 ¼ ‘0 (i.e. the end of the latent period/start of

infectious period is identical with onset of symptoms).

However, since one then has G ¼ s0 þ g� and S ¼ s1 þ g�,
one must impose further conditions (see the electronic

supplementary material). The independence of s0 and g� (or

i0) would be sufficient but not necessary for the result. At

least, s0 must be uncorrelated with g�, since variances must

coincide. However, we have not been able to find a simple

sufficient and necessary condition for equality (see the

electronic supplementary material for further details).

The exact relationship between the generation time G and

serial interval S is thus model-dependent, but it always holds

that they have the same mean. As for the variances, nothing

can be said in complete generality. However, for all existing

models we are aware of, it holds that V(S) � V(G), with

equality requiring rather specific assumptions. So, except in

specific cases, the observed serial interval distribution will

be a biased estimate of the generation time distribution and
will have a larger variance. The quantitative effects of using

a distribution with equal mean but larger variance than the

true one are again model-dependent, but, for example,

assuming Gamma distributions, there will again be underes-

timation of R0, given r, and overestimation of r, given R0 (see the

electronic supplementary material for further details).

A general method to correct the serial interval distri-

bution to obtain an unbiased estimate of the generation

time distribution will of course be very model-dependent

and necessitate further information about the various stages

of disease history. However, within a specific distribution

family, such as the Gamma distributions, a correction based

only on the ratio between the serial interval and the gener-

ation time variances can be implemented (see the electronic

supplementary material). The above results show that the

elements needed for the correction from Var(S) to Var(G)

are the covariances between incubation period and latent

and infectious periods and the variance of the incubation

period. These could be estimated from a close observation

of some case histories with known time of infection and/or

assumptions such as the above-mentioned s0 ¼ ‘0.
5. Multiple exposures
Contact tracing means that reported cases, with known onset

of symptoms, are investigated to find out when they have

been in contact with infectious individuals, with the aim of

finding who the infector was and when the case was infected,

thus allowing estimation of the incubation period or, if the

symptom onset time of the infector is also known, the serial

interval. In practice, when infected individuals are contact

traced, certain cases will have one unique possible infection

time, but others will have several potential infectors or infec-

tion occasions, or no identified exposure. In the first situation,

it is clear who the infector was and also how long the incu-

bation period was, and, in the last case, when there is no

identified exposure, there is not much to do. But, in the

second scenario, it could be any one of the potential

exposures that caused the infection, also implying that the

incubation period could be one out of several values. In the

current section, we describe one way to infer the incubation

period distribution of contact traced individuals in this situ-

ation, and also to study the effects of not acknowledging

the multiple exposures situation. It should be noted that

this is not a standard problem in survival data analysis,

where it is usually assumed that the time origin of durations

is well defined.

Most of the literature about the ‘uncertain origin problem’

in an epidemiological context arose during the 1980s in con-

nection with inference on AIDS data, where the moment of

infection of patients was usually not known exactly (e.g.

[20–23]). Often, analyses were based on the assumption of

a known interval within which infection had occurred and

some kind of continuous distribution therein for the

moment of infection. The problem reemerged during the

SARS pandemic in the early 2000s (e.g. [24,25]), but again

with data limited to single exposures during known time

intervals. In this paper, we analyse the situation where indi-

viduals may have more than one exposure, the times of

these exposures are known and where there is no detailed

information about the nature/strength of exposures.
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Let us start by considering the problem of estimating the

incubation period distribution, i.e. the time from infection to

symptoms, in the simplest model possible allowing for mul-

tiple infection exposures and to formulate an appropriate

likelihood. Consider one infected individual with onset of

symptoms at time s that has been traced for previous infec-

tious contacts and assume that these exposures took place

at the time points e1, . . ., ek, where e1 � . . . � ek , s. In order

to obtain a likelihood, we introduce some notation and

assumptions. Suppose that at time t, the rate of infection

exposure equals l(t), and that the probability of infection

upon exposure equals p (the same p for all contacts whether

with the same or different infected individuals; if more

detailed contact information is available it would be possible

to have different p’s for different types of contacts and/or

different individuals). Finally, let g(t) denote the density dis-

tribution of the incubation period. For this model, the

likelihood for the infected individual with exposures at

times e1, . . ., ek and onset of symptoms at s is then given by

L(e1, . . . , ek, s)¼ e
�
Ð s

0
l(u)du

Yk

i¼1

l(ei)

" #
�
Xk

i¼1

p(1�p)i�1g(s� ei)

" #
:

(5:1)

We will discuss the estimation problem arising from equation

(5.1), but we start with some general considerations. It is of

course possible to also study more complicated models

allowing for individual heterogeneity in susceptibility and/

or various types of contacts having different transmission

probabilities, both at distinct times and also during extended

periods, e.g. household contacts, but here we consider the

simplest model still taking multiple exposures into account,

compatible with limited data, only number and times of con-

tacts and time of symptoms. Were data to be different, e.g.

containing genetic information from whole genome sequen-

cing of the pathogens, different models would be possible

(e.g. [26]).

One can imagine several ways to try to avoid the multi-

ple exposures problem. One approach could be to simply

assume that the earliest potential infector is the infector, the

likelihood contribution related to the incubation time distri-

bution simplifying to g(s 2 e1) (this would approximately

be the same as equation (5.1) if p � 1). This would however

certainly lead to the duration of incubation periods being

overestimated. The opposite approach, to pretend that the

most recent contact was the infector, would similarly lead

to underestimation. A type of compromise could be to treat

all potential contacts as being potential infection times (to

different cases). As a consequence, one observation with k
multiple potential infectors would then result in k independent
incubation periods s 2 e1, . . ., s 2 ek, and the likelihood

contribution would become
Qk

i¼1 g(s� ei). Compared to the

likelihood in equation (5.1), where the shorter incubation

periods are given relatively lower weight due to the factor

(1 2 p)i21, such an analysis would lead to the incubation

periods (and serial intervals) being underestimated and the

precision of the biased estimate overestimated because of

the apparent higher number of data points. A related

assumption, leading to the same conclusion, would be to

treat all potential exposures as equally likely (which would

approximately hold true if p � 0).

An alternative approach to overcome the difficulty of

having multiple potential infectors, is to base inference only
on individuals having one exposure, i.e. simply leaving out

all contact traced individuals having more than one exposure.

This clearly increases uncertainty by using fewer data points.

However, it also leads to biased estimates, as we now

explain. Individuals having only one exposure and then

symptoms must have been infected at this exposure and

thus their infection history is certain. However, the fact that

no other exposures have happened during the incubation

period favours shorter than usual intervals. In fact, the

observed time interval will be distributed as the minimum

of a typical ‘inter-exposure time’ and a generic incubation

time, and will thus have a distribution different from a gen-

eric incubation time, leading to underestimation. In order to

obtain explicit expressions for the size of the bias, explicit

models of the ‘exposure process’ and the incubation time

distribution are required.

If we adopt the simple multiple exposure model defined

above, it is however possible to estimate the incubation

period distribution using the likelihood in equation (5.1). It

is reasonable to condition on the number and times of

exposure, since these essentially depend on the ‘inter-

exposure process’, and to base inference on the second part

of the likelihood expression only, containing parameters p
and the incubation distribution g( � ). Assuming a parametric

form for g( � ), e.g. a two-parameter gamma distribution, the

problem is non-standard but essentially a three-parameter

maximum-likelihood problem with natural bounds on

parameters. Simulations show that this approach works

well if the correct parametric form is adopted (see the

electronic supplementary material). It is also possible to

find non-parametric (distribution-free) moment estimators

of p, the mean and the variance of the incubation time at

the cost of assumptions about the contact process, e.g. as a

constant rate Poisson process. Details about one set of such

moment estimators and their performance are given in the

electronic supplementary material.
6. Counting delayed events
The individual evolution of a disease is often a sequential

process of events delayed with respect to some previous

event, starting with infection and then followed by, for

example, symptoms, notification, admission to treatment,

recovery or death, not necessarily passing through all these

states nor in that particular order. The prevalence of individ-

uals in some of these disease stages is of public health

interest but reliable data may not always be available.

During the early phase of an outbreak, information is usually

incomplete due to censoring, but also distorted by exponen-

tial increase. The estimation problems and possibilities are

thus quite different during the initial phase compared to, ret-

rospectively, after or near its end (e.g. [24,27] for some

analyses based on more complete data). However, during

the exponentially increasing phase of spread, a well-known

result from branching process theory (a special case of

‘counting by random characteristics’; e.g. [28]), implies that

ratios between counts within a specific time window can

be predicted.

Assume that events occur on the time interval [0, T ].

Assume also that each event may be followed, with a certain

probability p, by a secondary event after some time having

probability density h(s). Then, assuming that the number of
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primary events grows exponentially at rate r, the fraction

p(T ) of secondary events to primary events in [0, T ] will

quickly approach (for T not too small)

p(1) ¼ p
ð1

0

e�rsh(s) ds: (6:1)

More details are given in the electronic supplementary

material and in §7.5 about the stability of ratios between

various events in the simulations.

The above formula illustrates the combined effect of

censoring and exponential growth on (theoretical) counts.

Thus, taking, for example, infection as primary event and

notification as secondary event, knowledge about the notifi-

cation probability and about the distribution of the time to

notification allows estimation of not yet notified cases or of

total number of infected from the number of notifications

in [0,T ].

Another useful application of the above result is to count-

based estimation of the case fatality rate (CFR). In this case,

p represents the probability of dying from the disease. The

problem has been treated by many authors under many

different assumptions of data availability (e.g. [27,29–31]).

It is well known that a crude estimator of the type D/N, D
denoting number of dead individuals and N number of noti-

fied individuals in [0, T ], will underestimate the ‘true’ CFR.

In theory, disregarding biased reporting, the underestimation

is reflected in the integral part of equation (6.1), which is

always less than 1, where h now denotes the probability den-

sity function of the time between notification and death.

Consequently, knowledge of r and of the distribution h
could be used to correct the naive estimate D/N. As an illus-

tration, if the distribution h is assumed to be a simple

exponential distribution with expected value m, the correction

factor would simply be 1 þ rm.

In [3], another approach is used, namely estimating only

on cases with a known final destiny (death or recovery)

within [0, T ]. Let us denote by N those notified in [0, T ]

and, among those, by R the number of cases who are

observed as recovering and, as before, by D those that have

died. Then, another application of equation (6.1) gives that

the fraction R/N will be close to (1 2 p)r, where r is the inte-

gral part of equation (6.1) calculated with the probability

density of the time from notification to recovery. As before,

the fraction D/N will be close to pd, where d is the corre-

sponding expression involving the probability density

function of the time from notification to death, and thus the

estimator D/(D þ R) will be close to

pd
pdþ (1� p)r

¼ p

pþ (1� p)
r

d

:

Thus, the estimate will be (approximately) unbiased only if

r ¼ d. If r , d, then the CFR will be overestimated. This hap-

pens if the time to remission is stochastically larger than the

time to death, which is the case for many diseases; for

instance, this seems to be the case for Ebola (see §7.4). How-

ever, the reverse case, i.e. r . d, is also interesting, e.g. for

influenza [29]. Of course, this analysis only considers the

theoretical effects of censoring and exponential growth, not

other effects such as differential reporting, reporting delays

or general underreporting.
7. Results
We now illustrate the numerical consequences of our findings

based on realistic parameter values and model based for-

mulae and simulations. Mostly, we have chosen parameter

values compatible with the recent Ebola epidemic in West

Africa as described in [3]. Details about theoretical deri-

vations and about the simulation program and related

results are reported in the electronic supplementary material.

7.1. Looking backwards
We assume that the generation time follows a gamma distri-

bution G � G(a, l) with (a, l) ¼ (3, 0.2), implying a mean of

15 days and standard deviation 8.66 days, and that R0 ¼ 1.7.

This induces a true exponential growth rate r ¼ 0.0387 (per

day). The generation time when looking backwards in time

will also follow a gamma distribution, but with different par-

ameters and mean ¼ 12.6 days and standard deviation ¼ 7.26

days. If the true value r ¼ 0.0387 is used in equation (2.4) in

conjunction with the backward generation time distribution,

the result is R(B)
0 ¼ 1:57 as compared to the true value R0 ¼

1.7, an 8% underestimate. If the exponential growth rate is

computed for this (backward) generation time distribution

and the true R0, the induced exponential growth rate then

equals rB ¼ 0.0462. Thus, the growth rate is overestimated

by 19%.

7.2. Serial intervals
We illustrate the consequences of overestimating the variance

of the generation time distribution by using serial intervals

instead of generation time data in the simplified framework

where both distributions are of the Gamma type and the

difference is represented by the coefficient of variation of

the serial interval distribution being larger than that of the

generation time distribution by a factor c . 1, while the

means are equal, as predicted by theory (see §4). If we

assume the same basic parameter values as in the preceding

subsection (i.e. the generation time follows a gamma distri-

bution G � G(a, l) with (a, l) ¼ (3, 0.2) and R0 ¼ 1.7), and

calculate the biases resulting from, for example, c ¼ 1.1, 1.2,

1.5 and 2, we find that the corresponding R0 values, assum-

ing the true r value is used in equation (2.4), are

underestimated by 0.9, 1.8, 4.8 and 9.6%, respectively,

while the corresponding r values, assuming R0 ¼ 1.7, are

overestimated by 1.9, 4.1, 12.3 and 32.9%, respectively.

Thus, sizeable bias can be obtained if the serial intervals

are much more variable than the generation times.

In [3], the generation time distribution was estimated

from observed serial intervals, under the assumption that

the distributions would be equal, assumed to be a conse-

quence of the exact coincidence of onset of symptoms and

beginning of infectious period. Under this assumption,

there is of course no bias effect due to increased variance.

However, it is interesting to note that the simulation results

(see the electronic supplementary material) show that the

serial intervals suffer the same distortion as generation

times, due to exponential growth.

7.3. Multiple exposures
In order to estimate the effects of basing the estimates of dur-

ations on individuals having only one exposure (see §5),
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some additional assumptions are needed. For the recent

Ebola epidemic, it is found [3] that the incubation period dis-

tribution fD, assumed to be equal to that of the latent period,

is Gamma distributed with mean 11.4 days and s.d. ¼ 8.1 days

and that generation times are Gamma distributed with mean

15.3 days and s.d. ¼ 9.3 days. It is also reported that approxi-

mately 25% of the contact traced individuals had one unique

infector and 75% had more than one potential infector. We

will use the above parameter values for this example. With

the complete data, it would have been possible to estimate

the contact rate l and the probability p to get infected by a

close Ebola contact separately. Here we can only use that 25%

had a single contact. We simply assume that p ¼ 0.5 and

equate P(a single contact) ¼ p
Ð1

0 e�lsfD(s) ds to the empirical

value 0.25. The result is that l ¼ 0.0725 per day (so about one

close contact every two weeks for the contact-traced individ-

uals). Once values for p and l are available, one can compute

the mean incubation period for observations having only one

possible infector:

E(D jone possible infector)

¼
ð1

0

spfD(s) e�ls ds=P(one possible infector) � 8:1:

Thus, the mean incubation period for infectees with only one

potential infector will be 11.4 2 8.1 ¼ 3.3 days shorter than

the mean incubation period had all observations been used.

This in turn implies that the mean generation time from the

same data would be underestimated by 3.3 days, giving a

mean of 12 instead of 15.3 days. Assuming that the standard

deviation remains unchanged (¼ 9.3 days), the estimated

generation time distribution would be Gamma distributed

with mean 12 and s.d. ¼ 9.3 days. Using this generation time

distribution, instead of the true one, in equation (2.4), assum-

ing r ¼ 0.0383 to be known (e.g. estimated from the observed

growth rate), leads to R0single ¼ 1.50, an underestimation of

12%. Conversely, assuming R0 ¼ 1.7, the exponential growth

rate estimated from the contact traced individuals having

only a single unique infector would approximately equal

rsingle ¼ 0.0522, which overestimates the true value by 36%.

Instead, to study the performance of maximum-likelihood

estimation based on equation (5.1) and on an alternative set

of moment estimators, we have simulated observations

from 500 individuals (see the electronic supplementary

material for details), showing that estimates of p and the

parameters of the incubation period distribution seem

reasonably unbiased, given the parameter setting and assum-

ing the correct distributional form in the likelihood method. If

the incubation period has a distribution differing from the

assumed (gamma) model distribution (the log-normal distri-

bution, in our simulation), the moment-estimators still

perform well, but the maximum-likelihood estimates of

mean and variance derived under the assumption of

gamma distributed incubation times now acquire some

bias. The speed of convergence of estimates and further prop-

erties under misspecification of assumptions need further

study, but this initial experiment shows that unbiased

estimation based on all observations is possible.

7.4. Case fatality rate example
The WHO Ebola Response Team [3] report that the

average time from symptoms to death is 5 þ 4 ¼ 9 days,

while to remission the average time is 5 þ 12 ¼ 17 days.
The numerical consequences of the results in §6 can be size-

able. If we assume that we have exponential growth with a

doubling time of say 20 days, the growth rate r becomes

0.0347. Under the simplifying assumption that the time

from notification to death follows an exponential distribution

with mean m ¼ 9 days, the multiplier 1/(1 þ rm) becomes

0.76, i.e. there is an underestimation of about 24% of the

CFR, using the simple estimator D/N. However, similarly

the factor r will be 0.63 and, assuming a CFR of 70%, say,

the estimator relying only on cases with a known final des-

tiny will overestimate the CFR by approximately 5% of its

value.

7.5. A simulation study
In order to better study the behaviour of various observables

during the early phase of an outbreak, we have conducted

simulations of the basic epidemic model and evaluated var-

ious statistics. Parameter values were chosen to be similar

to the recent Ebola epidemic in West Africa. Some of the

results have already been commented upon in the preceding

sections, but further results about the time it takes to reach

predefined levels of notified cases, the stability of ratios

between numbers of individuals in different disease stages,

the relationship between generation times and serial intervals

and predicting the size of the epidemic at a later time as well

as details about the simulation and its parameters are

presented in the electronic supplementary material.
8. Discussion
In this paper we have, by means of modelling, analysis and

heuristics, both theoretical and simulation-based, studied

inferential problems in an ongoing epidemic outbreak in its

early stage. Our analyses give insights into where biases

might ‘hide’ and also how to avoid these biases. We have

studied three potential sources of bias: (1) backward esti-

mation of generation times (contact tracing), (2) using serial

intervals instead of generation times and (3) contact tracing

leading to several potential infectors thus making the time

of infection uncertain. Importantly, all three sources lead to

biases in the same direction, causing the basic reproduction

number R0 to be underestimated if the epidemic growth rate

r is correctly estimated. The converse is also true, namely

that the growth rate will be overestimated if a correct estimate

of R0 is available, but this situation is likely to be less

common in practice.

The biases have been numerically evaluated, as illus-

trations, in a setting resembling the recent 2014 Ebola

epidemic. To evaluate the combined biasing effect in this set-

ting is a complicated exercise, depending on exactly how

estimation is performed and presented but, assuming inde-

pendence (i.e. multiplicative action), the total effect could

be as large as, for example, 23% underestimation of R0

(assuming a 50% increase in the coefficient of variation of

the serial interval). In other settings, the effects could be

quite different. In the main sections and in the corresponding

sections of the electronic supplementary material, general for-

mulae, if possible, or at least formulae under assumptions of

Gamma distributions, if results depend on assumed distri-

butions, are available and applicable in other parameter

settings. It should be noted that even moderate errors in R0,

especially if the true value is not very large, can have large
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consequences. As numerical illustration, assume that the true

value of R0 is 1.7, but that the estimate is negatively biased by

10% or even 23%, depending on how estimation is per-

formed. Then the biased estimate would be around 1.53 or

1.31, respectively. Such a difference can have quite large con-

sequences when planning control measures. For instance, the

critical immunization level (both for vaccination and any

other measure aimed at reducing infection) is usually calcu-

lated as vc ¼ 1 2 1/R0. For the true R0, this results in

vc ¼ 41%, while the lower biased estimates yield v̂c ¼ 35%

or 24%, respectively. The underestimation of R0 may hence

lead to suggested preventive measures that are insufficient

to stop the spread.

The focus of the paper has been on studying potential

biasing effects originating from a typical set of observables

in the initial phase of an outbreak. However, there are also

some positive observations. The stability of proportions of

individuals in different phases of disease during the increas-

ing phase is one, since quite good estimates of the total

number of infected or not yet notified infected could be

made, based on number of dead patients or notified ones, if

good information about the related stage duration distri-

butions is available. Another positive observation is that

accurate inference in the multiple infector problem seems

possible, although more research is needed. Finally, many

biases can be understood and corrected for if the sampling

situation is correctly modelled. It may be difficult to obtain

simple analytical results, but simulation can then reveal the

performance of various estimation procedures.

In the paper, it was assumed that incidence was reported

on aggregated level without additional information on

household or spatial structure of the reported cases. If more

detailed data were available, then more sophisticated

models taking such heterogeneities into account may be

used. This will improve the statistical analyses in that the

model better describes the spreading patterns of the disease.

The biases under focus in the present paper will however

remain, but it is an open problem to study if they are reduced

or increased when compared with the present homogeneous

modelling assumptions. The results in this paper also indicate

what other types of data would have been useful to avoid or

decrease the discussed biases. For instance, more detailed

observation of the joint distribution, or at least first and

second order moments, of the various phases of the disease
history (incubation, latency, infectiousness, etc.) would have

improved the conversion of serial intervals to generation

times; genotyping of the infectious agent in infected individ-

uals may improve inference about infection chains and thus

avoid the multiple infector problem and also allow direct

estimation of R0 in infection trees.

Of course, there are also many other problems related to

data from an emerging outbreak not treated in the current

paper, important ones being underreporting, selective report-

ing and reporting delays, but also batch-reporting of

numbers. A rather different type of potential source of bias,

also not studied here, is when model assumptions are vio-

lated. For example, it has been assumed that there was no

individual or society-induced changing behaviour during

the data collection period, and social or spatial effects on

spreading patterns have been ignored. Social structures

have been shown to have limited effects for estimation in

emerging epidemics [2], but spatial effects [32] clearly play

a role in disease spread, and their effect on parameter

estimates is yet to be investigated. Changing behaviour prob-

ably kicks in early in emerging outbreaks of serious diseases

like Ebola, and are hence also important to include in future

inferential procedures for emerging epidemic outbreaks.

Still, it is our hope that the results can help in improving

future analyses of emerging outbreaks and the important

efforts to guide health authorities in predictions and identifying

possible preventive measures.
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