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Abstract: We evaluated a transcriptome using high-throughput Illumina HiSeq sequencing and re-
lated it to the morphology, leaf anatomy, and physiological parameters of Carpinus putoensis putoensis
under NO2 stress. The molecular mechanism of the C. putoensis NO2 stress response was evaluated
using sequencing data. NO2 stress adversely affected the morphology, leaf anatomy, and total peroxi-
dase (POD) activity. Through RNA-seq analysis, we used NCBI to compare the transcripts with nine
databases and obtained their functional annotations. We annotated up to 2255 million clean Illumina
paired-end RNA-seq reads, and 250,200 unigene sequences were assembled based on the resulting
transcriptome data. More than 89% of the C. putoensis transcripts were functionally annotated. Under
NO2 stress, 1119 genes were upregulated and 1240 were downregulated. According to the KEGG
pathway and GO analyses, photosynthesis, chloroplasts, plastids, and the stimulus response are
related to NO2 stress. Additionally, NO2 stress changed the expression of POD families, and the
HPL2, HPL1, and POD genes exhibited high expression. The transcriptome analysis of C. putoensis
leaves under NO2 stress supplies a reference for studying the molecular mechanism of C. putoensis
resistance to NO2 stress. The given transcriptome data represent a valuable resource for studies on
plant genes, which will contribute towards genome annotations during future genome projects.

Keywords: transcriptome; NO2 stress; high-throughput sequencing; molecular mechanism; resis-
tance; gene expression

1. Introduction

Nitrogen dioxide (NO2) is a product of nitric acid, which is used in industrial manu-
facturing; millions of tons of NO2 are produced each year [1]. At high temperatures, NO2
is a maroon gas with a typically harsh odor, and it is a key contributor to air pollution [2].
NO2 is also an important component of acid rain [3]. Its corrosivity and highly oxidative
nature make it harmful to plant biochemical and physiological processes after entering
plants through the stomata [4]. In wild environments, the ambient NO2 level that wild
plants might encounter is 180 ppb. Currently, there are two theories regarding the effect of
NO2 on plants. The first is that NO2 can form plant organic nitrogen compounds by being
metabolized and amalgamated in the nitrate assimilation pathway [5]. Approximately 33%
of NO2-derived N (NO2-N) taken up by plants was modified into a previously unknown
Kjeldahl-unrecoverable organic nitrogen (unidentified nitrogen) [6], which can be incorpo-
rated into the α-amino group of soluble free amino acids [7,8], thereby not causing harm to
the leaves [9,10]. Mayer et al. [11] investigated the changes in the physiological functions of
NO2 at a 10 µL L−1 concentration in Arabidopsis (Arabidopsis thaliana) cells and found that
1 h NO2 fumigation induced pathogen resistance in the plant [11]. The second theory is
that the majority of plants have a low absorption capacity for NO2-N incorporation into the
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total plant N and can resist NO2 [12]. Although most studies have investigated the amino
acid response after NO2 stress, there are no known reports on gene expression responses to
NO2 stress.

Carpinus putoensis is a species in the Betulaceae family measuring approximately 15 m
(49 feet) tall. It survives as a single tree on Putuo Island on the Zhoushan archipelago in
China. It is monoecious but still able to reproduce sexually in nature [13]. The Zhejiang
Forestry Science Research Institute has researched the cultivation and breeding of C. putoen-
sis [14]; although the seed characteristics of C. putoensis were investigated previously, those
studies stressed the characterization of the complete chloroplast genome and nuclear ribo-
somal sequence data [15]. It is vital to study C. putoensis resistance to NO2 exposure to
conserve this endangered species and improve its tolerance for future applications as a
novel road greening and ornamental plant. Therefore, in a previous study, we evaluated
the photosynthesis and Chl fluorescence responses of C. putoensis leaves to different NO2
(6 µL/L) exposure times, both in terms of leaf gas exchange and the functionality of pho-
tosynthetic measurements [16]. Additionally, the chlorophyll content, the behavior of the
stomata, and the ultrastructure of chloroplasts were analyzed together to find potential
relationships between the photosynthesis in the leaves and cell transformation under NO2
stress. However, a relationship between the leaf anatomy and transcription in C. putoensis
under NO2 stress has not previously been reported.

Therefore, in the current research, we evaluated the leaf anatomy and transcriptome
gene expression of C. putoensis leaves under NO2 stress. The purpose of this study is to
provide a theoretical reference on the effects of traffic pollution on green plants.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

One-year-old C. putoensis seedlings were grown in pots measuring 30 cm (open top)
× 15 cm (height) × 20 cm (flat bottom) that were filled with well-mixed vermiculite, peat,
and garden soil (1:1:1, v/v/v). In accordance with the water evaporation rate of the soil
described by Allen et al. [17], they were watered with tap water every three days, and 1 L
of full-strength Hoagland nutrient solution at was used biweekly for seedling cultivation.
Before NO2 treatment, the plants were allowed to grow naturally for 2 months [16].

2.2. NO2 Fumigation

Fumigation was performed according to the method described in the literature [11].
open-top NO2 fumigation glass chambers measuring 50 × 50 × 50 cm were built. The
plants were fumigated with NO2 at 6 µL/L that was supplied by cylinders (gas flow
velocity, 1 L/min). The C. putoensis seedlings in another climate chamber constituted the
control (CK) group, which was quantitatively flushed with filtered air (without NO2) at the
same time. The chambers underwent a light/dark cycle with a photoperiod of 13 h and
had a relative humidity of 60/50 ± 4% (day/night), with a temperature of 25/20 ± 3 ◦C
(day/night). The control and NO2-treated seedlings (30 replicates in each treatment) were
fumigated for 3 days (6 h per day), and then they recovered for 30 days [16].

The NO2 concentration within the climate chamber containing leaves exposed to
1 L/min of air was measured with an NO2 analyzer (model ML Series). After being
treated with NO2, the seedlings were placed in an artificially controlled greenhouse under
a natural simulation environment for 30 days of recovery. The environmental conditions of
the greenhouse were as follows: room temperature, 25–28 ◦C; relative humidity, 60–70%;
photoperiod, 14 h; and photosynthetically active radiation, 1000 µmol photons/(m2 s).

For the following experiments, whole leaves were used unless otherwise specified.

2.3. Determination of Total Peroxidase (POD) Activity

POD is a class I oxidation-reduction enzyme that acts as a catalyst in a variety of
biological processes; thus, it is an essential protective enzyme against reactive oxygen cell
damage [18]. In response to adversity, POD is activated and provides resistance against
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adverse oxidation stress [19]. In this study, the POD level was measured with a guaiacol
colorimeter [20]. The samples were pooled, and approximately 0.2 g of fresh leaves was
placed in a pre-chilled mortar and then ground with 0.2 g of quartz sand. A total of 6 mL
of 0.05 mol/L phosphate buffer (pH, 7.5) was added (in three applications, including one
for mortar rinsing). The resulting homogenate was poured into a 10 mL centrifuge tube
and stored at 4 ◦C. Centrifugation was performed at 5000× g for 20 min, and the obtained
supernatant was a crude extract of POD. The reaction system for measuring the enzymatic
activity contained 2.9 mL of phosphate buffer (0.05 mol/L), 1.0 mL of H2O2 (2%), 1.0 mL
of guaiacol (0.05 mol/L), and 0.1 mL of enzymatic solution. The enzymatic solution was
boiled for 5 min and used as the control. After the enzymatic solution was applied, the
system was immediately subjected to a 15-min incubation at 37 ◦C, which was followed
by an ice bath. Trichloroacetic acid (20%, 2.0 mL) was added to terminate the reaction.
Filtration (Steripak-GP, 10 L; Millipore, Germany) and appropriate dilution were then
performed. The absorbance was measured at 470 nm [20]. Six replicates were designed for
each group.

2.4. Transmission Electron Microscopy (TEM)

The plant material was cut into 1-mm2 pieces and then fixed with 2.5% glutaraldehyde
in a 0.1 M sodium cacodylate buffer (pH 7.4) for 4 h. After three washes with cacodylate
buffer, the samples were fixed in 2% (w/v) osmium tetroxide in cacodylate buffer for
2 h. The samples were embedded in epoxy resin and dehydrated with an acetone series.
Sections were cut using an LKB III ultramicrotome at 1 µm for light microscopy (LM) and
approximately 50 nm for TEM. Ultrathin sections were stained with uranyl acetate and
basic lead citrate and then analyzed by a Hitachi Hu 12a electron microscope [16].

2.5. RNA Isolation, cDNA Library Construction, and Illumina Sequencing

To understand the changes in gene levels after NO2 fumigation, we selected the CK
group and the 72-h NO2 treatment group for transcriptome sequencing analysis. Two
groups were prepared: a NO2 treatment group and a CK group. After the leaves were
removed from the tree, they were pooled and immediately frozen in liquid nitrogen and
then stored at −80 ◦C in an ultra-low temperature freezer. The total RNA was extracted
using the cetyltrimethy lammonium bromide (CTAB) method [21] and treated with RNase-
free DNase I (TaKaRa, Dalian, China). The total RNA integrity was checked using gel
electrophoresis, and the content was quantified using an ND-1000 spectrophotometer
(Thermo, Waltham, MA, USA). Oligo (dT) 25 magnetic beads were used for isolating poly-
(A) tail-containing mRNAs from the total RNA (20 µg), and mRNA was disrupted into short
fragments with a fragmentation buffer at 70 ◦C for 5 min. These short fragments were used
as templates to synthesize first-strand cDNA using random hexamer primers and reverse
transcriptase. Second-strand cDNA fragments were obtained using a buffer containing
DNA polymerase I, dNTPs, and RNase H. The final cDNA library was obtained by ligating
the cDNA fragments to sequencing adaptors (Genomic DNA Sample Preparation Kit,
Illumina, San Diego, CA, USA; two terminal sequencing: read length, 150 bp; paired
end) and by conducting PCR amplification (Illumina Genomic Sample Preparation Kit,
Illumina, San Diego, CA, USA). An Illumina HiSeq 2000 platform (Macrogen Bioinformatics
Technology, Shenzhen, China) was used to sequence the mRNAs. Three replicates were
designed for each group.

2.6. Data Analysis for RNA-seq Experiments

Adaptor sequences and low-quality reads were removed from the raw reads to ob-
tain clean data [22,23]. The trinity method was adopted to assemble the clean data into
transcripts [24]. National Center for Biotechnology Information, U.S. National Library of
Medicine (NCBI) BLAST was used to compare the transcripts with NR, Swiss-Prot, Gene
Ontology (GO), euKaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and several PFAM databases to obtain functional annotations [25].
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The procedures for the RNAseq sequencing evaluation were as follows: Bowtie2 was
used to compare the effective data from the samples to the spliced transcripts, and the
mapping information was counted; Rseqc was used to analyze the redundant sequences
and the distribution of inserted fragments; and BEDtools was used to check the homogene-
ity distribution and analyze the gene coverage [26]. A gene structure analysis was then
performed. Specifically, BCFtools was used to seek possible SNP sites according to the
mapping results; MISA was used for SSR analysis based on the sequence information of
the spliced transcripts [27]. Salmon was used to calculate the gene expression. WGCNA
was used for gene co-expression analysis. Based on the expression matrix of the samples,
multi-directional statistical analyses and exploration, such as comparative analyses of the
samples, were performed [28,29].

2.7. Identification, Annotation, and Enrichment Analysis of Differentially Expressed Genes

To identify differentially expressed genes (DEGs) related to the leaf metabolism of C.
putoensis after NO2 stress, we used RNA-seq by expectation maximization (RSEM) to map
the clean reads of each sample to the transcriptome assemblies, and we used the DESeq
with the following thresholds for DEG identification: false discovery rate (FDR), 0.01; fold
change, 2 [30]. The identified DEGs were then used for GO and KOG classification and
KEGG pathway enrichment analysis.

2.8. Validation by RT-qPCR

The results from the RNA-seq experiment were validated by analyzing eight plant
genes that were most significantly differentially regulated under NO2 stress (the smallest
p-value was 1 × 10−30 for chloroplasts) using RT-qPCR with cDNA as the template. RNA
was obtained using the same method described in the Section 2.5. Oligo 7 software was
used to design all the primers for RT-qPCR (Supplementary Table S1). A TB Green Premix
Ex Taq kit (TaKaRa, Shiga, Japan) was used to perform RT-qPCR and an ABI StepOne plus
thermal cycler (Applied Biosystems, Foster City, CA, USA) was used to run the RT-qPCR.

3. Results
3.1. Morphology and Cell Structure of C. putoensis Leaves

The leaf morphology exhibited various changes when C. putoensis was exposed to
NO2 gas. According to Figure 1, the C. putoensis leaf damage appeared mostly as necrotic
spots, from black spots to yellow spots, to an increasing extent. Some areas (such as
the leaf tip) were severely damaged under NO2 stress for 1–72 h. Figure 2 shows the
micrographs of leaves from the control group and the treated plants after 1 h, 6 h, 24 h, and
72 h of NO2 treatment under a TEM. The CK group exhibited oval cells with numerous
well-compartmentalized grana stacks within Figure 2a. Minimal starch was present. In
NO2-treated plants (Figure 2b,c), most cell structures were slightly damaged. Within some
cells, cell dehydration and shrinkage (Figure 2d) and chloroplast deformation (Figure 2e)
were found. Plastoglobuli were more numerous in the disrupted cells. The chloroplasts
of the recovery plant leaves are discoidal and rich in starch grains (Figure 2f). Following
recovery from the NO2 treatment, almost all the cell structures and chloroplasts in the
plants seemed to recover their normal morphology. Starch was present in all cases. In
some chloroplasts, the thylakoid system was almost unaffected. Few differences were
observed between the plastids of the CK group and those of the NO2-treated plants that
had recovered for 72 h (Figure 2a,f).
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3.2. Changes in POD Activity

Changes in the POD activity of C. putoensis at different NO2 stress time points are
shown in Figure 3. With increasing NO2 fumigation time, the POD activity of C. putoensis
increased, ranging from 385 U/(g min) fw to 596 U/(g min) fw. The 72-h treatment group
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had the highest POD level, with a significant difference compared to any of the remaining
groups. Compared with the CK group, the 24 h treatment group showed a significant
difference. The recovery group did not show a significant difference from the CK group.
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3.3. RNA-seq Analysis of Clean Data from C. putoensis

C. putoensis is a non-model organism; therefore, de novo assembly is the only option for
sequence assembly. In de novo assemblies, without the guidance of a reference sequence,
the reads are assembled into contigs. To cover the C. putoensis transcripts completely,
de novo assembly was used to generate the consensus transcriptome using Illumina
sequencing data from samples under two different conditions together with raw reads
from NO2-treated leaves and CK leaves. Due to trimming (extra bases whose lengths were
lower than 20) and duplicate removal, we analyzed 529,540 transcripts with an average
length of 425.97 bp for the de novo assembly of 250,200 unigenes with an average length of
376.73 bp (Table 1).

Table 1. Length and internal length distribution of transcripts and unigenes.

Type No. ≥500 bp ≥1000 bp N50 N90 Maximum
Length

Minimum
Length Total Length Average

Length
CG

Content

Transcript 529,540 124,713 29,088 470 231 7490 201 225,567,341 425.97 40–50%
Unigene 250,200 41,790 9609 381 221 7490 201 94,258,132 376.73 60–70%

In total, the highest annotation ratio was achieved for the GO database (110,530,
44.18%) (Table 2), which represents successful annotation with known proteins. Only
1.84% of the genes were successfully annotated in all the databases; thus, many genes
were without annotation. In this study, we focused on the sequence with the highest
annotation ratio compared to the GO library to obtain the phase of the gene sequence and
functional information for C. putoensis and its related species, as long as the gene over
136 K had at least 1 annotation. According to the GO classification (Figure 4a), biological
processes (274,614 genes, 36.98%), cellular components (236,419 genes, 31.84%), and molec-
ular functions (231,488 genes, 31.176%) were identified. The KOG classification included
25 functional categories, including posttranslational modification, protein turnover, chap-
erones (7858 genes, 12.23%), translation, ribosomal structure and biogenesis (6309 genes,
9.82%), and general function prediction only (7041 genes, 10.96%) (Figure 4b). Additionally,
the annotated genes were enriched in 23 KEGG pathways (Figure 4c). The top six enriched
pathways included translation, carbohydrate metabolism, signal transduction, folding
sorting and degradation, overview, and amino acid metabolism.
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Table 2. Annotation of unigenes in each database.

Database Number of Genes Percentage (%)

CDD 79,760 31.88
KOG 64,226 25.67
NR 94,267 37.68
NT 77,874 31.12

PFAM 51,696 20.66
Swiss-prot 103,389 41.32
TrEMBL 93,882 37.52

GO 110,530 44.18
KEGG 9284 3.71

At least one database 136,276 54.47
All database 4595 1.84

3.4. Identification and Analysis of DEGs in C. putoensis Leaves under NO2 Stress

As in the experimental chambers, all the physical parameters other than the NO2
concentration were kept the same; therefore, we presume that the observed results are
solely caused by elevated NO2. Through the analysis of the CK group and the NO2 stress
group, the regulatory mechanisms and key genes of C. putoensis NO2 stress were further
explored. To identify DEGs between the two different samples, we analyzed the genes
expressed in the two groups; a Venn diagram showed the distribution of specific genes
(79,437 and 70,248 expressed genes in the control group (A) and the stressed group (B),
respectively) and shared genes (99,724 expressed genes) (Figure 5). Afterwards, pairwise
comparisons are performed with FC ≥ 2 and FDR < 0.01 as the standards. In total, the RNA-
seq data involved one pairwise comparison, and 2,359 DEGs were ultimately identified,
including 1,119 upregulated genes and 1240 downregulated genes (Table 3). The DEGs
were annotated using the KOG (877 DEGs, 37.18%), GO (1686 DEGs, 71.47%), KEGG
(277 DEGs, 11.74%), and NR (1830 DEGs, 76.6%) databases and the conserved domains
database (CDD, 2359 DEGs, 100%) (Table 3). A pairwise comparison of the volcano plots
map clearly shows the distribution of upregulated and downregulated genes (Figure 6a).
Transcription factors (TFs) are the key components of regulatory systems that control
and modulate stress adaptive pathways [22]. In accordance with the highly significant
roles of TFs under NO2 stress, we analyzed all the genes to identify the top 30 TF families
(Figure 6b), which predominantly included C2H2, Zn-clus, C3H, bZIP, AP2/ERF-ERF, GRAS,
bHLH, MYB-related, WRKY, and NAC.
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Table 3. Annotation of A vs B DEGs in a pairwise comparison.

DEGs DEG Number CDD KOG GO KEGG NR NT

Upregulated genes 1119 1119 330 690 91 740 597
Downregulated genes 1240 1240 547 996 186 1090 760

Total 2359 2359 877 1686 277 1830 1357
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The most common enriched pathways were found under GO classification, KEGG
pathways, and KOG enrichment. In this study, we analyzed the GO classification of up-
regulated and downregulated annotated DEGs and selected the 30 with the smallest Q
value for a scatter plot of pathway enrichment (Figure 7). The upregulated genes were
assigned to 30 biological pathways functionally. The top three upregulated genes were
involved in multicellular organism development (GO: 0007275), plastids (GO: 0009536),
and chloroplasts (GO: 0009507), and the downregulated genes predominantly reflected
response to stimulus (GO: 0050896), response to stress (GO: 0006950), and oxidoreductase
activity (GO: 0016491). We also analyzed 91 upregulated and 187 downregulated KEGG
pathways annotated with DEGs and chose the 30 with the smallest Q values for scatter plots
of the pathway enrichment (Figures 8 and 9). The upregulated genes were functionally
assigned to 76 biological pathways; the top upregulated genes were involved in photo-
synthesis (ko00195) (Figure 8), and the downregulated genes predominantly represented
the biosynthesis of amino acids (ko01230) and carbon metabolism (ko01200) (Figure 9).
The KEGG pathways showed that the DEGs of the NO2-treated group were significantly
related to photosynthesis (Figure 10), i.e., four differentially expressed genes were involved
in photosynthesis in C. putoensis under NO2 stress. Combined with the genes classified by
GO, which involved plastids and chloroplasts, this finding is consistent with the observed
leaf changes in C. putoensis under NO2 stress, i.e., the color change from green to yellow
(shown in Figure 1). This result is also consistent with the change in cell ultrastructure as
the chloroplast gradually deforms and more plastid granules appear with increasing NO2
stress treatment time, which is a type of abiotic stress (Figure 2).
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yellow indicates no significant difference in gene expression.

3.5. RT-qPCR Analysis of NO2 Stress-related Genes

To calculate the accuracy of the RNA-seq, we selected the DEGs with the most sig-
nificant differences related to NO2 stress. We used a functional prediction of annotated
genes from the RNA-seq data to identify eight DEGs, namely TRINITY_DN86073_c6_g3
(peroxidase 12-like, POD1), TRINITY_DN80077_c8_g2 (allene oxide synthase, HPL1), TRIN-
ITY_DN80077_c8_g3 (allene oxide synthase, HPL2), TRINITY_DN86773_c3_g1 (allene oxide
synthase, HPL3), TRINITY_DN81001_c0_g2 (hypothetical protein CICLE, APX5), TRINITY_
DN86877_c1_g5 (geranylgeranyl diphosphate reductase, chloroplastic, CHL2), TRINITY_
DN84191_c2_g1 (chloroplast chlorophyll a/b binding protein, CHL3), and TRINITY_DN86070_c0
_g3 (hypothetical protein, CHLA) (Figure 11). RT-qPCR analysis was performed on 8 candi-
date genes to verify the expression pattern of RNA-seq data (Figure 12). The differential
expression profiles of DEGs were consistent between the RNA-seq and RT-qPCR data,
except for those of CHLA. Although there is a significant difference in the expression profile
of one gene, when the RT-qPCR data are compared with the RNA-seq data, there are seven
genes that show similar expression profiles. Our study found that CHL2, CHL3, and CHLA
genes showed lower expression levels in the C. putoensis leaves upon NO2 stress. Strikingly,
the selected oxidation family genes POD1, HPL1, and APX5 exhibited higher expression in
C. putoensis upon NO2 stress. These findings seem to suggest that these genes participate
in regulating the physiological response of C. putoensis.
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4. Discussion

The results show that gaseous NO2 has a significant impact on the ultrastructure of
mesophyll cells, i.e., increased translucence in the plastoglobuli, decreased chloroplasts and
an increased number of plastoglobuli. Compared with that of the control group, the results
are consistent with the gaseous SO2 and NO2 that cause swelling in the thylakoids and a
decrease in the number of grana stacks [31]. The observed changes in the leaf cell structure
are similar to those described in Ca-induced plants in the stressed group [30], namely,
irregular plastid shape. Part of the reason for these changes may be that NO2 changes the
semi-permeability of the plastid envelope. NO2 can interact directly with lipids, which
is probably related to membrane effects [11]. The effects of chemical substances, such as
H2O2 [32], ascorbic acid [33], and Na2S [34], have been studied before. However, the effects
of natural restoration on plant responses to atmospheric pollution, especially NO2, has not
been reported before. Our results indicate that natural recovery could be helpful for cell
structure recovery and chloroplast morphology. No significant differences were observed
between the CK group and the recovered plants, which is consistent with the findings
of Souza et al. [35], who found that natural recovery from water stress could lead to the
complete recovery of all gas exchange three days after rewatering.
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As an important antioxidant enzyme, POD scavenges reactive oxygen species (ROS) [36].
In our experiment, the POD activity increased under NO2 stress, indicating that C. putoensis
plants exhibit substantial ROS-scavenging ability under NO2 stress. In tolerant plant
species, POD activity is higher, which enables the plants to protect themselves against
oxidative stress [37,38]. In C. putoensis, it is not known how these changes at the cellular
level are regulated at the genetic level. Therefore, we selected the CK group and 72-h NO2
treatment group for transcriptome sequencing analysis.

According to the highly significant role of TFs under NO2 stress, we analyzed all the
genes to identify the top 30 TF families (Figure 6b), which predominantly included C2H2,
Zn-clus, C3H, bZIP, AP2/ERF-ERF, GRAS, bHLH, MYB-related, WRKY, and NAC. These TF
families are widely present in a variety of plant species, and they participate in the control
of plant development and responses to biotics and biotic stress [39]. Previous research has
revealed only the complete chloroplast genome of C. putoensis [40]. Our study is the first
exploration of these TF families in C. putoensis based on transcriptome analysis.

In our experiment, many types of TFs, such as bZIP, NAC, AP2/ERF, and MYB, are
involved in drought stress responses, and AP2/ERF-ERF is a large family of TFs in plants.
AP2/ERF-ERF TFs are identified by the presence of an AP2 DNA-binding domain composed
of 60–70 highly conserved amino acids. AP2/ERF-ERF TFs have significant functions in bio-
logical processes, including development, reproduction, primary and secondary metabolite
biosynthesis, and adaptation to biotic and abiotic stresses [41]. They are primarily activated
in response to drought stress [42], heat [43], waterlogging [44], high salinity [45], and
osmotic stress [46]; however, this study is the first example of their activation in response
to NO2 stress. According to the literature, MYB TFs play a role in metabolism, cell fate
and identity, development, and responses to biotic and abiotic stresses during the plant life
cycle [47]. The roles of WRKY TFs in plant development, hormone signaling, biotic stress,
and abiotic stress have been demonstrated [48]. A transcriptome analysis of Arabidopsis
roots also indicated the upregulation and downregulation of WRKY TFs in response to
NO2 stress [49]. Plant-specific NAC transcription factors have multiple functions, including
plant development, defense, and abiotic stress [50]; different plants have different abiotic
stress responses to NAC-TFs [51]. However, all of the above TFs were determined to have
roles in a NO2 stress response, and NO2 exposure is a type of abiotic stress.

In our study, several genes that were induced coded for photosynthesis-antenna
proteins, and this expression was altered, as shown in Figure 11. The reduction in photo-
synthesis may also be attributed to degradation and damage in the thylakoid membrane
protein-pigment complexes, and possibly also effects on lipids, thereby inducing oxidative
stress in stressed plants [52]. As part of a defense mechanism to reduce the oxidative
stressed damage, scavenging enzymes such as POD may be activated [53]. In our research,
the expression levels of several genes for these enzymes and proteins were modulated. The
role of these antioxidants includes altering gene expression to provide a redox buffer and
act as a metabolic interface to regulate the optimum induction of adaptive responses [54].
NO2 stress has adverse effects on plant growth and productivity; in higher plants, the
photosynthesis apparatus is reorganized for acclimation to environmental and metabolic
conditions [55]. However, reduced growth under stress is associated with an increase
in photosynthesis-related genes, indicating sustained photosynthetic activity under NO2
stress [56].

NO2 stress leads to enhanced ROS production. In earlier reports, NO2 treatment
also significantly improved the antioxidant and isozyme activities, including those of
superoxide dismutase and POD [57]. These enzymes catalyze the biosynthetic steps of
various plant metabolites, and several researchers have demonstrated their role in stress
tolerance [58]. Of the 87 POD genes, the majority were significantly upregulated after
NO2 stress, which is consistent with the increase in total POD activity [59]. This is a
common response to various oxidative stress factors. Our study identified six differentially
expressed transcripts encoding PODs, which are likely involved in the detoxification of
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ROS in C. putoensis under NO2 stress and may be potential candidate genes for increasing
NO2 tolerance.

The results of our study indicate that the effects of NO2 exposure on the ultrastructure
of the cell structure, POD activity, and morphological changes were directly related to the
NO2 treatment time; therefore, we speculate that the effects of NO2 on plants is partly
attributable to the generation and accumulation of N2-derived NO2

− in apoplastic and
symplastic spaces. Moreover, with increasing NO2 exposure, C. putoensis leaves were
stressed by a large amount of NO2 within a short time, followed by cell membrane damage
and chloroplast destruction; this destruction then affected leaf photosynthesis, which
altered the expression of genes related to abiotic stress.

Understanding plant stress responses to gaseous pollution is very important for urban
greening applications. This study represents the first transcriptome analysis of NO2 stress
in C. putoensis, which is a relatively new field of research, particularly regarding photosyn-
thesis and redox aspects. Therefore, RNA-seq analysis should urgently be conducted to
provide further insights into these processes.

5. Conclusions

In this study, we recorded the changes in the morphology and anatomy of C. putoensis
leaves under NO2 stress. NO2 stress adversely affected the morphology, leaf anatomy, and
POD activity. These findings extend our understanding of plant stress responses; they
also strongly indicate a need for further RNA-seq analysis. In this study, we used NCBI
to compare the transcript with nine databases and obtained its functional annotations.
We annotated 2,255 million clean Illumina paired-end RNA-seq reads (clean means to
remove the bases with the mass value of reads less than 20 from raw data), and 250,200
unigene sequences were assembled based on the transcriptome data, with an average
length of 376.73 bp and an N50 of 381 bp. A comprehensive functional annotation provided
functional descriptions for more than 89% of the C. putoensis transcripts. Under NO2 stress
treatment, the plants had 2359 DEGs, among which 1119 exhibited upregulated expression
and 1240 exhibited downregulated expression. GO enrichment analysis showed that
the DEGs predominantly involved substance metabolism, protein binding, and catalytic
activity. The DEGs were typically involved in metabolic pathways and photosynthesis
metabolism, which were presented by KEGG analysis. According to the KOG analysis,
DEGs were predominantly involved in carbohydrate transport and metabolism, translation,
ribosome structure and biogenesis, biosynthesis, and the transport and catabolism of
secondary metabolites. According to the KEGG pathway analysis, the expression of
photosynthetic genes may be affected by NO2 stress. Moreover, GO classification analysis
indicated that the chloroplasts, plastids, and stimulus response may be related to NO2
stress. Additionally, we found that the expression of POD families experienced dynamic
changes during NO2 stress treatment. According to the RT-qPCR validation, the HPL2,
HPL1, and POD genes in C. putoensis also exhibited high expression under NO2 stress.
This study provides new insights into the C. putoensis processes that occur during NO2
stress. Furthermore, the resulting transcriptome data represent an important candidate
gene resource for future plant gene structure studies. These data will be very helpful
during genome annotation in future genome projects.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12050754/s1, Table S1: List of 8 DEG primers used for RT-qPCR. Raw sequence data
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BioSample accession number of SAMN19071592, SAMN19071593 and SRA accession number of
PRJNA717124.
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