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Digital pathology (DP) is an emerging field of pathology that manages information
generated from digitized specimen slides. The information on the slides is converted into
digital slides that can be viewed, managed, interpreted, analyzed, and shared in a digital
environment. DP plays an emerging role in delivering anatomical pathology diagnostic
images for electronic health records, telepathology, and further analysis on slides. In
the practice of artificial intelligence (AI) and whole-slide imaging, DP is expanding its
application to diagnosing and predicting prognosis and treatment response. Therefore, this
Special Issue aims to collect the latest research and showcase the diverse applications of DP.

Bencze et al. [1] investigated a recently established AI-assisted digital image analysis
platform, Pathronus, and compared it with five observers’ routine scoring of chromogenic
immunohistochemistry (IHC)-stained slides. The accuracy of these methods was assessed
by comparing statistical significance among groups to quantitative fluorescent IHC refer-
ence data on subsequent tissue sections. Ultimately, the authors found that AI-assisted
software can identify cells of interest, distinguish organelles, protein-specific chromogenic
labeling, and nuclear counterstaining, and thus provide a viable and accurate alternative to
semi-quantitative scoring.

Microsatellite instability (MSI) is a useful biomarker for colorectal cancer when im-
munotherapy drugs are used [2]. Bustos et al. [3] reported an adversarial network-based
multiple-bias-rejecting deep learning system for predicting MSI in colorectal cancer from
tissue microarray. The system was trained and validated on 1788 patients from EPICOLON
and HGUA. The authors claimed that this is the first work to incorporate multi-bias ablation
techniques in the deep learning architecture of DP and the first to use tissue microarray for
the task of MSI prediction. They found that the system combined a tissue-type classifier
module to select regions of interest and an adversarial training-based multiple-bias rejection
technique. The features learned from the bias ablation model were mostly discriminative
for the MSI prediction task and had the smallest statistical mean dependence on bias.

Ki67 is an important biomarker with prognostic and potential predictive value in
breast cancer [4]. Boyaci et al. [5] investigated the reproducibility among pathologists
according to the Ki67 guideline of the International Ki67 in Breast Cancer Working Group
(IKWG) and evaluated the prognostic potential of this platform in an independent cohort.
In fact, the authors claimed that their study is the first independent validation of the IKWG
guideline, with multiple observers. Four algorithms were independently built using the
open-source digital image analysis platform (QuPath) according to detailed guidelines
from the IKWG. Comparing each machine reading score with recurrence-free survival,
they found similar hazard ratios. They demonstrated that good reproducibility among
pathologists can be achieved using the IKWG automated Ki67 scoring guideline, achieving
intraclass correlation coefficient values similar to those in the IKWG study. Furthermore,
they demonstrated the prognostic potential of the automated IKWG scoring guideline in
an independent breast cancer cohort.

Current methods for histological quantification are operator- and organ-specific.
Courtoy et al. [6] developed a robust, minimally operator-dependent and tissue-transposable
digital method for fibrosis quantification. The proposed method involves a new algorithm
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for a more specific and sensitive detection of picrosirius red-stained collagen fibers, a
computer-aided segmentation of histological structures, and a new automatic morphologi-
cal classification of fibers based on their compactness. The authors found that their new
algorithm proved to be more accurate than classical filtering using the primary color com-
ponents (red–green–blue) for picrosirius red detection. In conclusion, the team developed a
powerful digital method for fibrosis analysis that allows accurate quantification, pattern
recognition, and multi-organ comparisons to understand fibrosis dynamics.

On the other hand, Marti-Aguado et al. [7] presented a prospective, multicenter study
including 156 patients with chronic liver disease. The aim of this study was to evaluate the
relationship between DP analysis and the corresponding pathologists’ grading scores for
the assessment of hepatic necroinflammatory activity. They performed whole-slide digital
image analysis based on IHC color (CD45+) and morphological features to measure staining
intensity areas (I-score) and clusters of staining intensities (C-score). Both I-score and C-
score increased with inflammation grade and fibrosis stage, showing a good correlation
with scoring by pathologists. The developed scores performed better than the other DP
algorithms, reflecting the importance of a morphometric assessment [8,9]. The authors
concluded that DP allows an automatic, quantitative, and morphometric assessment of
hepatic necroinflammatory activity. It can serve as a potential aid to pathologists evaluating
chronic liver disease biopsies in clinical practice.

AI and machine learning tools are increasingly being used to integrate clinical,
histopathological, and genomic data [10]. Moran-Sanchez et al. [11] obtained metadata in
this field from the Clarivate Analytics Web of Science database from 1990 to 2020. A total of
525 documents were assessed by document type, field of study, source title, organization,
and country. The SciMAT and VOSviewer software packages were used to perform scien-
tific mapping analysis. They found that the United States and China are the most productive
countries. Current research focuses on the integration of digital image analysis and genomic
sequencing in non-Hodgkin’s lymphoma, the prediction of chemotherapy response, and
the validation of new prognostic models. The authors concluded that these findings can not
only map future clinical and research pathways for the pathology sector, but also promote
synergies and optimize funding allocations for public agencies and administrations.

In summary, DP enhances the workflow of telepathology in slide management, includ-
ing scanning, viewing, networking, analysis, integration, and sharing. From this Special
Issue, we can see the usefulness of computer algorithms in classifying tissue on digitized
slides. However, validation of the digital microscopy workflow is important to ensure
high diagnostic performance. As a result, the College of American Pathologists has issued
a guideline with minimal requirements for validating whole-slide imaging systems for
diagnostic purposes in human pathology [12].

DP has been approved by the United States Food and Drug Administration for pri-
mary diagnosis [13], and I envision more applications for DP in disease diagnosis and
prognosis will follow. Together with other omics platforms, it is possible to integrate
not only tissue-specific structures, but also discoveries of molecular biomarkers (such as
mutated genes, tumor mutational burden, or transcriptional changes). Furthermore, in
the process of the spatial analysis of tissue slides, multi-omics and multi-dimensional
analyses of the tissue microenvironment will be more comprehensively developed towards
precision medicine [14].
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