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Background.  Exposure to antibiotics may result in alterations to the composition of intestinal microbiota. However, few trials 
have been conducted, and observational studies are subject to confounding by indication. We conducted a randomized controlled 
trial to determine the effect of 3 commonly used pediatric antibiotics on the intestinal microbiome in healthy preschool children.

Methods.  Children aged 6–59 months were randomized (1:1:1:1) to a 5-day course of 1 of 3 antibiotics, including amoxicil-
lin (25 mg/kg/d twice-daily doses), azithromycin (10 mg/kg dose on day 1 and then 5 mg/kg once daily for 4 days), cotrimoxazole 
(240 mg once daily), or placebo. Rectal swabs were obtained at baseline and 5 days after the last dose and were processed using 16S 
rRNA gene sequencing. The prespecified primary outcome was inverse Simpson’s α-diversity index.

Results.  Post-treatment Simpson’s diversity was significantly different across the 4 arms (P = .003). The mean Simpson’s α-di-
versity among azithromycin-treated children was significantly lower than in placebo-treated children (6.6; 95% confidence interval 
[CI], 5.5–7.8; vs 9.8; 95% CI, 8.7–10.9; P = .0001). Diversity in children treated with amoxicillin (8.3; 95% CI, 7.0–9.6; P = .09) or 
cotrimoxazole (8.3; 95% CI, 8.2–9.7; P = .08) was not significantly different than placebo.

Conclusions.  Azithromycin affects the composition of the pediatric intestinal microbiome. The effect of amoxicillin and cotri-
moxazole on microbiome composition was less clear.

Clinical Trials Registration.  clinicaltrials.gov NCT03187834.
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Exposure to antibiotics in childhood is thought to alter the 
intestinal microbiome [1–3]. Observational studies in high-in-
come settings have suggested that there are alterations in the 
intestinal microbiome in children receiving antibiotics relative 
to those who have not received antibiotics [3–5]. Antibiotics 
disrupt the composition of microbiota as they have activity 
against both commensal and pathogenic bacteria [2]. Dysbiosis 
of the intestinal microbiome has been linked to multiple adverse 
health outcomes, including undernutrition and obesity, asthma, 
diabetes, and some forms of cancer [6–14].

A recent randomized controlled trial evaluated the effect of a 
single dose of azithromycin, as is used for mass distribution in 
trachoma control programs [15–17], on the composition of the 
intestinal microbiome among preschool children in Niger [1].  

This study found a significant decrease in the diversity of the 
intestinal microbiome in a population of relatively antibiot-
ic-naïve children. In many regions of sub-Saharan Africa, mac-
rolides are used less frequently than penicillins or sulfonamides 
for the treatment of common childhood illnesses [18–20]. Here, 
we assess the effect of a short course of 3 commonly used pedi-
atric antibiotics on the intestinal microbiome. We hypothesized 
that all 3 antibiotics would lead to decreased diversity in the 
intestinal microbiome compared with placebo.

METHODS

Study Setting

This study took place in 2 rural communities of the Health 
and Demographic Surveillance Site (HDSS) in Nouna District, 
Burkina Faso [21, 22]. A triannual census is performed in the 
HDSS by the Centre de Recherche en Santé de Nouna (CSRN). 
Inhabitants of the study communities are primarily subsistence 
farmers and cattle keepers. The study occurred in July 2017, just 
before the rainy season [23].

Participants and Procedures

The overall objective of the study was to investigate the direct 
and indirect effects of antibiotic usage on the intestinal micro-
biome of preschool-aged children. We recruited households in 
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the 2 study communities with 2 or 3 children between the ages 
of 6 and 59 months based on the most recent HDSS census. In 
households with 3 children, all children received a study drug 
but only 2 randomly selected children were monitored as part 
of the study. Children were eligible for participation in the study 
if they were between 6 and 59 months of age and with parental 
consent. We did not exclude children on the basis of preexist-
ing morbidity or recent antibiotic use. Children were assessed 
before randomization (baseline) and then again 5 days after the 
last antibiotic dose (post-treatment).

Randomization

We employed a 2-stage randomization procedure. First, each 
household was randomized in a 1:1:1:1 fashion to 1 of the 4 
study arms: 1) amoxicillin, 2) azithromycin, 3) co-trimoxazole, 
or 4)  placebo. Second, each child in the household was ran-
domly assigned to either treatment or placebo. In households 
with 2 children, 1 was randomized to treatment and the other 
to placebo. In households with 3 children, 2 were randomized 
to treatment and the other to placebo. Note that in the placebo 
households, children assigned to treatment and placebo received 
the same drug (ie, placebo). The present report is concerned with 
the direct effects of antibiotics and therefore only includes the 
1 child per household randomized to treatment. The randomi-
zation sequence was generated by TCP in R, version 3.3.1 (The 
R Foundation for Statistical Computing), using a masked seed 
value [24]. The randomization sequence was implemented in the 
field by preloading syringes with the child’s randomized treat-
ment that were labeled with each child’s name (described below).

Interventions

All study medications were prepared as pediatric oral suspen-
sion. Study medications were procured at local pharmacies 
in the study area, with the exception of azithromycin, which 
was procured in Ouagadougou. Weight measurements were 
collected during the baseline visit as part of anthropometry 
assessments. These measurements were used to calculate the 
appropriate dose of study medication for each child. There was 
no standard dosing for study medication as children were not 
being treated for an established infection. We therefore used the 
lower end of approved dosing regimens for each antibiotic to 
reduce the risk of adverse events. All antibiotics were admin-
istered for 5 days. We used the lower end of approved dosing 
for amoxicillin for children under 12 years of age (25 mg/kg/d 
in twice-daily doses). Azithromycin dosing was based on the 
lower end of the range for standard pediatric dosing for mild to 
moderate infection (a single 10-mg/kg dose on day 1 and then 
5 mg/kg once daily for 4 days). Cotrimoxazole dosing was based 
on prophylactic dosing for children living with HIV (240 mg 
once daily) [25–28]. Placebo was prepared by study staff as a 
mixture of powdered milk, sugar, and bottled water. All study 
medications were prepared daily in orange opaque syringes and 
labeled uniquely for each child. Treatment was administered 

from a central point in each study community. A community 
mobilizer visited the homes of the children participating in the 
study and instructed the caregivers to bring the children to the 
central point for examination and treatment visits. Treatment 
teams recorded whether each child received the study treatment 
and reasons for a missed treatment.

Masking

Treatment teams were not told the identity of the study medication, 
and the orange tinting of the syringes helped to conceal the identity 
of the study drug. However, due to differences in taste and appear-
ance, the treatment team was not masked. In contrast, examination 
teams were masked to treatment assignment, and laboratory per-
sonnel were masked to treatment assignment and time point.

Baseline Questionnaire

At baseline, the caregiver of each child completed a short ques-
tionnaire related to the child and the child’s household of resi-
dence. Health status questions included if the child had recently 
visited a health facility and, if so, if the child had been treated 
with antibiotics after the visit. Caregivers were asked if the child 
was currently breastfeeding.

Outcome Assessment

Rectal samples were collected in the field at baseline and 5 days 
after the last antibiotic treatment. Examiners inserted a swab 
1–3  cm into the anus and rotated 360  degrees. Examiners 
changed gloves between each participant. Swabs were immedi-
ately placed in a Stool Nucleic Acid Collection and Transport 
Tube containing Norgen Stool Preservative (Norgen, Ontario, 
Canada). The transport media preserves DNA and RNA in 
the sample and prevents growth of organisms. Samples were 
placed at ambient temperature in the field, and then stored at 
the CRSN laboratory at –80°C until they were shipped to the 
United States. Samples were shipped on ice and then stored at 
–80°C until processing. Samples were de-identified in the field 
and then placed in a random order for library preparation and 
sequencing. DNA was extracted from the fecal samples using 
the Norgen stool DNA isolation kit (Norgen, Ontario, Canada), 
per the manufacturer’s instructions. Concentration of DNA was 
quantified using the Qubit dsDNA HS Assay Kit (ThermoFisher 
Scientific, Waltham, MA) and adjusted to 15  ng/uL. The gut 
bacterial community was assessed by deep sequencing the 
V3-V4 hypervariable regions of the 16S rDNA gene. Library 
preparation was performed by SeqMatic (Fremont, CA) per the 
Illumina16S metagenomic sequencing library preparation pro-
tocol. Demultiplexed raw sequences were processed in QIMME, 
version 1.9, which utilizes the Ribosomal Database Project 
Classifier and the full GreenGenes 13_8 reference database to 
assign taxonomy to each sequencing read.

Sample Size Determination

The sample size calculation was based on the primary out-
come, Simpson’s α-diversity. A sample size of 30 children per 
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arm was estimated to provide at least 80% power to detect a 
1.5-unit difference in Simpson’s α-diversity based on a previous 
study in Niger [1].

Statistical Methods

The primary outcome of the study was prespecified as α-diver-
sity (inverse Simpson’s) at the genus level, expressed in effective 
number. Shannon’s α-diversity was calculated as a secondary 
outcome [29]. The primary prespecified analysis assessed mean 
post-treatment diversities, compared across all arms with an ana-
lysis of variance and pairwise comparisons performed with a t 
test. As a sensitivity analysis, the post-treatment diversities were 
compared between arms in a linear regression model adjusted for 
baseline diversity. As an additional sensitivity analysis, post-treat-
ment diversities were compared between arms with a term for 
both the child’s age and the baseline diversity measurement in a 
linear regression model. We used permutational multivariate ana-
lysis of variance (PERMANOVA) to assess differences in micro-
bial composition between arms using Manhattan and Euclidean 
distances. A principal coordinates analysis (PCoA) was used to 
visually depict the centroids of the groups. All P values were cal-
culated using a Monte Carlo permutation test with 10 000 repli-
cations, and P values <.05 were considered statistically significant 
for all tests. All analyses were conducted in R, version 3.4.3 (The 
R Foundation for Statistical Computing). Diversity measures and 
Manhattan and Euclidean distances were calculated in the R pack-
age “vegan.”

Ethical Considerations

The study was reviewed and approved by the Comité 
Institutionnel d’Ethique at the Centre de Recherche en Santé 
de Nouna in Nouna, Burkina Faso, and the Institutional 
Review Board at the University of California in San Francisco. 
Written informed consent was obtained from the caregiver of 

each participant. The trial was registered at clinicaltrials.gov 
(NCT03187834).

RESULTS

In July 2017, 248 children in 124 households were enrolled 
and randomized to 1 of the 3 antibiotic regimens or placebo 
(Figure 1). Of these, 124 children were randomized within their 
household to receive treatment and are included in this ana-
lysis. Of these children, 120 (96.8%) had a rectal swab collected 
5  days after their last antibiotic dose. The median age (inter-
quartile range) was 36 (21–51) months, and 54.0% of the chil-
dren were female (Table 1). One-quarter (27.4%) were currently 
breastfeeding, and 7.3% had received an antibiotic from a health 
facility in the last month. Baseline characteristics were well bal-
anced across the 4 study arms. Adherence to study medication 
and adverse events have been previously reported [30]. More 
than 90% of children received their allocated study medication 
at most time points. Adverse events were uncommon, and no 
diarrhea was noted in any of the antibiotic arms. 16S rRNA gene 
analysis of the fecal samples identified 429 unique genera. At 
both baseline and post-treatment, the most common genus was 
Prevotella spp. (Supplementary Figure 1).

There was no difference in Simpson’s or Shannon’s α-diver-
sity across the 4 study arms at baseline (P =  .55 and P =  .59, 
respectively) (Table 2). Five days after the last antibiotic dose, 
there was an overall difference in α-diversity across all arms, as 
measured by Simpson’s and Shannon’s diversities (P = .003 and 
P = .0001, respectively) (Table 2). Results were robust to adjust-
ment for the child’s age (P =  .005 for Simpson’s and P =  .002 
for Shannon’s diversity). The post-treatment mean Simpson’s 
α-diversity effective number was 6.6 (95% confidence interval 
[CI], 5.5–7.8) in the azithromycin arm, 8.3 (95% CI, 7.0–9.6) in 
the amoxicillin arm, 8.3 (95% CI, 6.9–9.7) in the cotrimoxazole 

Enrollment

Allocation

Analyzed

Lost to Follow-
up

Amoxicillin
n = 31

n = 27

n = 4

Azithromycin
n = 31

Assessed for Eligibility
n = 165 Households

Randomized
n = 124 Children

Not Enrolled
Two children not present:

n = 41 households

n = 30

n = 1

Cotrimoxazole
n = 31

n = 29

n = 2

Placebo
n = 31

n = 29

n = 2

Figure 1.    Consolidated Standards for Reporting of Trials study flow diagram.
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arm, and 9.8 (95% CI, 8.7–10.9) in the placebo arm (Figure 2; 
Table  2). Simpson’s diversity was significantly reduced in 
the azithromycin arm compared with placebo (P  =  .0001 by  
t test, P = .0001 by linear regression). Simpson’s diversity index 
was nonsignificantly lower in children receiving amoxicillin 
(P = .09 by t test, P = .03 by linear regression) and co-trimoxa-
zole (P = .08 by t test, P = .048 by linear regression) compared 
with placebo (Table 2). Differences in Shannon’s diversity index 
were similar to the primary outcome (azithromycin vs placebo: 
P = .0002; amoxicillin vs placebo: P = .09; cotrimoxazole vs pla-
cebo: P =  .048; all t test) (Figure 2). Similarly, PERMANOVA 
analysis found a significant difference in L1 norm (equivalent 
to Shannon’s diversity, P  =  .01) and L2 norm (equivalent to 
Simpson’s diversity, P = .0001) across the study arms (Figure 3).

DISCUSSION

A course of azithromycin significantly reduced intestinal bac-
terial diversity and composition in children in Burkina Faso, 
consistent with a previous study in Niger [1]. In the previous 
study, children received a single dose of azithromycin or pla-
cebo, with the same dosing used by trachoma control programs 
and a recent trial investigating the effect of azithromycin on 
child survival [15, 16, 31, 32]. Here, we used a 5-day course with 
dosing equivalent to a Z-pack, a common course for treating 
mild infections in children such as otitis media. Taken together, 
the results of these studies suggest a definitive decrease in intes-
tinal bacterial diversity following an azithromycin course in 
children.

The effect of amoxicillin or co-trimoxazole on intestinal bac-
terial diversity was less clear. Although there was a decrease in 

diversity between baseline and post-treatment for both anti-
biotics, the prespecified primary analysis was not statistically 
significant for either antibiotic. A sensitivity analysis including 
the baseline measurement for diversity yielded borderline sig-
nificant results for both antibiotics, suggesting that there may 
be an effect of both antibiotics on the microbiome but that the 
present study may have been underpowered to detect smaller 
differences. A  previous observational study among Finnish 
children showed a decrease in diversity with macrolides but not 
penicillins and suggested that macrolides had a greater effect on 
dysbiosis than pencillins [4]. In the current study, because anti-
biotics were not being given for established infection, amoxi-
cillin dosing was chosen to be the lower end of the approved 
range to minimize side effects. Cotrimoxazole was dosed fol-
lowing World Health Organization guidelines for cotrimoxaz-
ole prophylaxis for children living with HIV [25, 26, 28]. Higher 
doses of cotrimoxazole or amoxicillin may yield different effects 
on the microbiome. Further, the condition in which the medi-
cations were stored may have altered their efficacy. Both cotri-
moxazole and amoxicillin were purchased in Nouna, a rural 
area in Burkina Faso, where temperature monitoring of the 
medications was not observed. Therefore, higher doses of qual-
ity amoxicillin or cotrimoxazole may lead to greater changes 
in the composition of the intestinal microbiota. However, the 
use of locally sourced antibiotics simulates the conditions 
under which children in similar settings are treated, and thus 
these results are likely representative of intestinal microbiome 
changes following the use of similar antibiotics in west Africa.

Previous studies in high-income settings have indicated that 
dysbiosis of the intestinal microbiome may be associated with 

Table 2.  Simpson’s and Shannon’s Alpha Diversity at Baseline and Post-treatment

Amoxicillin Azithromycin Cotrimoxazole Placebo

Baseline
(n = 31)

Post-treatment
(n = 27)

Baseline
 (n = 31)

Post-treatment
 (n = 30)

Baseline
 (n = 31)

Post-treatment
 (n = 29)

Baseline
 (n = 31)

Post-treatment
 (n = 29)

Simpson (inverse) 
effective number, 
mean (95% CI)

10.2 (8.8–11.5) 8.3 (7.0–9.6) 8.8 (7.5–10.1) 6.6 (5.5–7.8) 9.7 (8.2–11.2) 8.3 (6.9–9.7) 9.6 (8.6–10.7) 9.8 (8.7–10.9)

Shannon (exponential) 
effective number, 
mean (95% CI)

16.6 (14.5–18.7) 13.9 (12.1–15.8) 14.6 (13.0–16.2) 11.0 (9.3–12.7) 15.6 (13.4–17.8) 13.5 (11.6–15.4) 15.4 (14.1–16.7) 16.0 (14.3–17.8)

Abbreviation: CI, confidence interval.

Table 1.  Baseline Characteristics by Study Arm

Amoxicillin 
(n = 31)

Azithromycin 
(n = 31)

Cotrimoxazole 
(n = 31)

Placebo 
(n = 31)

Age, median (IQR), mo 32 (23–48) 29 (21–51) 37 (23–48) 38 (23–51)

Female sex, No. (%) 15 (48.4) 18 (58.1) 20 (64.5) 14 (45.2)

Recently visited health facility, No. (%) 6 (19.4) 4 (12.9) 6 (19.4) 5 (16.1)

Recent antibiotic use, No. (%) 2 (6.5) 2 (6.5) 3 (9.7) 2 (6.5)

Breastfeeding, No. (%) 6 (19.4) 11 (35.5) 9 (29.0) 8 (25.8)

Abbreviation: IQR, interquartile range.
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morbidity in children, including asthma [9], food allergy [33], 
and obesity [34]. In low-income settings, differences in intesti-
nal diversity have been noted in children with different forms 
of severe acute malnutrition [12] and in twin pairs discord-
ant for kwashiorkor [8]. Antibiotics have been shown to lead 
to weight gain in children in randomized controlled trials [30, 
35]. Alteration to the intestinal microbiome induced by anti-
biotic use may affect nutrient absorption or energy metabolism 
that can affect weight gain in children [36, 37], or weight gain 
after antibiotic use may be mediated by reduction in the bur-
den of enteropathogens. However, the clinical implications of a 
single course of antibiotics remain unclear.

Several limitations should be noted. The duration of follow-up 
in the present study was short, and thus evaluated short-term 
changes in the intestinal microbiome following a course of anti-
biotics. Some studies have indicated that there may be longer-
term changes in the microbiome following antibiotic use in 

children [4]. It is possible that the changes observed in the pres-
ent study are transient, or they may persist for several months. 
Recent antibiotic use was uncommon in the study population, 
but contamination of treatment assignment could have occurred 
if children used antibiotics other than the study medication 
during the course of the study. This study was conducted in a 
rural area of Burkina Faso that is characterized by high infec-
tion burden and high mortality. The results of this study may 
not be generalizable to children living in different settings, as 
the microbiome in children differs substantially geographically 
[38]. However, the results of this study support previous obser-
vational and randomized studies that have indicated effects on 
intestinal microbial diversity following antibiotic use [1, 4, 5, 39].

In this randomized controlled trial of 3 commonly used antibi-
otics, we demonstrated that a short course of azithromycin led to a 
significant decrease in bacterial diversity of the intestinal microbi-
ome in preschool children. Amoxicillin and cotrimoxazole dosing 
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Figure 2.  Distributions of Simpson’s (A) and Shannon’s (B) alpha diversity indices at baseline and 5 days after the final study treatment for children treated with placebo 
(black lines), azithromycin (red lines), amoxicillin (blue lines), and cotrimoxazole (green lines).
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consistent with that used for prophylaxis in children living with 
HIV did not lead to a significant difference in bacterial diversity. 
Although the clinical implications of a single course of antibiot-
ics are unclear, the results of this study indicate that the intestinal 
microbiome in young children is sensitive to antibiotics.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 

the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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