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Transdermal drug delivery systems are a key technology to administer drugs with a high
first-pass effect in a non-invasive and controlled way. Physics-based modeling and
simulation are on their way to become a cornerstone in the engineering of these
healthcare devices since it provides a unique complementarity to experimental data
and additional insights. Simulations enable to virtually probe the drug transport inside
the skin at each point in time and space. However, the tedious experimental or numerical
determination of material properties currently forms a bottleneck in the modeling workflow.
We show that multiparameter inverse modeling to determine the drug diffusion and
partition coefficients is a fast and reliable alternative. We demonstrate this strategy for
transdermal delivery of fentanyl. We found that inverse modeling reduced the normalized
root mean square deviation of the measured drug uptake flux from 26 to 9%, when
compared to the experimental measurement of all skin properties. We found that this
improved agreement with experiments was only possible if the diffusion in the reservoir
holding the drug was smaller than the experimentally measured diffusion coefficients
suggested. For indirect inverse modeling, which systematically explores the entire
parametric space, 30,000 simulations were required. By relying on direct inverse
modeling, we reduced the number of simulations to be performed to only 300, so a
factor 100 difference. The modeling approach’s added value is that it can be calibrated
once in-silico for all model parameters simultaneously by solely relying on a single
measurement of the drug uptake flux evolution over time. We showed that this
calibrated model could accurately be used to simulate transdermal patches with other
drug doses. We showed that inverse modeling is a fast way to build up an accurate
mechanistic model for drug delivery. This strategy opens the door to clinically ready
therapy that is tailored to patients.
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INTRODUCTION

Mechanistic, physics-based modeling and simulation is
increasingly used in healthcare for device engineering and
design (FDA, 2016; Caccavo et al., 2017; Shirazi et al., 2019).
A typical example is the transdermal drug delivery systems
(TDDS). Physics-based modeling was used to help design and
optimize advanced TDDS with microneedles (Ronnander et al.,
2018; Chavoshi et al., 2019), thermal skin ablation or
iontophoresis (Ferreira et al., 2017; Filipovic et al., 2017),
chemical enhancers (Pontrelli and De Monte, 2014), and
sonophoresis (Polat et al., 2012). Also, first-generation TDDS
are analyzed in-silico to increase our insight into how these
systems interact with the patient’s skin (Naegel et al., 2013).
Here, drug uptake differences between different substances (Chen
et al., 2015) or age categories of patients (Defraeye et al., 2020)
were targeted. Also, the impact of the composition of the stratum
corneum and viable epidermis on the drug uptake was quantified
(Naegel et al., 2009; Wittum et al., 2017).

A key advantage of such first-principles-based modeling is the
high spatial and temporal resolution they offer. Transient changes
in concentration profiles can be identified within different skin
layers during the uptake process (Naegel et al., 2011; Defraeye
et al., 2020). This spatiotemporal resolution enables us to virtually
probe the drug transport inside and out of the skin in time and
space. Also, the cumulative amount of drugs that are taken up by
blood flow is available continuously, instead of only every 1–5 h
(Defraeye et al., 2020). Another advantage is that such in-silico
tests can be performed swiftly and non-invasively, without any
side effects for the patient. Physics-based modeling opens new
ways of tailoring TDD therapy for patients or patient groups
(Defraeye et al., 2020). This deterministic approach is not
suffering from statistical variability in the data due to
biological variability or measurement uncertainty. As such,
only one in-silico experiment is required per case. Thereby,
also very small differences between several cases can be
accurately identified. Physics-based modeling and simulation
provide valuable complementary information to experiments.
Besides, they provide useful insights into the relative
contribution of different drivers of drug uptake for the
processes that can be captured mechanistically. Such physics-
basedmodels also provide a higher spatial resolution compared to
compartmental models. These compartmental models consider
each skin layer as a well-mixed compartment (Mitragotri et al.,
2011; Selzer et al., 2013; Amarah et al., 2018) with no
discretization over a particular skin layer.

However, the reliability and accuracy of these physics-based
models for TDD need to be verified and validated. FDA recently
published guidelines for medical device design in this respect
(FDA, 2016; U. S. Food and Drug Administration, 2020). A
decisive aspect of determining model accuracy is the used model
parameters. The properties of the skin, in particular, often play a
crucial role, including drug diffusivities and partition coefficients
(Naegel et al., 2008).

There are four common ways of obtaining these properties of
the skin. First, they are determined directly from ex-vivo
measurements (Rim et al., 2005; Hansen et al., 2008).

Experimentally determining the diffusion and partition
coefficients for a specific drug is resource- and time-
consuming, especially when different skin types and
anatomical locations on the human body need to be
considered. Such an experimental campaign often poses a
significant constraint on undertaking a modeling study.
Thereby, they are rarely measured explicitly before modeling
using a separate in vitro experiment. Second, skin transport
properties for various molecules can be simulated with
physics-based models (Naegel et al., 2009; Mitragotri et al.,
2011). Here simulations at different scales are performed and
coupled in a multiscale way (Rim et al., 2009; Gajula et al., 2017).
Even molecular dynamics simulations are applied (Lundborg
et al., 2018). Simulating, however, also consumes a lot of time
and resources, making it is usually not more efficient than
measuring the parameters separately. As a third way, modelers
just source these parameters from literature data during model
setup instead (Barbero and Frasch, 2017; Madhihah et al., 2018;
Chakravarty and Dalal, 2019; Defraeye et al., 2020). Due to a lack
of appropriate data, often, data of other drugs with similar
molecular weight and lipophilicity are taken (Rim et al., 2009).
Also, parameters are obtained from multiple sources. As these
studies used different setups and boundary conditions (e.g., skin
type, temperature, drug reservoirs), the absolute accuracy of the
model results is often questioned. This is often the only way for
modelers to simulate without a concurrent experimental or
simulation campaign to determine material properties. The
fourth way is using the quantitative structure-activity
relationship (QSAR) modeling method to predict the
biological activity of the new drug based on its structural
properties (Kwon et al., 2019). This method can provide the
stimation of different values for properties of subtances that were
not studied experimentally (Toropova and Toropov, 2017),
however, the predicted value is limited to the constraints of
the implemented dataset (Barratt, 1995).

There is a fifth alternative currently underexplored. All skin
material properties could be fitted simultaneously to obtain the
best agreement with measured data of the drug uptake kinetics.
Calibrating a mathematical model by comparing its predicted
response (i.e., drug uptake) with experimental observations is
called inverse modeling (Akkaram et al., 2007). This strategy
ensures that the in-silico system is calibrated so that it responds as
close as possible in the same way as the in vitro (or in vivo) system.
A key advantage is that only limited experiments on the drug
uptake kinetics need to be performed, instead of performing
separate experiments for each property on a different apparatus.
A step in this direction was made (Selzer et al., 2015). The
diffusion and partition coefficient for the transport of
flufenamic acid through the stratum corneum layer were
determined by fitting the simulations to the experiments. The
in vitro concentration-depth profiles were used to calibrate these
material properties. A nonlinear least-squares approach was used
to determine these parameters both for every point in time or
averaged over all measured times. However, this study did not
target the drug uptake amount through the skin by the patient
and did not include the transport properties of the patch as
possible unknowns that could be fitted.
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This study aims at developing and testing a fast and
straightforward way to calibrate a physics-based model for
transdermal fentanyl delivery. Fentanyl patches for around-
the-clock opioid analgesia are currently amongst the most
popular transdermal delivery devices (Wiedersberg and Guy,
2014). We target to have an excellent agreement of our model
for drug uptake kinetics using a commercial fentanyl patch
currently used in the clinics. To this end, a sizable parametric
space of the skin epidermis’ material properties and the patch is
simulated for transdermal fentanyl uptake through a Franz
diffusion cell. A comparison with experimental data on the
drug flux out of the epidermis is made. This enables to
elucidate in silico the sensitivity of the drug uptake kinetics to
each model parameter in the transdermal patch and the skin.
Within this parametric space, we determine the best set of
properties with a better agreement with experiments during a
72 h drug uptake period, compared to relying on experimentally
determined skin properties. A faster alternative procedure to
multiparameter inverse modeling by the parametric
exploration is also explored, using automated least-squares
optimization. We use existing methods for performing this
parametric analysis, but aim to show the added value of such
methods to gain new insights and to help bring simulation-based
insights to the clinics. The validity of the obtained parameter set
for simulating other drug patches with a different concentration is

also tested. This independent verification proves the generalized
use of the model.

MATERIALS AND METHODS

Continuum Model for Transdermal Fentanyl
Delivery
An extensive mechanistic model was set up to simulate fentanyl
release from a transdermal patch (reservoir) and subsequent
uptake through the human epidermis, which includes the
stratum corneum and the viable epidermis (Defraeye et al.,
2020). The model and the corresponding simulation were built
and executed according to best practice guidelines in modeling,
among others, those for medical device design (Casey and
Wintergerste, 2000; FDA, 2016). The model was used to
simulate the drug uptake experiment described in (Rim et al.,
2005). By comparison with the experimental data, we can
quantify how accurately the drug uptake kinetics are predicted
with our mechanistic model.

Experimental Setup and Data
The experiment involved fentanyl uptake from a cylindrical drug
reservoir (radius 9 mm, thickness 50.8 µm) through a cylindrical
skin sample (human cadaver epidermis: viable epidermis, and
stratum corneum, radius 9.25 mm, thickness 50.8 µm, Figure 1A)
into an aqueous solution. A change of the skin thickness due to
swelling was not reported in the experiment. The transdermal
patch used in the experimental study consisted of a layer of
acrylate polymer (Rim et al., 2005). Acrylate polymers are widely
used as pressure-sensitive adhesives in TDDs. The acrylate
polymers have a good compability with a wide range of drugs.
Besides that, they have flexiblility in tailoring the polymers’
properties (Zhan et al., 2015). The drug was embedded in the
acrylate polymer, which served as the donor reservoir. Both the
reservoir and epidermis were fitted into a Franz diffusion cell and
kept at 33°C. The receptor medium in the cell was a phosphate
buffer at a pH of 5.65, in which fentanyl had a solubility of
2.5 mg ml−1. The experiments took 72 h. At several points in time
over this 3-day period, an aliquot of the receptor medium was
removed for this purpose. Its concentration was analyzed via
high-performance liquid chromatography (HPLC). Out of the
data of the change in concentration and the time, the drug flux
was determined in the experiments at discrete points in time. As
such, the average flux over a specified time period of multiple
hours was obtained. Several initial drug concentrations in the
patch (cpt,ini

α) were evaluated for fentanyl (substance α). We used
the data on the drug uptake fluxes that left the epidermis for
cpt,ini

α � 60 kg m−3, and cpt,ini
α � 80 kg m−3.

Computational System Configuration
The geometrical setup is depicted in Figure 1B, along with the
boundary conditions. The system configuration is built up,
similar to the experiment (Rim et al., 2005). The configuration
includes a cylindrical drug reservoir and the outer part of the
human skin, namely the epidermis, which includes the stratum
corneum and the viable epidermis. The reservoir contains a finite

FIGURE 1 | The geometry of the experimental setup (A) and of the 1D
mechanistic model (B) of a cylindrical drug reservoir and epidermis (not to
scale).
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amount of fentanyl. The geometrical specifications and transport
properties used in the simulations are indicated in Table 1.

Given the very similar radius of the patch and the skin sample
in the experiment, the transport processes can be considered one-
dimensional. This led tominimal differences when comparing the
3D and 1D model representation (Defraeye et al., 2020).
Differences in predicted fluxes and the cumulative drug
amount that was taken up by the aqueous buffer solution were
<0.4%. Thus, a 1D model was sufficiently accurate and improved
the computational economy, which was beneficial because a large
parametric space was explored. Such a 1Dmodel is representative
of Franz diffusion cell experiments (Larsen et al., 2003; Rim et al.,
2005; Bartosova and Bajgar, 2012). The skin is as wide as the drug
reservoir, so unidirectional (longitudinal) drug transport is
simulated without any transverse component.

A patch radius Rpt of 9 mm was used for the drug reservoir,
similar to in the experiments. This value implies an active area of
2.54 cm2, which is in the same order of magnitude as reported for
commercial transdermal patches for fentanyl (4.2–42 cm2)
(Wiedersberg and Guy, 2014). The thickness of the patch (dpt)
was 50.8 μm. The volume of the patch reservoir was
1.29 × 10–8 m3. The skin’s epidermis (ep) was modeled as a
single layer. This approach lumps the markedly different
diffusion and partitioning processes through the lipophilic
stratum corneum and the hydrophilic viable epidermis. This
strategy does not affect the uptake kinetics for such a one-
dimensional setup without extensive lateral transport. As such,
a realistic simulated uptake drug flux across the skin into the
Franz diffusion cell gbl,up(t) [kg m−2 s−1] is obtained. It is the
performance metric used to compare with experimental data.
However, this one-layer approach does not accurately reflect the
spatial concentration gradients within the skin, as shown in
(Defraeye et al., 2020), where much higher concentrations are
found within the stratum corneum.

Governing Equations
The governing equations for simulating transient transport of
fentanyl are detailed. Only drug diffusion was solved, and
isothermal conditions were assumed, close to human body
temperature. Water transport due to skin de-/rehydration and
the resulting skin shrinkage or swelling were not modeled. The
following mass conservation equation was derived for fentanyl
(substance α) in (Defraeye et al., 2020). This equation is defined

for each material i [kg m−3] (patch and epidermis) to calculate the
drug potential ψα:

Kα
i

zψα

zt
+ ∇ · ( − Dα

i K
α
i ∇ψ

α) � Sαs , (1)

Di
α is the diffusion coefficient or diffusivity [m2 s−1], Ki

α is
the drug capacity of the drug in the material i [−], Ssα is a
volumetric source term for substance α [kg m−3 s−1], and t is the
time [s].

The conservation equation was derived in drug potential (ψα)
instead of drug concentration (ci

α � Ki
α ψα). The use of ψα instead

of ci
α leads to a single dependent variable throughout the entire

domain, instead of one in each material. This choice mainly
avoids numerical stability issues at the interface of the patch and
epidermis (Defraeye et al., 2020). Such instabilities can occur due
to the discontinuity in the drug concentration that arises at the
interface caused by partitioning.

Partitioning implies that when a drug substance α is brought
into contact with patch and epidermis (pt and ep), the drug will
evolve to a different equilibrium concentration in each of these
materials, namely cpt

α and cep
α. The ratio of these equilibrium

concentrations is referred to as the partition coefficient Kpt/ep
α.

Kα
pt/ep �

cαpt
cαep

� Kα
ptψ

α

Kα
epψ

α
, (2)

The octanol-water partition coefficient is frequently
determined (Ko/w

α) for drug partitioning in liquids, where
values larger than one indicate drug lipophilicity. Values
smaller than one indicate drug hydrophilicity. The log (Ko/

w
α) is often reported, where positive/negative values indicate

lipophilicity/hydrophilicity, respectively. In this study, the
partition coefficient between the patch and the epidermis
was explicitly determined from experiments, as detailed in
Material Properties and Transport Characteristics of Skin and
Patch.

No source term was included in this study. The reason is that
the contributions of the following processes (Naegel et al., 2013)
could be neglected for fentanyl, as motivated in (Defraeye et al.,
2020): 1) metabolization of the drug molecule within the
epidermis by a chemical reaction, a process that leads to a
conversion of the drug into other compounds; 2) adsorption
of the drug molecule into the epidermis, and thus physical
binding of the drug molecules.

MATERIAL PROPERTIES AND TRANSPORT
CHARACTERISTICS OF SKIN AND PATCH

Fentanyl is a synthetic opioid that is used as a pain medication.
It has a low molecular weight (337 Da) and is moderately
lipophilic with a log (Ko/w) of three–four (Rim et al., 2009;
Wiedersberg and Guy, 2014; Kim et al., 2016). The material
transport properties of the skin components and the drug
reservoir are given in Table 1 for fentanyl for the base case,
as taken from (Rim et al., 2005). These parameters were
estimated in (Rim et al., 2005) as follows:

TABLE 1 |Material transport properties are used in the model for the base case for
fentanyl from (Rim et al., 2005).

Parameter Symbol and unit Material i

Layer Patch Epidermis

Abbreviation pt ep

Validation study

Thickness di [m] 50.8 × 10–6 50.8 × 10–6

Diffusion coefficient Di
α [m2 s−1] 1.00 × 10–13 3.00 × 10–14

Drug capacity Ki
α [−] 1 0.14

Partition coefficient Ki/j
α [−] — 7.14 (�1/0.14)
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• The diffusion coefficient of fentanyl in the patch (Dpt
α) was

determined experimentally. This was done by performing a
drug release experiment of the patch into a receptor medium,
after which an analytical expression was fitted to the results.
• The drug capacity of fentanyl in the epidermis (Kep

α � 0.14)
was derived from sorption experiments, measured over five
skin donors. The patch’s drug capacity (Kpt

α) was taken equal
to one since it is taken as the reference domain. Note that in
(Rim et al., 2005), these drug capacities are actually termed
partition coefficients, which is not the same definition used in
the present study. The actual partition coefficient between
patch and epidermis Kpt/ep

α � Kpt
α/Kep

α equals 1/0.14.
• The value for the baseline diffusivity of the drug in the
epidermis (Dep

α) was determined by fitting the experimentally
measured drug flux in the Franz diffusion cell over a range of
initial drug concentrations in the patch for the initial 30 h (Rim
et al., 2005).

These different procedures illustrate the complexity of
obtaining material transport properties for transdermal drug
delivery. Three different experimental setups were required,
where even model fitting was required for one parameter
(Dep

α). In addition, each experimental technique had specific
uncertainty.

Similar to most other simulation studies (Rim et al., 2009;
Naegel et al., 2011; Gajula et al., 2017), the diffusion and partition
coefficients were taken as constants and isotropic. This
assumption implies that they are independent of the drug
concentration. This choice is often unavoidable because more
detailed data is rarely available. However, diffusion and partition
coefficients have been shown to be a function of drug
concentration rather than constant values (Lundborg et al., 2018).

Boundary and Initial Conditions
The drug was assumed to exit the computational domain via the
interface with the aqueous solution in the Franz diffusion cell.
Therefore, a constant concentration (and potential), equal to
zero, was set at the epidermis bottom (Figure 1). This
approximates the very low concentration found in the large
buffer solution. This condition represents a Dirichlet boundary
condition. Zero-flux conditions were imposed at all vertical
boundaries. At t � 0 s, the skin was assumed to be drug-free.
The initial concentration of drugs in the patch was set at
80 kg m−3 or 60 kg m−3, according to a previous study (Rim
et al., 2005). The patch dimensions combined with these initial
concentrations lead to an initial amount of fentanyl in the
reservoir (mpt,ini) of 1.03 and 0.776 mg, respectively. This
initial drug content corresponds to amounts typically present
in commercially available patches (Defraeye et al., 2020). Perfect
contact between the patch and the epidermis was assumed. No
inclusion of air layers or discontinuities like hairs or skin
roughness were accounted for.

Spatial and Temporal Discretization
The grid was built based on a grid sensitivity analysis. The spatial
discretization error was quantified based on the total mass flux to
the Franz diffusion cell. This error was estimated to be 0.1%, as

determined by Richardson extrapolation (Roache, 1994; Franke
et al., 2007). The grid consisted of 112 quadrilateral finite
elements for the base case (1D, elements with a size of about
1 µm). The grid was gradually refined toward the patch-skin
interface to enhance numerical accuracy and stability. The reason
is that the largest gradients are found at such interfaces,
particularly at the uptake process initial stage.

The transient simulations quantified a drug uptake process
that lasted 72 h (3 days), starting from these initial conditions.
This time window also agrees with that of conventional
transdermal fentanyl therapy. Here the required dose for the
patient, so patch size is estimated empirically by the clinician.
Afterward, the patch is applied transdermally and is replaced
every 72 h (Muijsers and Wagstaff, 2001).

The simulations applied adaptive time-stepping. The maximal
time step was 600 s (10 min). This time step ensured high
temporal resolution for the output data and was determined
from a sensitivity analysis.

Numerical Implementation and Simulation
The model was implemented in COMSOL Multiphysics®
software (version 5.5, COMSOL AB, Stockholm, Sweden).
COMSOL is commercial finite-element-based software. This
software was verified by the code developers. Therefore,
additional code verification was not performed by the authors.
Transient diffusive drug transport (Eq. 1) in the patch and
epidermis was solved using the partial differential equations
interface (coefficient form). The conservation equation was
solved for the dependent variable ψ. The optimization
interface was used to automatically find the optimal model-
parameter values by direct inverse modeling (Halliday, 2020).
Here, the least-squares method was used. This method minimizes
the objective function, namely, the root mean square of the
differences between experimental data and simulations.
Different starting points were applied to avoid landing in a
local minimum. In addition, the results were compared to the
results of the full parametric space as well to ensure no local
minimum was identified.

Quadratic Lagrange elements were used together with a fully
coupled direct solver, which relied on the MUMPS solver scheme
(MUltifrontal Massively Parallel sparse direct Solver). For the
direct inverse modeling, a derivative-free solver was used, namely
the Bound Optimization by Quadratic Approximation
(BOBYQA). The tolerances for solver settings and convergence
were determined through sensitivity analysis so that a further
increase in the tolerances did not alter the resulting solution. For
the inverse modeling, different starting values of the material
properties were explored, and the sensitivity to the stopping
criterion parameters was also performed.

Parametric Study
Following simulations were performed:

1. The base case simulates the drug uptake through the epidermis
as released from a finite drug reservoir based on experimentally
determined material properties (Table 1) (Rim et al., 2005).
Simulations were done for cpt,ini

α � 80 kg m−3.
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2. Indirect multiparameter inverse modeling to determine the
optimal set of material properties (Dpt

α, Dep
α, Kep

α) that gives
the best agreement with the experimental data during a 72-h
drug uptake period (Sensitivity of Drug Uptake Kinetics to
Material Properties) for cpt,ini

α � 80 kg m−3. Indirect modeling
implies that a large set of combinations of these properties was
explored; in this case, 30,618 combinations/simulations. The
main aim here was to get insight into how the relationship
between these parameters affects solution accuracy.

3. Direct multiparameter inverse modeling to determine the
optimal set of material properties (Dpt

α, Dep
α, Kep

α) that gives
the best agreement with the experimental data (Finding the
Optimal Set of Material Properties by Multiparameter Inverse
Modeling) for cpt,ini

α � 80 kg m−3. Here automated
least-squares optimization was used to progress fast to the
most optimal solution. The main aim here is to identify how
much faster a solution can be found compared to indirect
inverse modeling. We also performed direct inverse modeling
for cpt,ini

α � 60 kg m−3.
4. Cross verification of the obtained parameter set by direct

inverse modeling (for cpt,ini
α � 80 kg m−3) by comparison with

independent experimental data of patches with a different drug
concentration (cpt,ini

α � 60 kg m−3). This independent
verification proves the generalized use of the model, so if
the calibrated model can be used for a wider operational
range of patches. We also performed the same
cross-verification by evaluating a patch with an initial drug
concentration of cpt,ini

α � 80 kg m−3 using the optimal model
parameters obtained from direct inverse modeling for
cpt,ini

α � 60 kg m−3.

Metrics to Evaluate TDD
The simulated drug delivery process was analyzed
quantitatively by calculating several metrics. From the
experiments, the flux taken up by the Franz diffusion cell
(gFr,up [kg m−2 s−1]) was measured as a function of time for
discrete points in time. This experiment was done by
measuring the total amount of drugs taken up in the
respective timeframe into the Franz diffusion cell through
surface 1 [kg s−1]. Afterward, this flow rate was scaled with the
patch’s surface area (surface 2, Rpt � 9 mm). This flux quantity
was used as the primary metric to compare with the 1D
simulations, where it was determined in the same way. The
Root Mean Square Deviation (RMSD) between measured
fluxes and the predicted fluxes by the simulations over the
N measured points at each time j was calculated as:

RMSD �

��������������������∑
j
(gSIMFr,up(tj) − gEXPFr,up(tj))2

N

√√
, (3)

This RMSD [kg m−2 s−1] is the quadratic mean over these
differences in uptake fluxes between experiments and
simulations. Thereby it is a direct measure of the accuracy of
the simulations. Using the RMSD, we can quickly elucidate how
far off these parameters are from the experimental data and the
original dataset (base case). The advantage of the RMSD is that it

aggregates each simulation’s accuracy into one single value, being
the prediction error of the simulation. An additional benefit of the
RMSD for comparison is that it has the same units as the flux
[kg m−2 s−1], so it can be directly contrasted to the measured
fluxes. The RMSD was calculated considering the entire 72 h
timeframe (N � 9 data points) and a shorter 30 h timeframe
(RMSD′, N � 4).

In addition to the RMSD, the average uptake flux across the
skin into the diffusion cell over the 72 h is quantified gSIMFr,up
[kg m−2 s−1]. The reason is that the normalized RMSD
(NRMSD) can be calculated as the ratio of the RMSD to this
average flux, which can be expressed as a percentage as well:

NRMSD � RMSD

gSIMFr,up

, (4)

RESULTS AND DISCUSSION

Sensitivity of Drug Uptake Kinetics to
Material Properties
We aim to quantify how the model parameters—the material
properties Dpt

α, Dep
α, and Kep

α—affect the
simulations’accuracy, so the RMSD. We mainly aim to
elucidate if there are particular combinations of model
parameters that enhance model accuracy. These results shed
light on which transport kinetics are decisive for achieving an
accurate mechanistic model. Different subsets of the material
properties were analyzed within the sizable parametric space
explored for Dpt

α, Dep
α, and Kep

α. First, we analyze the impact of
epidermal diffusion vs. partitioning in the epidermis. Second,
the effect of diffusion in the epidermis vs. diffusion in the patch
is targeted. Finally, the most accurate combination of
parameters in this design space that leads to the lowest
RMSD is identified.

The Impact of Epidermal Diffusion and Partitioning
Parameter variations in the diffusion (Dep

α) and partition
coefficient of the epidermis (Kep

α) are explored. The diffusion
coefficient in the patch (Dpt

α) is kept the same as the base case.
The resulting RMS

D values for each combination of Dep
α and Kep

α are shown
in Figure 2. The drug uptake profiles for the base case
(cpt,ini

α � 80 kg m−3) and the combination of Dep
α and Kep

α

out of this parametric space that lead to the lowest RMSD are
depicted in Figure 3. We evaluated only a discrete number of
combinations of Dep

α and Kep
α. As such, a more optimal

combination of Dep
α and Kep

α with a lower RMSD could be
found when refining even more. This step was done in Finding
the Optimal Set of Material Properties by Multiparameter
Inverse Modeling by direct inverse modeling. However, the
aim of the current section was to analyze the processes instead
of finding the perfect set of parameters.

The overall accuracy of the simulations is quantified with
the RMSD (Figure 2). The RMSD of the base case (0.40)
already lies quite close to the minimal RMSD value that is
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achieved for a more optimal combination of epidermal
partition and diffusion coefficients (0.33). However, a
significant improvement in RMSD was still made. The
normalized RMSD was 22%, where the base case yielded
26%. In this case, the corresponding Dep

α and Kep
α were

4.8 × 10–14 m2 s−1 and 0.067, respectively, in contrast to

3.00 × 10–14 m2 s−1 and 0.14 for the base case. Interesting
observations can be made when analyzing the RMSD
landscape (Figure 2). A “valley/canyon” with very low
values of the RMSD is present. This valley stretches over a
wide range of Dep

α and Kep
α. This contrasts with a typical

optimization problem where an exact global minimum is
present in the multiparameter space. As such, there is a
broad range of possible combinations of diffusion and
partition coefficients that lead to a low RMSD, so a
relatively accurate simulated drug uptake process. This is

FIGURE 2 | RMSD over the uptake period as a function of Dep
α and Kep

α (for Dpt
α of the base case � 1.00 × 10–13 m2 s−1) for an initial patch concentration of

80 kg m−3. The parameters for the base case and most optimal parameter set are also shown.

FIGURE 3 | Drug fluxes of fentanyl at surface 1 (gbl,up), so leaving the
epidermis, from experiments (Exp.) and simulations (Sim.) for an initial patch
concentration of 80 kg m−3 as a function of time. Results are shown of the
base case, the best combination of epidermal parameters
(Sim.—epidermis, Dep

α and Kep
α, for Dpt

α of the base case � 1.00 ×
10–13 m2 s−1), and the best combination of Dep

α, Kep
α, and Dpt

α

(Sim.—epidermis and patch) from indirect multiparameter inverse modeling.

FIGURE 4 | Drug flux released by the patch into the epidermis and taken
up by blood as a function of time for the base case simulation and the optimal
parameter combination for inverse modeling. The diffusion in the reservoir vs.
in the epidermis.
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problematic as an unphysical value of Dep
α, for example,

similar to that of the patch, can give an acceptable
agreement with the experimental data when tuning/
calibrating the model with the appropriate Kep

α.
The simulation accuracy throughout the drug uptake process

is assessed by comparing the predicted drug uptake flux over time
(Figure 3). The simulations capture the initial period of the
uptake accurately, namely the substantial increase in the flux.
This increase occurs when drugs are transported into the
epidermis. This leads to an increased drug concentration in
the epidermis, so a part of the drugs is stored there. After this
initial phase, drugs do not accumulate anymore in the epidermis,
and a quasi-steady-state condition sets in where the amount of
drugs entering the epidermis also diffuses out (Figure 4). Because
the skin’s capacity to store drugs is reached, the drug primarily
diffuses through the epidermis, and the stored amount remains
relatively constant. Since the drug concentration in the patch (a
finite reservoir) is decreasing over time, steady-state conditions
with constant flux are not reached. Instead, the uptake flux slowly
decreases over time, simply because the concentration gradient
over the epidermis decreases. The experiments predict a much
steeper decline in the flux than in the simulations, in which the
predicted decline has a relatively constant slope, so is linear.
During this period, the simulations do not lie within the
experimental error bars. The simulations seem to miss a
critical physical process, irrespective of the combination of
Dep

α and Kep
α that is used. An answer is sought and found in

the next section.

The Diffusion in the Reservoir vs. in the Epidermis
We aim to unveil whether the diffusion kinetics in the patch could
help explain and improve the residual differences found between
experiments and simulations in The Impact of Epidermal
Diffusion and Partitioning. To this end, parameter variations
in the diffusion coefficient of the patch Dpt

α are included, in
addition to those in Dep

α and Kep
α. A subset of the resulting

RMSD values is given in Figure 5, as depicted for different Kep
α.

These contour plots show how changing the ratio of the resistance
to drug diffusion in the patch (Dpt

α), relative to that in the
epidermis (Dep

α), affects the drug uptake. The drug uptake
profiles for the base case (cpt,ini

α � 80 kg m−3) and for the
combination of Dep

α, Dpt
α, and Kep

α out of this parametric
space that lead to the lowest RMSD, are depicted in Figure 3.

The overall accuracy of the simulations is evaluated using the
RMSD (Figure 5). A more optimal combination of Dep

α, Dpt
α,

and Kep
α made a significant improvement in RMSD (0.141)

compared to only varying the epidermal model parameters
(RMSD � 0.33, The Impact of Epidermal Diffusion and
Partitioning) or the base case (RMSD � 0.4). The normalized
RMSDwas 9.3%. The base case yielded 26%, and the combination
of Dep

α and Kep
α produced 22%. The corresponding Dep

α, Dpt
α,

and Kep
α were in this case 3.0 × 10–14, 6.91 × 10–16, and 2.15,

respectively, in contrast to 3.00 × 10–14, 1 × 10–13, and 0.14 for the
base case. Here, “valleys/canyons” with low values of the RMSD
are present in all graphs. A broad range of possible combinations
of diffusion coefficients (Dep

α and Dpt
α) lead to a simulated drug

uptake process with a low RMSD. This is true for each of the

FIGURE 5 | RMSD over the uptake period as a function of Dep
α and Dpt

α for multiple values of Kep
α for an initial patch concentration of 80 kg m−3. The parameters

for the base case and the most optimal parameter set are also shown.
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selected partition coefficients since the shape of the surface/
contour plots are similar. This finding also means that
partitioning between patch and epidermis does not
significantly affect the relative importance of the diffusive
processes in these two domains. This is confirmed in Figure 6,
where the minimal values of the RMSD are shown over the full
parametric space for each value of Dep

α, Dpt
α, and Kep

α. Both Dep
α

and Dpt
α have an explicit minimum. However, for Kep

α, there is
an entire range where a RMSD below 0.15 is reached. Both values
above and below one lead to a low RMSD. When the drug
capacity of the epidermis is higher than one, namely the
capacity of the patch (Kpt

α � 1), the partition coefficient (Kpt/

ep
α � Kpt

α/Kep
α � cpt

α/cep
α) becomes smaller than one. This

indicates that the patch’s drug concentration under
equilibrium conditions is lower than the drug concentration in
the epidermis. The drug will be preferably in the epidermis than
in the patch, even in the absence of a concentration gradient.

The simulation accuracy throughout the drug uptake process
is assessed by comparing the predicted drug uptake flux over time
(Figure 3). The best combination of Dep

α, Dpt
α, and Kep

α leads to
an accurate drug uptake prediction throughout the entire 72 h
timeframe, namely almost within the experimental error bars.

Both the steep increase in the flux during the initial uptake period
and the subsequent nonlinear decline are captured. Based on
these results, we can elucidate the physical reasons for the
excellent agreement for the specific set of Dep

α, Dpt
α, and Kep

α.
The lowest RMSD and the best agreement of the uptake flux
profiles were obtained for a lower Dpt

α, compared to the base case.
Dpt

α was determined initially experimentally. Its magnitude
resulted in much easier diffusive drug transport in the patch
than in the epidermis (1.00 × 10–13 m2 s−1 vs. 3.00 × 10–14 m2 s−1).
The primary resistance to diffusive transfer from the patch
through the epidermis into the diffusion cell was located in
the epidermis for the base case. This diffusive resistances Ri

[s m−1] is defined as:

Ri � di
Dα

i

, (5)

where di is the thickness of the patch or the epidermis [m]. The
corresponding resistances for patch and epidermis were
5.08 × 108 and 1.69 × 109 s m−1, respectively, for the base
case. A better agreement with experiments is obtained when
the diffusion in the reservoir holding the drug is restricted more
so that it also has a notable resistance to drug transport. As a

FIGURE 6 | Minimal values of the RMSD over the full parametric space for each value of (A) Kep
α, (B) Dep

α, (C) Dpt
α. The values of the base case are also shown.

FIGURE 7 | Color contours of drug concentration in the drug reservoir and epidermis for different points in time for (A) the base case and, (B) simulations with
optimal material properties as determined from inverse modeling.
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result of the reduced transport in the patch, even a non-uniform
concentration in the patch will arise, in contrast to the base case,
as depicted in Figure 7. Apart from the decreasing concentration
in the patch, which leads to a reduced gradient over the skin, the
concentration gradient inside the patch also plays a role. As a
result, both the steep increase in the drug uptake flux and the
nonlinear decline are predicted correctly (Figure 4).

This lower diffusion coefficient of the patch is suggested by the
physics-based simulations, as this is required to obtain the
measured drug uptake process accurately, namely the steep
rise in drug flux and its subsequent sharp nonlinear decline.
With the experimentally determined material properties of the
patch, the realistic drug uptake behavior could not be accurately
captured by the model (Figure 3). The question remains why
there is a mismatch with the measured diffusion coefficient of the
patch, with which the physical drug uptake behavior could not be
captured. This diffusion coefficient was however measured by a
drug release experiment of the patch into an aqueous receptor
medium. This case exposes the patch to different conditions as
when placed on the skin and might induce a higher diffusion rate
or swelling of the patch. Therefore, it seems that the measured
diffusion coefficient might be too high. Our simulations confirm
that such a high diffusion coefficient does not allow to reproduce
the experimental drug-uptake behavior. Therefore, a cross-
verification of experimentally determined diffusion coefficients
of transdermal patches by using techniques other then placement
in an aqueous receptor medium could be advised.

Finding the Optimal Set of Material
Properties by Multiparameter Inverse
Modeling
We determine the optimal set of material properties (Dpt

α, Dep
α,

Kep
α) by indirect and direct multiparameter inverse modeling.

For indirect modeling, we searched the combination in a sizable
parametric space of 30,618 combinations that gives the best
agreement with the experimental data. The parameter set with
the best agreement was identified in The Diffusion in the Reservoir
vs. in the Epidermis. For direct inverse modeling, we converged in

a more straightforward way to the optimal solution, without
exploring the full parametric space, so with a much lower amount
of simulations. The optimal combinations of material properties
can be found in Table 2, together with the RMSD for each case.
The drug uptake flux profile for direct and indirect inverse
modeling and the RMSD at each time step are shown in Figure 8.

Indirect inverse modeling gives a much better solution than
with the experimentally determined values. We improved the
normalized RMSD from 26 to 9.3% and reduced the maximal
deviation (per point) from 41 to 19%. Here this maximal
deviation was calculated as the local NRMSD for each point
(Eqs 3, 4), N � 1). However, the sizable parametric space is
systematically explored, which is time-consuming, and only at
discrete combinations of parameters Dpt

α, Dep
α, Kep

α. As only a
discrete amount of combinations was analyzed, indirect inverse
modeling gives the best (discrete) solution in this space but not
the most optimal solution in the continuous space. This can be
improved by running another parametric study around the
optimal set of parameters at a higher resolution, so smaller
steps between the parameter values. Nevertheless, the number
of simulations to obtain this solution this way is vast.

Direct inverse modeling gives an even better RMSD than
indirect modeling and much faster as well. We improved the
normalized RMSD from 26 to 8.8% and reduced the maximal
normalized RMSD deviation from 41 to 16%. Only 306
simulations were needed to attain the optimal solution, which
is only 1% of what we had with indirect inverse modeling
(30,618). Note, however, that additional simulations were
performed to check the solution’s sensitivity to the starting
point, which adds other computations.

Note that we also performed direct inverse modeling for cpt,ini
α

� 60 kg m−3. The optimal combinations of material properties are
also depicted in Table 2, together with the RMSD. We improved
the normalized RMSD from 24 to 2.4% and reduced the maximal
normalized RMSD deviation from 26 to 3.5%.

Cross Verification of Optimized Model
We verify if the optimal set of transport parameters that were
derived for the epidermis and patch in Finding the Optimal Set of

TABLE 2 |Material transport properties for the base case simulations from experiments (Rim et al., 2005) and for the optimal solution for indirect and direct inverse modeling
and for cross verification simulations, using the optimal parameters to simulate drug uptake with a different initial concentration.

Parameter Symbol
and unit

Experiment–base
case

�����������
�����������

�����������
�����������

�����������

Indirect
inverse
modeling

Direct
inverse
modeling

�����������
�����������

�����������
�����������

�����������

Cross
verification

�����������
�����������

�����������
�����������

�����������

Concentration [kg m−3] 80 60 80 80 60 60 80

Material properties
Drug capacity epidermis [−] Kep

α 0.14 0.14 2.15 1.59 0.62 1.59 0.62
Diffusion coefficient
epidermis [m2 s−1]

Dep
α 3.00 × 10–14 3.00 × 10–14 3.0 × 10–14 2.91 × 10–14 3.01 × 10–14 2.91 × 10–14 3.01 × 10–14

Diffusion coefficient
patch [m2 s−1]

Dpt
α 1.00 × 10–13 1.00 × 10–13 6.91 × 10–16 7.51 × 10–16 8.76 × 10–16 7.51 × 10–16 8.76 × 10–16

Simulation parameters
Number of simulations 1 1 30,618 306 317 1 1

Solution
RMSD (total) 0.40 0.27 0.141 0.134 0.027 0.054 0.147
Normalized RMSD 26% 24% 9.3% 8.8% 2.4% 4.8% 10%
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Material Properties by Multiparameter Inverse Modeling for a
specific initial drug concentration (cpt,ini

α � 80 kg m−3), can be
used for a more comprehensive operational range of patches. To
this end, we simulate drug uptake with another initial
concentration (cpt,ini

α � 60 kg m−3), for which also
experimental data is available, but using the optimal parameter
dataset from direct inverse modeling (Table 2), determined for
(cpt,ini

α � 80 kg m−3). Vice versa, we also performed the same
cross verification for an initial drug concentration of
cpt,ini

α � 80 kg m−3 using the optimal model parameters
obtained from direct inverse modeling for cpt,ini

α � 60 kg m−3.
The drug uptake flux profiles for this simulation and the
experimental data are shown in Figure 9, and the RMSD is
shown in Table 2. The results show that there is a good agreement
for both concentrations, which is in both cases better than the
simulations where experimentally determinedmaterial properties
were used. For cpt,ini

α � 60 kg m−3 (Figure 9A), the concentration
profile lies entirely within the experimental uncertainty. This
means that a model, calibrated via inverse modeling on a specific
concentration, can successfully be used to simulate patches with
other doses as well. As such, the calibration, based on inverse
modeling, only needs to be done once, and the calibrated model is
valid for a more comprehensive operating range. Note that in

typical physics-based modeling, normally the transport
properties are determined experimentally for a single set of
conditions, or fitted to match a certain set of experiments
(Rim et al., 2005). The variations of the material properties
over a wide range of operating conditions are rarely explored
when using physics-based modeling. Diffusion or partition
coefficients that are a function of drug concentration are
rarely determined (Lundborg et al., 2018), and constant values
are used. Here we showed that this variation, over a limited range
of operating conditions, is already rather limited.

DISCUSSION AND OUTLOOK

A good agreement with experimental data was obtained in the
present study for the optimal set of material property data, as
determined by inverse modeling. This indicates that the primary
physical processes at play are included in, and accurately captured
by, the mechanistic model, namely diffusion and partitioning
within the epidermis and transdermal patch. However, it is
possible that secondary processes affect drug uptake as well,
which are now not included yet. The processes that could be
additionally modeled are 1) swelling or shrinkage of the epidermis

FIGURE 8 | (A) Drug fluxes of fentanyl at surface 1 (gbl,up), so leaving the epidermis, from experiments (Exp.) and simulations (Sim.) for an initial patch concentration
of 80 kg m−3 as a function of time. Results are shown of the base case and the optimal combination of Dep

α, Kep
α, and Dpt

α by direct and indirect inverse modeling. (B)
Corresponding normalized RMSD at each experimental time step.

FIGURE 9 | Drug fluxes of fentanyl at surface 1 (gbl,up), so leaving the epidermis, from experiments (Exp.) for an initial patch concentration of 60 kg m−3 (A) and
80 kg m−3 (B) as a function of time and simulations (Sim.). (A) Simulation results are shown of the base case with an initial patch concentration of 60 kg m−3 and the
optimal combination of Dep

α, Kep
α, and Dpt

α, but where the parameters are derived for an initial patch concentration of 80 kg m−3. (B) Simulation results are shown of the
base case with an initial patch concentration of 80 kg m−3 and the optimal combination of Dep

α, Kep
α, and Dpt

α, but where the parameters are derived for an initial
patch concentration of 60 kg m−3.
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caused by changing hydration due to the presence of the patch, since
the skin can swell significantly; 2) chemical metabolization (or
binding) of the fentanyl molecule in the epidermis; 3) physical
binding of the drug molecules so adsorption of the drug molecule
into the epidermis; 4) differential diffusion in the epidermis, which can
be accounted for by splitting it up into a stratum corneum and a viable
epidermis, since the majority of the resistance to diffusion and the
primary drug storage occurs in the SC; 5) diffusion and partition
coefficients that are a function of drug concentration, instead of
constant values. The importance of these secondary effects should
be assessed on a case by case basis. For fentanyl, the high bioavailability
through the skin (e.g., 92% in (ASHP, 2017)) implies, for example, that
physical adsorption or chemical metabolization would not play a
decisive role.

In addition, temperature can also affect the permeability of the
skin for the drugs, and induce an increase of the drug penetration
(US Food and Drug Administration, 2005; Iikura et al., 2019).
Using a pharmacokinetic model, serum fentanyl concentrations
were shown to increase by approximately one-third for patients
with a body temperature of 40°C due to temperature-dependent
increases in fentanyl released from the system and the increased
skin permeability. Also, it has been shown that higher temperatures
lead to a higher permeation coefficient of the skin for hydrophilic
drugs. Such studies in fentanyl transdermal therapy showed that an
increase in temperature might lead to an overdose for the patient.
For transdermal therapy where an elevated temperature is at play,
the physics-based model needs to account for this to ensure
reliability. This can be done by upgrading the model, based on
the experimental data, to account for the effect of temperature on
the permeation of drugs through the skin. As such, themechanistic
model is able to predict the amount of absorbed drugs at elevated
temperatures and the associated risk. The inverse modeling
approach can thus also be used to quantify the optimal skin
penetration parameters at different temperatures.

The inverse modeling presented could significantly reduce
experimental work and resources (typically in vitro) that are
associated with mechanistic modeling since it is no longer
required to determine each of the model parameters separately.
This inverse modeling only needed a single experiment on the
resulting process—drug uptake via a Franz diffusion cell experiment.
An experiment at another patch drug concentration was then used
for verification. Thereby, the experimental determination of the
diffusion coefficients of the epidermis and patch and the partition
coefficient was avoided (Dpt

α, Dep
α, and Kep

α), which would imply
three additional experiments on different equipment. The idea
behind such inverse modeling to determine the material
properties in-silico is that these properties are derived on a
“training dataset” but have a sufficient accuracy to be generally
applied afterward for simulations of similar cases. Verification is
then used for at least one independent dataset. This can save time
and resources, hence speeding up the simulation process.

The potential value of such in-silico determination of material
properties becomes even larger if one wants to use mechanistic
modeling for therapy for individual patients. Such mechanistic
models are a fundamental building block of so-called digital twins
(Defraeye et al., 2020). These twins could be used for steering
next-generation transdermal drug delivery systems. In clinics,

significant additional resources would be required to do
experiments on skin samples to calibrate the model for a
specific patient. Furthermore, such lab experiments measure
material properties on separate parts of the modeled system
(e.g., epidermis) and different conditions (e.g., aqueous
solution), which differ from reality, living human tissue. Such
in-silico skin models can be used to fit the optimal model
parameters, just by measuring the response of the patient to a
specific biomarker that is representative of the drug of interest.
Once calibrated for a particular patient, the in-silico skin model
can be used to assess/design therapy within a specific operating
range. This concept however still requires an implementation
plan for the clinics as well as a rigorous clinical verification.

Indirect inverse modeling provided a clear insight into the
impact and sensitivity of different model parameters and elucidated
the optimal parameter set in-silico. Running 30,618 simulations was
possible in the present study as a 1D model was used, but it will be
computationally very demanding for more complex models. Direct
inverse modeling is the fastest way to reveal the optimal set of
parameters were and required 100 times fewer simulations to be
performed. On the other hand, direct inverse modeling does not
enable us to analyze and interpret the shape of the parametric space
in detail, so the role of the different physics.

Finally, the physics-based modeling is set up for small drug
molecules that are delivered transdermally via first-generation
systems (Prausnitz and Langer, 2008). Apart from fentanyl, the
modeling approach can be used already for other lipophilic drugs
with a small molecular weight. Examples are buprenorphine,
rotigotine, rivastigmine, or ibuprofen. For the delivery of larger
molecules like insulin, more advanced next-generation drug delivery
systems are required (Bartosova and Bajgar, 2012; Lee et al., 2018).
These systems disrupt the stratum corneum using microneedles or
thermal ablation increasing the drug uptake via chemical permeation
enhancers or iontophoresis (Bartosova and Bajgar, 2012).

CONCLUSION

We evaluated multiparameter inverse modeling as a fast and
reliable alternative to determine the drug diffusion and partition
coefficients for transdermal delivery of fentanyl using
mechanistic modeling. We found that capturing the drug
uptake process accurately by simulations was only possible if
the diffusion in the reservoir holding the drug was restricted to
some extent, via Dpt

α, in contrast to what the experimentally
measured values suggested. This implied that a non-uniform
concentration in the patch arose with distinct gradients. Only
then, the initial steep increase in the drug uptake flux and the later
nonlinear decline were predicted correctly.

Indirect inverse modeling was used to determine the skin and
patch’s optimal material properties, namely the diffusion, and
partitioning coefficients. A much better agreement with the
experimental drug uptake was obtained, compared to when
using the experimentally determined material properties. We
improved the normalized RMSD from 26 to 9.3% and reduced
its maximal deviation (per point) from 41 to 19%. A large range of
appropriate combinations of diffusion and partition coefficients
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was identified that led to an accurately simulated drug uptake
process. Hence, in this optimization problem, there was no clear
minimum but rather a valley of optimal values. Direct inverse
modeling gave an even better RMSD than indirect inverse
modeling. We improved the normalized RMSD from 26 to
8.8% and reduced its maximal deviation from 41 to 16%. In
addition, only 306 simulations were needed to attain the optimal
solution compared to 30,618 with indirect inverse modeling, so a
speedup of factor 100.

By cross verification, we showed that our model, when
calibrated via inverse modeling for a specific concentration,
can successfully be used to simulate patches with other drug
doses as well. As such, the calibration, based on inverse modeling,
only needs to be done once to have a valid model for a more
comprehensive operating range. We thereby successfully
demonstrated a fast way to build up an accurate mechanistic
model for drug delivery. This opens the door to clinically ready
patient-specific therapy tailored to patients.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

TD and RR conceptualized the study and acquired funding; TD
did the project administration; TD performed the investigation,
developed the methodology, performed the validation, and
executed the simulations with key input from FB; TD
supervised FB; TD wrote the original draft of the paper and
did the visualization, with key input from FB; RR performed
critical review and editing.

FUNDING

This work was supported by the Novartis Research Foundation
(grant “Virtual twinning for intelligent, personalized
transdermal drug delivery”). We acknowledge the support
of Chandrima Shrivastava in the first exploratory work on
data processing of the simulation results. The authors declare
that this study received funding from Novartis Research
Foundation. The funder was not involved in the study
design, collection, analysis, interpretation of data, the
writing of this article or the decision to submit it for
publication. This manuscript has been released as a pre-
print at bioRxiv.

REFERENCES

Akkaram, S., Beeson, D., Agarwal, H., and Wiggs, G. (2007). Inverse modeling
technology for parameter estimation. Struct. Multidisc Optim. 34 (2), 151–164.
doi:10.1007/s00158-006-0067-1

Amarah, A. A., Petlin, D. G., Grice, J. E., Hadgraft, J., Roberts, M. S., and
Anissimov, Y. G. (2018). Compartmental modeling of skin transport. Eur.
J. Pharm. Biopharm. 130, 336–344. doi:10.1016/j.ejpb.2018.07.015

ASHP(2017). American society of health-system pharmacists: drug information.
Bethesda, MD: ASHP.

Barbero, A. M., and Frasch, H. F. (2017). Effect of stratum corneum heterogeneity,
anisotropy, asymmetry and follicular pathway on transdermal penetration.
J. Control. Release 260, 234–246. doi:10.1016/j.jconrel.2017.05.034

Barratt, M. D. (1995). Quantitative structure-activity relationships for skin
permeability. Toxicol. In. Vitro 9 (1), 27–37. doi:10.1016/0887-2333(94)00190-6

Bartosova, L., and Bajgar, J. (2012). Transdermal drug delivery in vitro using
diffusion cells. Curr. Med. Chem. 19, 4671–4677. doi:10.2174/
092986712803306358

Caccavo, D., Barba, A. A., d’Amore, M., De Piano, R., Lamberti, G., Rossi, A., et al.
(2017). Modeling the modified drug release from curved shape drug delivery
systems—dome Matrix®. Eur. J. Pharm. Biopharm. 121, 24–31. doi:10.1016/j.
ejpb.2017.08.016

Casey, M., and Wintergerste, T. (2000). Special interest group on “quality and trust
in industrial CFD” best practice guidelines. 1st Edn. Cambridge,
United Kingdom; ERCOFTAC.

Chakravarty, K., and Dalal, D. C. (2019). A nonlinear mathematical model of drug
delivery from polymeric matrix. Bull. Math. Biol. 81 (1), 105–130. doi:10.1007/
s11538-018-0519-y

Chavoshi, S., Rabiee, M., Rafizadeh, M., Rabiee, N., Shamsabadi, A. S.,
Bagherzadeh, M., et al. (2019). Mathematical modeling of drug release from
biodegradable polymeric microneedles. BDM 2 (2), 96–107. doi:10.1007/
s42242-019-00041-y

Chen, L., Han, L., Saib, O., and Lian, G. (2015). In silico prediction of percutaneous
absorption and disposition kinetics of chemicals. Pharm. Res. 32, 1779–1793.
doi:10.1007/s11095-014-1575-0

Defraeye, T., Bahrami, F., Ding, L., Malini, R. I., Terrier, A., and Rossi, R. M.
(2020). Predicting transdermal fentanyl delivery using mechanistic
simulations for tailored therapy. Front. Pharmacol. 11, 585393. doi:10.
3389/fphar.2020.585393

FDA(2016). Reporting of computational modeling studies in medical device
submissions—guidance for industry and food and drug administration staff.
Silver Spring, MD: Food and Drug Administration.

Ferreira, J. A., de Oliveira, P., and Pena, G. (2017). Transdermal iontophoresis—a
quantitative and qualitative study. Comput. Math. Appl. 74 (10), 2231–2242.
doi:10.1016/j.camwa.2017.07.001

Filipovic, N., Saveljic, I., Rac, V., Graells, B. O., and Bijelic, G. (2017).
Computational and experimental model of transdermal iontophorethic drug
delivery system. Int. J. Pharm. 533 (2), 383–388. doi:10.1016/j.ijpharm.2017.
05.066

Franke, J., Hellsten, A., Schlünzen, H., and Carissimo (2007). Best practice guideline
for the CFD simulation of flows in the urban environment. Hamburg, Germany:
University of Hamburg.

Gajula, K., Gupta, R., Sridhar, D. B., and Rai, B. (2017). In-silico skin model: a
multiscale simulation study of drug transport. J. Chem. Inf. Model. 57 (8),
2027–2034. doi:10.1021/acs.jcim.7b00224

Halliday, A. (2020). COMSOL blog: how to use the parameter estimation study step
for inverse modeling. Available at: https://www.comsol.com/blogs/how-to-use-
the-parameter-estimation-study-step-for-inverse-modeling/ (Accessed July 09,
2020).

Hansen, S., Henning, A., Naegel, A., Heisig, M., Wittum, G., Neumann, D., et al.
(2008). In-silico model of skin penetration based on experimentally determined
input parameters. Part I: experimental determination of partition and diffusion
coefficients. Eur. J. Pharm. Biopharm. 68 (2), 352–367. doi:10.1016/j.ejpb.2007.
05.012

Iikura, H., Uchida, K., Ogawa-Fuse, C., Bito, K., Naitou, S., Hosokawa, S., et al.
(2019). Effects of temperature and humidity on the skin permeation of
hydrophilic and hydrophobic drugs. AAPS PharmSciTech 20 (7), 1–9.
doi:10.1208/s12249-019-1481-1

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., et al. (2016).
PubChem substance and compound databases. Nucleic Acids Res. 44 (44),
D1202–D1213.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 64111113

Defraeye et al. Inverse Mechanistic Modeling

https://doi.org/10.1007/s00158-006-0067-1
https://doi.org/10.1016/j.ejpb.2018.07.015
https://doi.org/10.1016/j.jconrel.2017.05.034
https://doi.org/10.1016/0887-2333(94)00190-6
https://doi.org/10.2174/092986712803306358
https://doi.org/10.2174/092986712803306358
https://doi.org/10.1016/j.ejpb.2017.08.016
https://doi.org/10.1016/j.ejpb.2017.08.016
https://doi.org/10.1007/s11538-018-0519-y
https://doi.org/10.1007/s11538-018-0519-y
https://doi.org/10.1007/s42242-019-00041-y
https://doi.org/10.1007/s42242-019-00041-y
https://doi.org/10.1007/s11095-014-1575-0
https://doi.org/10.3389/fphar.2020.585393
https://doi.org/10.3389/fphar.2020.585393
https://doi.org/10.1016/j.camwa.2017.07.001
https://doi.org/10.1016/j.ijpharm.2017.05.066
https://doi.org/10.1016/j.ijpharm.2017.05.066
https://doi.org/10.1021/acs.jcim.7b00224
https://www.comsol.com/blogs/how-to-use-the-parameter-estimation-study-step-for-inverse-modeling/
https://www.comsol.com/blogs/how-to-use-the-parameter-estimation-study-step-for-inverse-modeling/
https://doi.org/10.1016/j.ejpb.2007.05.012
https://doi.org/10.1016/j.ejpb.2007.05.012
https://doi.org/10.1208/s12249-019-1481-1
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Kwon, S., Bae, H., Jo, J., and Yoon, S. (2019). Comprehensive ensemble in QSAR
prediction for drug discovery. BMC Bioinformatics 20 (1), 521. doi:10.1186/
s12859-019-3135-4

Larsen, R. H., Nielsen, F., Sørensen, J. A., and Nielsen, J. B. (2003). Dermal
penetration of fentanyl: inter- and intraindividual variations. Pharmacol.
Toxicol. 93 (5), 244–248. doi:10.1046/j.1600-0773.2003.pto930508.x

Lee, H., Song, C., Baik, S., Kim, D., Hyeon, T., and Kim, D. H. (2018). Device-
assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 127, 35–45. doi:10.
1016/j.addr.2017.08.009

Lundborg, M., Wennberg, C. L., Narangifard, A., Lindahl, E., and Norlén, L. (2018).
Predicting drug permeability through skin using molecular dynamics simulation.
J. Control. Release 283, 269–279. doi:10.1016/j.jconrel.2018.05.026

Madhihah, S., Malik, A., Abdullah, I., and Mahali, S. M. (2018). Analytic solution
for hollow microneedles assisted transdermal drug delivery model. Int. J. Appl.
Eng. Res. 13 (1), 737–742.

Mitragotri, S., Anissimov, Y. G., Bunge, A. L., Frasch, H. F., Guy, R. H., Hadgraft, J.,
et al. (2011). Mathematical models of skin permeability: an overview. Int.
J. Pharm. 418, 115–129. doi:10.1016/j.ijpharm.2011.02.023

Muijsers, R. B., and Wagstaff, A. J. (2001). Transdermal fentanyl: an updated review
of its pharmacological properties and therapeutic efficacy in chronic cancer pain
control. Drugs 61 (15), 2289–2307. doi:10.2165/00003495-200161150-00014

Naegel, A., Hansen, S., Neumann, D., Lehr, C. M., Schaefer, U. F., Wittum, G., et al.
(2008). In-silico model of skin penetration based on experimentally determined
input parameters. Part II: mathematical modelling of in-vitro diffusion
experiments. Identification of critical input parameters. Eur. J. Pharm.
Biopharm. 68, 368–379. doi:10.1016/j.ejpb.2007.05.018

Naegel, A., Heisig, M., and Wittum, G. (2009). A comparison of two- and three-
dimensional models for the simulation of the permeability of human stratum
corneum. Eur. J. Pharm. Biopharm. 72 (2), 332–338. doi:10.1016/j.ejpb.2008.11.009

Naegel, A., Heisig, M., and Wittum, G. (2013). Detailed modeling of skin
penetration—an overview. Adv. Drug Deliv. Rev. 65 (2), 191–207. doi:10.
1016/j.addr.2012.10.009

Naegel, A., Hahn, T., Schaefer, U. F., Lehr, C.-M., Heisig, M., and Wittum, G.
(2011). Finite dose skin penetration: a comparison of concentration-depth
profiles from experiment and simulation. Comput. Vis. Sci. 14 (7), 327–339.
doi:10.1007/s00791-012-0186-8

Polat, B. E., Deen, W. M., Langer, R., and Blankschtein, D. (2012). A physical
mechanism to explain the delivery of chemical penetration enhancers into
skin during transdermal sonophoresis—insight into the observed
synergism. J. Control Release 158 (2), 250–260. doi:10.1016/j.jconrel.
2011.11.008

Pontrelli, G., and De Monte, F. (2014). A two-phase two-layer model for
transdermal drug delivery and percutaneous absorption. Math. Biosci. 257,
96–103. doi:10.1016/j.mbs.2014.05.001

Prausnitz, M. R., and Langer, R. (2008). Transdermal drug delivery. Nat.
Biotechnol. 26 (11), 1261–1268. doi:10.1038/nbt.1504

Rim, J. E., Pinsky, P. M., and Van Osdol, W. W. (2005). Finite element modeling of
coupled diffusion with partitioning in transdermal drug delivery. Ann. Biomed.
Eng. 33 (10), 1422–1438. doi:10.1007/s10439-005-5788-6

Rim, J. E., Pinsky, P. M., and Van Osdol, W. W. (2009). Multiscale modeling
framework of transdermal drug delivery. Ann. Biomed. Eng. 37 (6), 1217–1229.
doi:10.1007/s10439-009-9678-1

Roache, P. J. (1994). Perspective: a method for uniform reporting of grid
refinement studies. J. Fluids Eng. 116 (3), 405–413. doi:10.1115/1.2910291

Ronnander, P., Simon, L., Spilgies, H., and Koch, A. (2018). Modelling the in-vitro
dissolution and release of sumatriptan succinate from polyvinylpyrrolidone-based
microneedles. Eur. J. Pharm. Sci. 125, 54–63. doi:10.1016/j.ejps.2018.09.010

Selzer, D., Hahn, T., Naegel, A., Heisig, M., Kostka, K. H., Lehr, C. M., et al. (2013).
Finite dose skin mass balance including the lateral part: comparison between
experiment, pharmacokinetic modeling and diffusion models. J. Control.
Release 165 (2), 119–128. doi:10.1016/j.jconrel.2012.10.009

Selzer, D., Neumann, D., Neumann, H., Kostka, K., Lehr, C., and Schaefer, U. F.
(2015). A strategy for in-silico prediction of skin absorption in man. Eur.
J. Pharm. Biopharm. 95, 68–76. doi:10.1016/j.ejpb.2015.05.002

Shirazi, R. N., Islam, S.,Weafer, F.M.,Whyte,W., Varela, C. E., Villanyi, A., et al. (1900).
Multiscale experimental and computational modeling approaches to characterize
therapy delivery to the heart from an implantable epicardial biomaterial reservoir.
Adv. Healthc. Mater.. 16, 1900228. doi:10.1002/adhm.201900228

Toropova, A. P., and Toropov, A. A. (2017). The index of ideality of correlation: a
criterion of predictability of QSAR models for skin permeability? Sci. Total
Environ. 586, 466–472. doi:10.1016/j.scitotenv.2017.01.198

U. S. Food and Drug Administration(2005). Duragesic label. Silver Spring, MD:
Food and Drug Administration.

U. S. Food and Drug Administration(2020). Adaptive designs for clinical trials of
drugs and biologics: guidance for Industry. Silver Spring, MD: Food and Drug
Administration.

Wiedersberg, S., and Guy, R. H. (2014). Transdermal drug delivery: 30+ years of
war and still fighting!. J. Control. Release 190, 150–156. doi:10.1016/j.jconrel.
2014.05.022

Wittum, R., Naegel, A., Heisig, M., and Wittum, G. (2017). Mathematical
modelling of the viable epidermis: impact of cell shape and vertical
arrangement. Math. Mech. Solids 25, 1046–1059. doi:10.1177/
1081286517743297

Zhan, X., Mao, Z., Chen, J., and Zhang, Y. (2015). Acrylate copolymer: a rate-
controlling membrane in the transdermal drug delivery system. E-Polymers 15
(1), 55–63. doi:10.1515/epoly-2014-0123

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Defraeye, Bahrami and Rossi. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 64111114

Defraeye et al. Inverse Mechanistic Modeling

https://doi.org/10.1186/s12859-019-3135-4
https://doi.org/10.1186/s12859-019-3135-4
https://doi.org/10.1046/j.1600-0773.2003.pto930508.x
https://doi.org/10.1016/j.addr.2017.08.009
https://doi.org/10.1016/j.addr.2017.08.009
https://doi.org/10.1016/j.jconrel.2018.05.026
https://doi.org/10.1016/j.ijpharm.2011.02.023
https://doi.org/10.2165/00003495-200161150-00014
https://doi.org/10.1016/j.ejpb.2007.05.018
https://doi.org/10.1016/j.ejpb.2008.11.009
https://doi.org/10.1016/j.addr.2012.10.009
https://doi.org/10.1016/j.addr.2012.10.009
https://doi.org/10.1007/s00791-012-0186-8
https://doi.org/10.1016/j.jconrel.2011.11.008
https://doi.org/10.1016/j.jconrel.2011.11.008
https://doi.org/10.1016/j.mbs.2014.05.001
https://doi.org/10.1038/nbt.1504
https://doi.org/10.1007/s10439-005-5788-6
https://doi.org/10.1007/s10439-009-9678-1
https://doi.org/10.1115/1.2910291
https://doi.org/10.1016/j.ejps.2018.09.010
https://doi.org/10.1016/j.jconrel.2012.10.009
https://doi.org/10.1016/j.ejpb.2015.05.002
https://doi.org/10.1002/adhm.201900228
https://doi.org/10.1016/j.scitotenv.2017.01.198
https://doi.org/10.1016/j.jconrel.2014.05.022
https://doi.org/10.1016/j.jconrel.2014.05.022
https://doi.org/10.1177/1081286517743297
https://doi.org/10.1177/1081286517743297
https://doi.org/10.1515/epoly-2014-0123
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


NOMENCLATURE

Symbols

Apt Active area of the patch [m2]

ci
α
Drug concentration of substance α in material i [kg m−3]

cpt,ini
α
Initial concentration in the patch [kg m−3]

dep Thickness of epidermis [m]

dpt Thickness of patch [m]

Di
α
Diffusion coefficient/diffusivity of substance α in material i [m2 s−1]

gbl,up(t) Uptake flux across the skin into the blood at a specific point in time
[kg m−2 s−1]

gFr,up(t) Uptake flux across the skin into the Franz diffusion cell at a specific
point in time [kg m−2 s−1]

KA/B
α
Partition coefficient between material A and B for substance α

Ko/w
α
Partition coefficient between octanol and water for substance α

Ki
α
Drug capacity of substance α in material i [−]

N Number of measured points

Ri Diffusive resistance of a material [s m−1]

Rep Radius of the epidermis in the model [m]

Rep Radius of the transdermal patch [m]

Ss
α
Volumetric source term for substance α [kg m−3 s−1]

t Time [s]

Greek symbols

α substance indicator

ψα
drug potential of substance α [kg m−3]
Subscripts

bl Blood

i Material indicator

ini Initial

ep Epidermis

up Uptake

pt Patch

Sim. In simulations

Exp. In experiments

Abbreviations

TDDS Transdermal drug delivery systems

RMSD Root mean square deviation

NRMSD Normalized root mean square deviation
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