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Chromatin-modifying enzymes, especially protein arginine methyltransferases (PRMTs), have been identified as candidate targets
for cancer. Cellular or animal-based evidence has suggested an association between coactivator-linked arginine methyltransferase
1 (CARM1) and cancer progression. However, the relationship between CARM1 and patient prognosis and immune infiltration in
pancancer patients is unknown. On the basis of the GEO and TCGA databases, we first investigated the possible oncogenic
functions of CARM1 in thirty-three tumor types. CARM1 expression was elevated in many types of tumors. In addition, there was
a significant association between CARM1 expression and the survival rate of tumor patients. Uterine corpus endometrial
carcinoma (UCES) samples had the highest CARM1 mutation frequency of all cancer types. In head and neck squamous cell
carcinoma (HNSC) and lung squamous cell carcinoma (LUSC), CARM1 expression was associated with the level of CD8+ T cell
infiltration, and cancer-associated fibroblast infiltration was also observed in other tumors including kidney renal papillary cell
carcinoma (KIRC) and prostate adenocarcinoma (PRAD). CARM1 was involved in immunemodulation and played an important
role in the tumor microenvironment (TME). Furthermore, activities associated with RNA transport and its metabolism were
included in the possible mechanisms of CARM1. Herein, our first pancancer research explores the oncogenic role of CARM1 in
various tumors. CARM1 is associated with immune infiltrates and can be employed as a predictive biomarker in pancancer.

1. Introduction

-e incidence rate of cancer has risen significantly and has
become one of the leading causes of death in humans over the
last few years [1].With significant knowledge of themechanisms
underlying cancer development and progression, several ap-
proaches to combating cancer have been devised [2]. By as-
suming the complexities of oncogenesis, it is critical to use
pancancer expression analysis for identifying the similarities and
differences between the gene of interest and cellular alterations
that occur during cancer progression, as well as their association
with the clinical prognosis. -e publicly evadible TCGA project
and GEO databases both comprise gene function datasets from
various cancers, allowing for pancancer research [3, 4].

Posttranslational modification of the protein, including
phosphorylation, methylation, and ubiquitination, is a co-
valent modification of protein catalyzed by enzymes, which
can occur on histones and nonhistones and participate in
many life processes. Methylation is an important post-
translational modification, while arginine is extremely
susceptible to methylation due to its active biochemical
properties. Protein arginine methyl transferase (PRMTS) is
responsible for catalyzing this modification. According to
recent research, abnormal arginine methylation modifica-
tion is associated with the onset and progression of ma-
lignancies [5]. CARM1, coactivator-linked arginine
methyltransferase 1, was first discovered due to its inter-
action with GRIP1 (p160 steroid receptor coactivator) [6, 7].
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CARM1 regulates a wide range of biological activities, in-
cluding DNA damage response, transcription, pre-mRNA
splicing, protein stability regulation, and cell division.
CARM1 methylates H3R17, H3R26, and H3R42, and the
obtained H3R17/R26/R42ME2 markers are related to
transcriptional activation [8]. Many nonhistone methylation
substrates of CARM1 have been determined, such as
CARM1 catalyzing BAF155 and PKM2 [9]. According to
recent research, CARM1 enhances cancer progression and
metastasis by catalyzing the methylation of tumor proteins
which leads to an investigation of the molecular mechanism,
revealing CARM1’s correlation with cancer genesis and
progression [10]. Furthermore, the current study summa-
rized the existing cell- or animal-based data with the cor-
relation between CARM1 and different cancers. However,
despite a large body of clinical data, there is currently no
pancancer research on the association between CARM1 and
other cancer types.

In this study, the TCGA project and GEO databases were
used for the first time to perform a pancancer review of
CARM1 for evaluating the possible molecular mechanism of
CARM1 in relation to cancer progression and clinical
prognosis. Herein, we also added a set of parameters such as
gene expression, cancer prognosis, genetic change, immu-
nological infiltration, and the corresponding cellular path-
way for investigating CARM1’s possible molecular
mechanism in the etiology or clinical prognosis of various
cancers.

2. Materials and Methods

2.1. �e Cancer Genome Atlas (TCGA). TCGA is a freely
accessible web-based cancer genomics database that con-
tains large quantities of NGS data (with >11,000 tumors
across 33 types of cancer until 2021). It provides datasets for
the expression of genes, methylation, copy number alter-
ation (CNA), and clinical information [11, 12].

2.2. Genotype-Tissue Expression (GTEx). Using RNA se-
quencing, GTEx provides gene expression data from 53
healthy tissue sites in approximately 1000 individuals and is
freely available to the public. UCSC Xena datahubs (http://
xena.ucsc.edu/) were used to obtain RNA-seq data, such as
GTEx and TCGA data, for a pancancer differential ex-
pression of CARM1. -e integration of TCGA and GTEx
was carried out by the limma package and R-version 3.6.3.

2.3. TISIDB. TISIDB (http://cis.hku.hk/TISIDB/in-dex.
php) is an integrated database used for the interaction of
tumor-immunity and genes [13]. TISIDB was employed for
the CARM1 gene expression analysis of various molecular
subtypes of tumor samples obtained from TCGA.

2.4. HPA. HPA (https://www.proteinatlas.org/) is a dataset
that maps human proteins in organs, tissues, and cells
through a combination of omics techniques [14, 15]. Herein,
we employed the HPA program to show the distribution of

CARM1 mRNA in healthy and cancerous tissues. Fur-
thermore, in the pathology Atlas and tissue Atlas panels, we
obtained immunohistochemistry images of CARM1
proteins.

2.5. cBioPortal. -e cBioPortal for cancer genomics (http://
www.cbioportal.org) is a database of cancer genomics. Using
this portal, CARM1 mutations and CNA (copy number
alterations) were observed in various cancer types.

2.6. Survival Analysis. -e PrognoScan dataset (http://
dna00.bio.kyutech.ac.jp/PrognoScan/index.html) aims to
make meta-analyses of gene prognostic value easier by
evaluating the correlation between gene expression and
related outcomes in a variety of reported cancer microarray
datasets [16]. In this view, we used PrognoScan to investigate
the association between the expression of CARM1 and
patient outcomes in various cohorts. We used the “survival”
package (exist) in R to conduct survival analysis and cal-
culated the log-rank P value and hazard ratio (HR) with 95%
CI in the TCGA portal. Forest plots (created with R’s “forest
plot” package) and survival curves were used to show the
results.

2.7. Immune Infiltration Analysis. TIMER2.0 comprehen-
sive resource was employed to evaluate the association
between the expression of CARM1 and immune infiltrates in
all TCGA cancers. CD8+ T cells and fibroblasts (cancer-
associated) were chosen. Immune infiltration was estimated
using the TIMER2.0, CIBERSORT-ABS, XCELL, QUAN-
TISEQ, EPIC algorithms, MCPCOUNTER, and CIBER-
SORT. Spearman’s rank correlation test was employed for
calculating the partial correlation (cor) and P values. A
scatter plot and a heatmap were used to visualize the ob-
tained results.

2.8. CARM1-Related Gene Enrichment Analysis. -e
STRING (https://string-db.org/) website was used to query
the protein and organism name, i.e., CARM1 and Homo
sapiens, respectively. -e following key parameters were
then set: minimum necessary interaction score (meaning of
network edges (“evidence”), “Low confidence (0.150)”),
active interaction sources (“experiments”), and the maxi-
mum number of interactors to display (“no more than 50
interactors”). -e CARM1-interacting proteins that had
been evaluated experimentally were then collected.

-e “Similar Gene Detection” module of GEPIA2 was
employed to get the highest; a hundred CARM1-associated
targeting genes supported traditional tissues and the TCGA
tumor datasets. Paired gene Pearson correlation analysis was
performed for CARM1 and hand-picked genes by applying
the “correlation analysis” module of GEPIA2. For the dot
plot, the log2 TPM was used, followed by indicating the
correlation coefficient (R) and the P value. We used
TIMER2.0’s “Gene Corr” module to provide heatmap in-
formation of the certain genes, including the cor and P-value
by the analysis of Spearman rank correlation. Furthermore,
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we have the potential to integrate the two sets of information
for conducting the KEGG pathway analysis (Kyoto Ency-
clopedia of Genes and Genomes).

Briefly, the cistron lists were uploaded into the DAVID
database. -is database is used for annotation, integrated
discovery, and mental picture generation. -e hand-picked
symbols (“OFFICIAL GENE SYMBOL”) and species
(“Homo sapiens”) were also uploaded with the cistron lists in
order to obtain information from the accessible annotation
map. Finally, the enriched pathways were interpreted using
the R packages “tidyr” and “ggplot2.” In addition, we often
used the R package, i.e., clusterProfiler to perform GO
analysis. -e cnetplot functions, such as node label, circular,
and ColorEdge, shortly represented as T, F, and T, ac-
cordingly, were used. -e data for biological process (BP),
molecular function (MF), and cellular component (CC) were
shown as cnetplots. In the current research, the R language
programming code (R-3.6.3) was used (https://www.r-
project.org/). -e two-tailed P and lt, i.e., 0.05 was found
to be statistically significant.

2.9. Statistical Analysis. -e HPA site was used to deter-
mine the CARM1 in different carcinomas. -e CARM1
expression in cancer was evaluated via Oncomine, matched
GTEx, and TIMER2.0 databases. PrognoScan and the R
package were used to plot the survival curves using data
from the TCGA dataset. HR, 95% CI, and log-rank P values
were used to represent the survival results. cBioPortal was
used to examine the mutation and CNV profiles. -e
immune infiltration analysis was performed using the R
package and the TIMER2.0 website. Student’s t-test was
employed to correlate two groups, while ANOVA was used
for comparing multiple groups. Pearson’s correlation
analysis was used to determine the level of correlation
between specific variables, with the R/rho variables 0–0.19,
0.20–0.39, 0.40–0.59, 0.60–0.79, and 0.80–1.00 denoting the
correlation strength (very weak, weak, moderate, solid, and
extremely strong). -e P< 0.05 was considered statistically
significant.

3. Results

3.1. Expression Levels of CARM1 in Human Normal Tissues.
Using the HPA database to find CARM1 protein and mRNA
expression profiles in human tissues, we investigated
CARM1 expression in various tumor and normal tissues.
-e expression of CARM1 mRNA was found to be enriched
in skeletal muscle and the urinary system, as shown in
Figure 1(a). -e expression of CARM1 protein was then
evaluated and was found to be commonly distributed, albeit
at elevated levels, in a variety of normal tissues, as shown in
Figure 1(b). Immunohistochemistry (IHC) results revealed
that CARM1 protein was mostly found in the nucleus and
cytoplasm, with low expression in peritubular cells of
normal testis tissues and neuronal cells of normal cerebral
cortex tissues (Figures 1(c) and 1(d)). -e obtained results
also indicated an elevated expression of CARM1 in several
cancers including colorectal and breast cancer, as shown in

Figures 1(e) and 1(f). -e IHC results are also given in
Table 1.

3.2. �e Expression of CARM1 mRNA in Human Cancers.
To evaluate the characteristics of CARM1 mRNA expres-
sion, we combined tumor and normal samples from TCGA
and the GTEx databases, respectively. Collectively, the ex-
pression of CARM1 was elevated in various cancers in-
cluding breast invasive carcinoma (BRCA),
cholangiocarcinoma (CHOL), lymphoid neoplasm diffuse
large B cell lymphoma (DLBC), colon adenocarcinoma
(COAD), glioblastoma multiforme (GBM), esophageal
carcinoma (ESCA), LGG (brain lower-grade glioma),
HNSC, LUSC, OV (ovarian serous cystadenocarcinoma),
rectum adenocarcinoma (READ), liver hepatocellular car-
cinoma (LIHC), stomach adenocarcinoma (STAD), pan-
creatic adenocarcinoma (PAAD), and thymoma (THYM), as
shown in Figure 2(a). When tumors and their matched
adjacent tissues were involved in the TCGA database, the
expression of CARM1 was elevated in BRCA, bladder
urothelial carcinoma (BLCA), COAD, CHOL, HNSC,
ESCA, lung adenocarcinoma (LUAD), LIHC, STAD, and
LUSC, while its decreased expression was also observed in
KIRC and kidney chromophobe (KICH) via the TIMER
database (Supplementary Figures S1a and S1b).

-e mRNA expression patterns of CARM1 were eval-
uated in many clinical phases and molecular subtypes.
Significant variations were observed in the expression of
CARM1 in various clinical phases of KIRC, PRAD, kidney
renal papillary cell carcinoma (KIRP), LGG, and glioma
(GBMLGG), as shown in Figure 2(b). -e expression of
CARM1 considerably varied in various molecular subtypes
of HNSC, BRCA, KIRP, STAD, LGG, and LUSC, as shown in
Figure 2(c). In other types of cancers, no correlation was
observed between the expression of CARM1 and cancer
phase or molecular subtype (Supplementary Figures S1c-
S1d).

3.3. Correlation Analysis between the Prognostic Value and
CARM1 mRNA Expression. Clinical data and TCGA RNA-
seq (downloaded from UCSC Xena) were used to examine
the prognosis of 33 TCGA cancer types to see if CARM1 has
an effect on cancer patient prognosis. -e obtained results
revealed that elevated expression of CARM1 was consid-
erably associated with bad overall survival (OS) in KIRP
(HR� 1.92, 95% CI� 1.03–3.58, P � 0.041), LUAD
(HR� 1.44, 95% CI� 1.08–1.92, P � 0.013), ACC (adreno-
cortical carcinoma; HR� 2.22, 95% CI� 1.03–4.79,
P � 0.042), BLCA (HR� 1.42, 95% CI� 1.06–1.91, P � 0.019),
LGG (HR� 2.22, 95% CI� 1.56–3.17, P< 0.001), MESO
(mesothelioma; HR� 2.26, 95% CI� 1.39–3.68, P � 0.001),
SKCM (skin cutaneous melanoma; HR� 1.37, 95%
CI� 1.04–1.79, P � 0.025), and GBMLGG (HR� 2.70, 95%
CI� 2.09–3.49, P< 0.001), as shown in Figure 3(a). -e
survival curves are shown in Figures 3(b)–3(i), in which
P< 0.05 was considered as statistically significant. Disease-
free survival (DSS) was also evaluated to prevent bias arising
from noncancer cases, as shown in Figure 3(j).
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Figure 1: Continued.
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To further examine the prognostic potential of CARM1,
the PrognoScan database was employed to evaluate the
correlation between CARM1 and the survival outcomes of
patients suffering from cancer patients. -e obtained results
were according to eight cohorts (GSE4412 [17], GSE9893
[18], GSE1456 [19, 20], GSE7378 [21], GSE31210 [22],
GSE26712 [23], GSE3141 [24], and GSE19234 [25, 26]),
which indicated that an elevated expression of CARM1 was
significantly associated with a bad prognosis (COX P< 0.05;
Figures 3(k)–3(o), 3(q), and 3(r)). On the other hand, ele-
vated expression of CARM1 was linked with the consid-
erable rate of prognosis in ovarian cancer, as shown in
Figure 3(p) (COX P � 0.002). Supplementary Table 1 con-
tains detailed information on these cohorts.

3.4. Gene Expression andMutation Analysis of CARM1 across
Various Human Cancers. Genetic and epigenetic variations
significantly contribute to the regulation of cancer initiation
and immune tolerance. cBioPortal was used to explore
genetic variations of CARM1. -e mutation frequency of
CARM1 in the TCGA database was then examined using
cBioPortal (10967 samples in 32 studies), and the obtained
results revealed that OV and uterine corpus endometrial
carcinoma (UCES) had a high mutation rate, with CARM1
mutations accounting for more than 7% of the total, as
shown in Figure 4(a), followed by detecting 85mutation sites
(i.e., 65 missense, 7 truncating, and 13 fusion mutations)

locating between amino acids 0 and 608, as shown in
Figure 4(b). As shown in Figure 4(c), CARM1 deletion was
found in more than one-third of human cancers, and dif-
ferent human cancers with CARM1 deletion consistently
had lower expression of mRNA relative to those with diploid
CARM1. Furthermore, in various TCGA human cancers, a
positive association was found between CARM1 copy
number and mRNA expression (Figure 4(d)). Different
human cancer cases with altered CARM1 showed the poorer
prognosis in progression-free survival (P � 0.013), but not
overall survival (P � 0.311), disease-free (P � 0.103), and
disease-specific (P� 0.0626) relative to cases without
CARM1 variations (Figure 4(e), Supplementary Figure S2).

3.5. Association betweenmRNAExpression of CARM1and the
Immune Infiltration. Tumor-infiltrating immune cells
(TIICs) were significantly associated with the development
or metastasis of cancer [27, 28]. -e involvement of several
TIICs in the stroma of TME has been confirmed to be
modulated by fibroblasts (cancer-linked) [29]. We, there-
fore, investigated the possible association between the in-
filtration level of various immune cells and the expression of
the CARM1 gene in TCGA cancer types using the
CIBERSORT, TIMER, QUANTISEQ, CIBERSORT-ABS,
MCPCOUNTER, EPIC, and XCELL algorithms. Based
on the data obtained from algorithms, we found a statisti-
cally negative association between immune infiltration of

Coloretel cancer

(e)

Breast cancer

(f)

Figure 1: -e expression of CARM1 in normal as well as cancer tissues of a human in the HPA database. (a) -e expression of CARM1 in
healthy tissues (human). (b) -e expression of CARM1 protein in healthy tissues (human). (c–f) Characteristic IHC images of CARM1
expression in tissues, such as testis normal tissue, cerebral cortex normal tissue, colorectal cancer, and breast cancer tissues.

Table 1: Clinical data and relative scores of IHC results from the HPA database.

Protein Tissue Histological type Age Gender Location Quantity Intensity Relative IHC sore
CARM1 Testis Normal tissue 25 Male Cytoplasmic/nuclear <25% Weak 1
CARM1 Cerebral cortex Normal tissue 64 Female Cytoplasmic/nuclear <25% Weak 1
CARM1 Colorectal cancer Adenocarcinoma 56 Male Cytoplasmic/nuclear >75% Moderate 6
CARM1 Breast cancer Duct carcinoma 40 Female Cytoplasmic/nuclear >75% Moderate 6
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Figure 2: Continued.
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CD8+ Tcells and the expression of CARM1 inHNSC, LUSC,
and SKCM-metastatic tumors after a series of analyses, as
shown in Figure S3. Furthermore, for the TCGA tumors of
KIRC, THYM, BRCALumA, HNSC, and KIRP, we found a
statistically positive association between the expression of
CARM1 and the approximate infiltration value of fibroblasts
(cancer-linked), but a negative correlation was observed for
PRAD, DLBC, and LUSC, as shown in Figure 5(a). Mean-
while, Figure 5(b) shows the scatterplot data of the
underlined tumors developed using a single algorithm. For
instance, the degree of CARM1 expression in PRAD was
found to be negatively linked with the immune infiltration
level of fibroblasts (cancer-linked) using the XCELL algo-
rithm (Rho� −0.13, P � 7.99e− 03).

3.6. Enrichment Analysis of CARM1-Associated Partners in
Pancancer. -e targeting CARM1-interacting proteins and
genes linked to CARM1 expression were evaluated for
many pathway enrichment studies to determine the
CARM1 gene’s molecular mechanism in cancer genesis and
progression. -e STRING tool identified a total of 50
CARM1-interacting proteins, which were confirmed by
experimental data. -e interaction network of these pro-
teins is shown in Figure 6(a). -e GEPIA2 was used to
integrate all of the top 100 genes, and TCGA tumor ex-
pression data were identified that were linked with the
expression of CARM1. As shown in Figure 6(b), the ex-
pression of CARM1 was positively linked with that of
RAVER1 (ribonucleoprotein, PTB binding 1) (R� 0.76),
WIZ (WIZ zinc finger) (R� 0.65), GATAD2A (GATA zinc

finger domain containing 2A) (R � 0.64), BRD4 (bromo-
domain containing 4) (R � 0.63), MRPL4 (mitochondrial
ribosomal protein L4) (R � 0.62), and CHERP (calcium
homeostasis endoplasmic reticulum protein) (R� 0.60)
genes (all P< 0.001). In many forms of cancer, the heatmap
data revealed a positive link between CARM1 and the
underlined five genes (Figure 6(c)). To conduct KEGG and
GO enrichment analyses, we merged the two datasets.
According to the KEGG data in Figure 6(d), “RNA
transport” and “mRNA surveillance cascade” might be
associated with the impact of CARM1 on cancer patho-
genesis. -e GO enrichment analysis’ findings have
revealed that many of the underlined genes are associated
with the metabolism cascades or cellular biology of RNA
including nuclear chromosome segregation, ribonucleo-
protein granule, sister chromatid segregation, polypurine
tract binding, polypyrimidine tract binding, and others
(Figure 6(d)).

4. Discussion

CARM1, also known as PRMT4, is the first of the PRMT
protein family members to be associated with transcriptional
activity [30]. CARM1 acts through methylated histones,
transcription factors, coregulators, splicing factors, and
RNA polymerase I to regulate a variety of cellular functions,
including DNA damage repair, mRNA splicing, and cell
cycle progression. CARM1 is recruited at the E2F1 promoter
in breast cancer, which upregulates E2F1 expression and
alters the expression of downstream cell cycle-related pro-
teins, promoting the proliferation of breast cancer cells [31].
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Figure 2: -e mRNA levels of CARM1 in human cancers. (a) Tissues from TCGA and GTEx used for evaluating the mRNA expression of
CARM1 between healthy and tumor tissues. (b) -e link between the expression of CARM1 mRNA and various pathological phases in
patients with various cancers from TCGA. (c)-e CARM1 expression in various molecular subtypes of cancers via TISIDB (∗∗∗P value, ∗∗P
value, ∗P value, and P value indicate ≤0.001, ≤0.01, ≤0.05, and ≤0.1, accordingly).
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Figure 3: Continued.
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Figure 3: Survival analysis was employed to compare the elevated and lower expression of CARM1 in various kinds of cancer in the TCGA
and GEO datasets. (a, j)-e link between the expression of CARM1 and prognosis in patients (DSS and OS) of various cancers in the TCGA
database (∗∗∗P< 0.001, ∗∗P< 0.01, and ∗P< 0.05). (b–i) OS curves having statistical significance in TCGA for eight cancer types (KIRP,
LUAD, ACC, LGG, BLCA, MESO, GBMLGG, and SKCM). (k–r) Survival curves in eight cohorts GSE4412, GSE9893, GSE1456, GSE7378,
GSE31210, GSE26712, GSE3141, and GSE1923) with significance.
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Figure 4: Continued.
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Figure 4: CARM1 mutation features in various TCGA tumors. cBioPortal tool was used to evaluate CARM1 mutation features for the
TCGA tumors.-e frequency of mutations is shown along with the mutation type (a) and mutation site (b). -e link between CARM1 copy
number and expression of mRNA indicated in the dot plot (c) and correlation plot (d) by cBioPortal (e). Using the cBioPortal method, we
determined the considerable association between CARM1 mutation status and progression-free survival in various tumors.
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Figure 5: Correlation investigation of CARM1 expression and immune infiltration of fibroblasts associated with cancer. (a) -e possible
association between CARM1 expression and the infiltration level of fibroblasts (cancer-linked) investigated using various algorithms across
all cancer types in the TCGA. (b) Significant correlations of CARM1 expression with the infiltration level of fibroblasts (cancer-linked) in
KIRC, THYM, BRCALumA, HNSC, KIRP,. PRAD, DLBC, and LUSC by using a single algorithm.
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Figure 6: Continued.
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Moreover, CARMI is highly correlated with survival and
involved in tumor invasion and metastasis in various dis-
eases such as prostate cancer [32], making it crucial in
disease research and drug development. Recent studies have
found that inhibition of CARM1 in both tumor cells and
T cells produces beneficial antitumor effects. Inhibition of
CARM1 in T cells increased the activity of killer T cells and
promoted the formation of memory T cells, while inhibition
of CARM1 in tumor cells promoted the expression of in-
terferon-stimulated genes (ISGs), induced dsDNA breaks in
tumor cells, and ultimately activated the cGAS-STING
pathway to inhibit tumor cell growth [33]. CARM1
knockout mice were born dead and showed deficiency in
T cell development and cell differentiation [34], indicating
that CARM1 has a very important role at both the cellular
and individual levels. As a result, CARM1 could be
employed as a new anticancer immunotherapy drug target
or in combination with other immune checkpoint inhibitors
to increase immune responses and infiltration in cancers.
-e findings suggested that CARM1 could be a potential
target for anticancer immunotherapy. Combining anti-PD-
L1 drugs with CARM1 depletion could also be used as a
novel anticancer strategy.

We used the TCGA, TIMER, and GTEx databases to
determine the level of CARM1 expression in cancers and
normal tissues in the first stage of our study. Except for KIRC
and KICH, CARM1 was shown to be substantially more

expressed in most cancer types, which was consistent with
the previous study in lung and colorectal cancers [10, 35].
-ese findings suggested that CARM1 does increase tumor
growth and oncogenesis in human cancers.

Following that, the relationship between the prognosis
and CARM1 expression was then explored. High ex-
pression of CARM1 was linked to a poor prognosis in a
variety of cancer types, including KIRP, LUAD, ACC,
BLCA, LGG, and SKCM, demonstrating CARM1 as a
possible and effective prognostic marker for pancancer.
-en, to evaluate CARM1’s probable mechanisms of ac-
tion, we looked at its expression in distinct molecular
subtypes of malignant tumors. CARM1 expression was
significantly varied in distinct molecular subtypes in most
cancer types, suggesting that CARM1 might be a prom-
ising diagnostic pancancer biomarker as suggested by
these findings. Furthermore, we found that CARM1 ex-
pression differed significantly amongst clinical subgroups
of PRAD patients. CARM1 differential expression was
seen in all gliomas with distinct clinical features, sug-
gesting that CARM1 may play a role in cancer growth and
progression.

Cancer growth and immune tolerance have also been
influenced by genetic and epigenetic variations. For instance,
mutant PD-L1 with structural changes results in abnormal
expression of immunosuppression and PD-L1 [36]. An am-
plification of JAK2/PD-L1/PD-L2 (9p24.1) can result in a
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Figure 6: CARM1-associated gene enrichment analysis. (a) -e STRING database used to obtain CARM1-binding proteins that were
evaluated experimentally. (b) -e GEPIA2 approach used to find the top 100 CARM1-related genes in the TCGA data, and the expression
correlation between CARM1 and chosen target genes including RAVER1, WIZ, GATAD2A, BRD4, MRPL4, and CHERP was examined. (c)
In the detailed cancer types, the equivalent heatmap data are displayed. (d) GO/KEGG pathway analysis conducted according to the
CARM1-binding and interacted genes.
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constitutively elevated expression of PD-L1 and a considerable
reaction to checkpoint inhibitors [37]. Variousmechanisms for
controlling PD-L1 expression could represent the different
roles of PD-L1 inmany cellular localizations and cell types [38].
Preliminary analysis revealed that genetic, as well as epigenetic
regulation of CARM1 expression, was carried out through
CNA. GO/KEGG suggested that CARM1 was linked with
oncogenic cascades (e.g., RNA degradation and mRNA sur-
veillance cascades), as CARM1 has a significant role in immune
regulation. -e role of CARM1 as an oncogene and its exact
mechanisms has not been fully understood.

-e experimental validation and the public data analysis
were performed using RT-qPCR and IHC differed in several
ways. -e current study focused on CARM1 expression in
the cytoplasmic portion of cancer cells and assessing the
complex TME via tissue microarray. We could not rule out
the possibility of CARM1 expression in both the nucleus and
the cytoplasmic portion of cancer cells. -e variations of
CARM1 expression in T lymphocytes and tumor cells are
still unknown [39, 40]. -e distribution of immune cells in
the peripheral regions, tumor stroma, and the central core
are strongly linked to the different immune infiltration
patterns in the same tissue [41–43]. According to our
findings, CARM1 displayed a significant association with
tumor-infiltrating lymphocytes and played an important
role in the TME. CARM1 expression, for example, was
found to be substantially correlated with cancer-associated
fibroblasts and CD8+ T cells. To perform precise and
considerable evaluations, a large number of samples and in-
depth analysis were needed in specific subgroups. Fur-
thermore, the underlined data were according to the NGS
(high-throughput sequencing technology) analysis derived
from bulk cells and limited our evaluations.

In brief, we used integrated bioinformatics approaches,
and the obtained results revealed that CARM1 expression
may enhance immune infiltration and influence the survival
rate of patients in pancancer, suggesting that CARM1 can be
used as a prognostic biomarker and may provide knowledge
to explore the malignancies and their pathologic processes of
those prevalent cancers. It has also been suggested that
CARM1 was considerably associated with multiple immune
responses and infiltration, and immunotherapies along with
CARM1 inhibitors may be an effective strategy to suppress
the human ungracious tumors, mainly gliomas.
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Supplementary Materials

Figure S1. -e transcription levels of CARM1 in human
cancers. (a) -e mRNA expression of CARM1 between
tumor and their matched adjacent tissues was assessed using
tissues from the TCGA database. (b)-emRNA expressions
of CARM1 between tumor and normal tissues in multiple
cancers via the TIMER database. (c) No difference was found
between CARM1 expression and stages in these cancers. (d)
No difference was found between CARM1 expression and
molecular subtypes via TISIDB. Figure S2. -e potential
correlation between CARM1 mutation status and survival
analysis of different tumors using the cBioPortal tool. (a)-e
potential correlation between CARM1 mutation status and
disease-specific survival of different tumors using the
cBioPortal tool. (b) -e potential correlation between
CARM1 mutation status and disease-free survival of dif-
ferent tumors using the cBioPortal tool. (c) -e potential
correlation between CARM1 mutation status and overall
survival of different tumors using the cBioPortal tool. Figure
S3. Correlation analysis between CARM1 expression and
immune infiltration of CD8+ T cells. -e negative corre-
lation of CARM1 expression with the infiltration level of
CD8+ T cells in HNSC, LUSC, and SKCM-metastases.
Supplementary Table 1. CARM1 correlates with immune
infiltration and impacts patient prognosis: a pancancer
analysis. . (Supplementary Materials)
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