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Abstract: A new compound containing a triene, a tetrahydropyran ring and glycine ester
functionalities, restricticin B (1), together with four known compounds (2–5) were obtained from
the EtOAc extract of the marine-derived fungus Penicillium janthinellum. The planar structure of
1 was determined by detailed analyses of MS, 1D and 2D NMR data. The relative and absolute
configurations of 1 were established via the analyses of NOESY spectroscopy data, the comparison
of optical rotation values with those of reported restricticin derivatives and electronic circular
dichroism (ECD). All the compounds were screened for their anti-neuroinflammatory effects in
lipopolysaccharide (LPS)-induced BV-2 microglia cells. Restricticin B (1) and N-acetyl restricticin
(2) exhibited anti-neuroinflammatory effects by suppressing the production of pro-inflammatory
mediators in activated microglial cells.

Keywords: restricticin; marine-derived fungus; Penicillium janthinellum; BV-2 microglia cells;
anti-neuroinflammatory

1. Introduction

The novel class of potent antifungal agents, restricticin and restricticinol, were first isolated from
the fermentation broth of Penicillium restrictum [1,2]. These compounds contain a tetrahydropyran
ring and triene side chains in common and restricticin possesses a glycine unit linked to the
tetrahydropyran ring [3]. The initial biological activity study of restricticin derivatives displayed that
only restricticin exhibited potent antifungal activity against both yeast and filamentous fungi [1,4].
The very closely related compounds with a shorter polyene chain, lanomycin and lanomycinol,
were isolated from Pycnidiophora dispersa in 1992 and chaunopyran A possessing a same polyene
chain and 2-alkenyl-tetrahydropyran was reported in 2017 [5,6]. Lanomycin was active against some
Candida species and dermatophytes and not active against Gram-positive, Gram-negative bacteria and
Aspergillus fumigatus [7]. Restricticin and lanomycin were first reported as natural antifungal agents
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to inhibit cytochrome P450 lanosterol demethylase [5,8]. Interestingly, restricticinol and lanomycinol
did not show such antifungal activity [8]. Because of the considerable interest in their biological activity,
several methods for the total synthesis of the antifungal agents have been described [8–10].

Microglia, macrophages and representatives of the innate immune system in the brain, have been
implicated as active contributors to neuron damage and readily become activated in response to
infection or injury [11,12]. Activated microglia upregulate pro-inflammatory and neurotoxic mediators
including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and free radicals
such as nitric oxide (NO) and superoxide [13]. Moreover, large numbers of activated microglia are
present in the CNS tissue of patients with chronic neurodegenerative diseases such as Parkinson’s
disease, Alzheimer’s disease, Huntington’s disease and prion disease [14,15]. Therefore, the suppression
of pro-inflammatory and neurotoxic molecules in activated microglia would be an effective therapeutic
approach to treat various neuronal diseases [16].

Over the past decade, the secondary metabolites from marine microbes have been researched as
a promising source for medical applications and clinical development [17,18]. Among the marine-derived
microorganisms, marine fungi produce bioactive compounds with a broad range of bioactivities such
as antibacterial, antiviral, antitumoral, antimalarial and anti-inflammatory [19]. As a part of our
ongoing investigation for diverse secondary metabolites from marine microorganisms, we isolated
the fungal 168CLC-17.1 strain from a sediment sample collected from Cu Lao Cham Island, Vietnam,
and based on its nuclear ribosomal internal transcribed spacer (ITS) region sequence, it was identified
as Penicillium janthinellum. Further chemical investigation of the ethyl acetate extracts of the fungal
culture broth yielded a new restricticin derivative, named restricticin B (1), together with four known
compounds, N-acetyl restricticin (2) [19], 3,3”-dihydroxy-6′-desmethyl terphenyllin (3) [20], fellutanine
B (4) [21] and 10,23-dihydro-24,25-dehydro aflavinin (5) [22] (Figure 1). Here, we describe the chemical
investigation, structural determination, and bioactivities of these compounds.
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NMR spectrum, in combination with the HSQC spectrum, displayed the presence of 26 carbon signals, 
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Figure 1. Structures of compounds 1–5 isolated from Penicillium janthinellum.

2. Results and Discussion

Compound 1 was isolated as a pale brown oil and its molecular formula was determined to be
C26H35NO7 based on the HRESIMS ion at m/z 496.2306 ([M + Na]+ calcd. 496.2311). The 1H NMR
spectrum of 1 indicated characteristic signals of seven olefinic protons (δH 8.20, 6.27, 6.21, 6.08, 5.98, 5.74,
and 5.70), four methine protons (δH 5.00, 3.60, 3.52, and 2.33), four methylene protons (δH 4.32, δH 3.78,
3.63, δH 2.05, and δH 1.40) and five methyl protons (δH 3.33, 2.51, 1.74, 1.06, and 0.90). The 13C NMR
spectrum, in combination with the HSQC spectrum, displayed the presence of 26 carbon signals, three
carbonyl carbons (δC 184.1, 164.9, and 167.2), five pairs of olefinic carbons (δC 165.4, 162.7, 135.3, 134.4,
132.5, 130.6, 129.5, 125.3, 106.9, and 96.6), three oxygenated methine carbons (δC 84.9, 81.0, and 70.4),
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one methine carbon (δC 32.1), one oxygenated and one nitrogenated methylene carbons (δC 70.2 and
50.0, respectively), two methylene carbons (δC 34.5 and 22.0), one methoxy carbon (δC 55.0), and four
methyl carbons (δC 18.7, 12.6, 10.4, and 9.5). The planar structure of 1 was elucidated by the analysis
of the 2D NMR data, including the COSY and HMBC spectra (Figure 2). The COSY correlations of
H-3/H-4/H-5/H-6/H-7/H2-8/H2-9/H3-10 revealed the presence of an unsaturated side chain. The presence
of the tetrahydropyran ring was confirmed by the COSY correlations of H-1′/H-2′/H-3′/H-4′/H2-5′/H3-11
and the HMBC correlations from H-5′ to C-1′, H3-12 to C-3′, and H3-11 to C-3′ and C-5′. The HMBC
correlations from H3-1 to C-1′, C-2, and C-3, H-1′ to C-2 and C-3, and H-2′ to C-2 indicated that
the triene side chain is connected to the tetrahydropyran ring. The geometry of the side chain was
determined as all E by the large 3JH,H coupling constants for H-4/H-5 (14.5 ppm) and H-6/H-7 (15.0 ppm)
and the NOESY correlations of H-3/H-5 and H3-1/H-4. Afterwards, a glycine moiety was confirmed by
the HMBC correlations from H-2′ and H2-14 to C-13. Detailed analysis of 1D and 2D NMR spectra of 1
revealed that the partial structure was closely similar to that of restricticin. The HMBC correlations
from H-1” to C-2”, C-3”, C-6”, and C-14, H-4” to C-2” and C-5”, and H-7” to C-4” and C-5” established
the α-pyrone moiety linked to the NH of the glycine unit.
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Interestingly, the NMR data in one specific area showed a duplication of the proton and carbon
signals (Table 1). The 1H NMR spectrum of 1 displayed a pair of olefinic singlet signals at H-1”
(major: δH 8.20, minor: δH 8.32) and doublet methylene signals at H-14 (major: δH 4.27, 4.36,
minor: δH 4.29, 4.38). Moreover, a pair of signals for the exchangeable NH proton (major: δH 11.8,
minor: δH 10.1) was detected in the 1H NMR spectrum in CDCl3. The 13C NMR spectrum also showed
that two sets of the carbon signals at C-13 (δC 167.1 and 167.2), C-14 (δC 49.9 and 50.0), C-1” (δC 161.5
and 162.7), C-2” (δC 96.5 and 96.6), C-3” (δC 181.7 and 184.1), C-4” (δC 106.6 and 106.9) and C-5”
(δC 165.3 and 165.4). These phenomena were presumed to be involved in imine–enamine tautomerism
involving the ketone group at C-3”. The form of 1a was probably explained as the E geometry of
∆1”, based on NMR evidence via tautomeric equilibrium, where an exchangeable amide proton is
notably shifted downfield by a strong intramolecular hydrogen bond with a ketocarbonyl group (C-3”)
(Scheme 1). Otherwise, the proton signal of 1b-NH in the more upfield region was assigned as the
Z geometry of ∆1” due to the weaker hydrogen bond with a carbonyl group (C-6”) than 1a. For the
same reason, the H-1” of 1a and 1b also displayed the similar pattern.

To rationalize these unexpected observations, EXSY (exchange spectroscopy) experiments and the
synthesis of the pyrone moiety were carried out following previous studies [23,24]. In the NOESY
spectrum, EXSY correlations (equilibrium spots) of NH and H-1” confirmed the presence of two
isomers as an inseparable mixture (Figure S9, Supporting Information). An extensive literature survey
has indicated that 4-hydroxy-6-methyl-2-pyrone and glycine in 2-propanol in the presence of triethyl
orthoformate led to 6 (Scheme 2), and the 1H NMR spectra in previous studies displayed a pair of
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signals due to the existence of E and Z isomers [24,25]. Comparison of the NMR data of 1 and 6
indicated that they had the same phenomenon of imine–enamine tautomerism (Figure S10, Supporting
Information). Thus, the planar structure of 1 was assigned as shown in Figure 1.

Table 1. 1H and 13C NMR data for 1 and 2 at 500 MHz and 125 MHz in CD3OD (δ in ppm, J in Hz).

Position
1 2

δH (J in Hz) Type δC δH (J in Hz) Type δC

1′ 3.60 (d, 9.5) CH 84.9 3.60(d, 9.5) CH 85.0
2′ 5.00 (dd, 9.5, 9.5) CH 70.4 4.98 (dd, 9.5, 9.5) CH 67.7
3′ 3.52, m CH 81.0 3.47, m CH 81.3
4′ 2.33, m CH 32.1 2.30, m CH 32.4

5′
3.63 (d, 12.0) CH2 70.2

3.64 (d, 12.0) CH2 70.33.78 (d, 12.0) 3.75 (d, 12.0)
1 1.74. s CH3 10.4 1.78. s CH3 10.5
2 C 132.5 C 132.5
3 5.98 (d, 10.5) CH 129.5 5.99 (d, 10.5) CH 129.4

4 6.27 (dd, 14.5, 10.0) CH 125.3 6.27 (dd, 14.5,
10.5) CH 125.6

5 6.21 (dd, 14.5, 10.0) CH 134.4 6.23 (dd, 14.5,
10.5) CH 134.0

6 6.08 (dd, 15.0, 10.5) CH 130.6 6.10 (dd, 14.5,
10.5) CH 130.7

7 5.70, (dt, 15.0, 7.0) CH 135.3 5.72, (dt, 14.5, 7.0) CH 135.0
8 2.05 (q, 7.0) CH2 34.5 2.07 (q, 7.0) CH2 34.5
9 1.40, m CH2 22.0 1.44, m CH2 22.1

10 0.90 (t, 7.5) CH3 12.6 0.91 (t, 7.0) CH3 12.6
11 1.06 (d, 7.0) CH3 9.5 1.06 (d, 7.5) CH3 9.6
12 3.33, s OCH3 55.0 3.34, s OCH3 55.4

13 C
167.2

C 169.1
(167.1) b

14
4.27 (d, 18.0)
4.36 (d, 18.0)
(4.29, 4.38) b

CH2
50.0

(49.9) b
3.73 (d, 18.0)
3.94 (d, 18.0)

CH2 40.5

NH a
11.8, brs
(10.1) b

1′′ 8.20, s CH 162.7
C 172.0

(8.32) b CH (161.5) b

2′′ C
96.6 1.95, s CH3 20.8

(96.5) b

3′′ C
184.1

(181.7) b

4′′ 5.74, s CH
106.9

(106.6) b

5′′ C
165.4

(165.3) b

6′′ C 164.9
7′′ 2.51, s CH3 18.7

The assignments were aided by COSY, NOESY, HSQC, and HMBC NMR spectra. a Measured in CDCl3 b NMR
chemical shifts recorded for the minor signals observed for compound 1.
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Scheme 2. Synthesis of the pyrone moiety (6) of restricticin B.

The relative stereochemistry of 1 was determined by the analysis of NOESY spectra and the
comparison of the optical rotation values with the literature. The strong NOESY correlations of
H3-1/H-2′/H3-11 and H-1′/H-3′/H-4′ suggested that H3-1, H-10 and H3-11 were on the same face,
and H-1′, H-3′ and H-4′ were on the opposite face. Finally, the absolute configuration of 1 was
confirmed by the comparison of the specific rotation value of 1 with those in the literature [8–10,26]
(Figure 3) and the electronic circular dichroism (ECD) method (Figure 4). The optical rotation value of 1
is in good agreement with all reported restricticin, lanomycins and N-acetyl restricticin (2), suggesting
that 1 has the same absolute configuration with its derivatives as shown in Figure 3. Additionally,
the ECD calculation of enantiomers (1: 1′S,2′R,3′S,4′S, ent-1: 1′R,2′S,3′R,4′R) was carried out at
B3LYP/6-311 + G(d)1 level. The experimental CD spectrum showed a positive Cotton effect at 305 nm.
Then, the theoretical ECD spectrum of 1a was in reasonable agreement with the measured CD spectrum,
suggesting that the absolute configurations of 1 are defined as 1′S,2′R,3′S,4′S. Based on these results,
the structure of 1 was assigned and named restricticin B.
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The structures of the four known compounds were determined as N-acetyl restricticin (2),
3,3”-dihydroxy-6′-desmethyl terphenyllin (3), fellutanine B (4) and 10,23-dihydro-24,25-dehydro
aflavinin (5) by comparing their 1H, 13C NMR and MS data with those reported in the literature
(Supporting Information).

Compounds 1 and 2 were tested for their antimicrobial activity using fungi (Penicillium italicum
KCTC 6437, Rhizopus oryzae KCTC 6944), yeast (Candida albicans KCTC 7678), Gram-positive bacteria
(Micrococcus lutes KCTC1915, Staphylococcus auresus KCTC 1927, Bacillus subtilis KCTC 1021) and
Gram-negative bacteria (Salmonella typhimurium KCTC 2515, Klebsiella pneumoniae KCTC 2690, Escherichia
coli KCTC 2441) and the cytotoxicity against cancer cell lines (HCT-15, NUGC-3, NCI-H23, ACHN,
PC-3 and MDA-MB-231). However, 1 and 2 showed no antibacterial activity and cytotoxicity against
cancer cell lines. Along with the fact that restricticinol and lanomycinol have no antifungal activity in
previous research, the results of this study suggested that the free amine of the glycine unit is important
for the antifungal activity.

All the isolated compounds (1–5) were evaluated for inhibitory activity on nitric oxide (NO)
production in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells and for their cytotoxicity.
The cells were initially treated with 100 µM of each compounds and/or LPS (200 ng/mL) to measure the
levels of NO and cytotoxicity using an MTT assay. As shown in Figure 5, all the compounds inhibited
the LPS-induced NO production in BV-2 microglial cells. However, compounds 3 and 5 displayed
weak and strong toxicity, respectively. Compounds 1, 2, and 4 decreased the production of NO without
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showing cytotoxicity at the treated concentrations. According to the results, restricticin derivatives
have the most potent anti-inflammatory effect among the treated compounds without cytotoxicity.
Therefore, restricticin B (1) and N-acetyl restricticin (2) were selected to further investigate the effects on
the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)
mRNA and protein expression, and the production of LPS-stimulated pro-inflammatory cytokines in
BV-2 microglia cells.
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Figure 5. The effects of compounds 1–5 on NO production in lipopolysaccharide (LPS)-stimulated BV-2
cells. Cells were pretreated with the indicated concentration of samples for 1 h and then stimulated
with LPS (100 ng/mL) for 24 h. Cell viability was evaluated using MTT assay. Results are shown as
percentage of control samples. Values are the mean ± standard error.

Two restricticin class compounds (1 and 2) at the concentrations of 50 µM and 100 µM inhibited
the NO production in BV-2 cells in a dose-dependent manner (Figure 6A). Compound 1 showed
a stronger inhibition of NO production than 2. As shown in Figure 6B,C, LPS treatment (200 ng/mL)
significantly upregulated iNOS and COX-2 expression, and the mRNA and protein expression
levels of iNOS and COX-2 were inhibited by restricticins in concentration-dependent manner.
To investigate whether restricticins repress the production of pro-inflammatory cytokines such
as TNF-α, IL-1β and IL-6, RT-PCR was performed, and the results showed that restricticins reduced
the secretion of pro-inflammatory cytokines. Interestingly, IL-1β was the most strongly inhibited by
compound 1 at 100 µM. Consequently, these results indicated that restricticins have effective properties
in neuroinflammation processes and suppress the expression of pro-inflammatory mediators at the
transcriptional level.
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Figure 6. (A) The measurements of nitrite levels in the culture media were performed using the Griess
reaction. Cell viability was evaluated using the MTT assay. Results are shown as the percentage of
control samples. (B) Inhibition of iNOS and COX-2 protein (C) and mRNA (D) and pro-inflammatory
cytokines expression by compounds 1–2 in LPS-stimulated BV-2 cells. The data (B–D) are expressed as
the relative signal intensity for two independent experiments. Values are the mean ± standard error.
### p < 0.001, vs. control group and *** p < 0.001 vs. LPS-treated group.
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3. Materials and Methods

3.1. General Experimental Procedures

NMR spectra (1H, 13C, COSY, HSQC, HMBC and NOESY) were measured on a Varian
Unity 500 MHz (Varian Inc., Palo Alto, CA, USA) and a Bruker 600 MHz (Bruker BioSpin
GmbH, Rheinstetten, Germany) spectrometer with TMS as an internal standard. Optical rotations
were obtained on a Rudolph Research Analytical Autopol III polarimeter (Rudolph Research
Analytical, Hackettstown, NJ, USA). CD spectra were recorded on a JASCO J-1500 spectrometer
(JASCO Corporation, Tokyo, Japan). UV spectra were acquired on a Shimadzu UV-1650PC
spectrophotometer (Shimadzu Corporation, Kyoto, Japan). IR spectra were measured on a JASCO
FT/IR-4100 spectrophotometer (JASCO Corporation, Tokyo, Japan). HRESIMS were measured on Waters
Synapt HDMS LC/MS mass spectrometer (Waters Corporation, Milford, MA, USA). HPLC system
was composed of a PrimeLine Binary pump (Analytical Scientific Instruments, Inc., El Sobrante,
CA, USA) with RI-101 (Shoko Scientific Co. Ltd., Yokohama, Japan), semi-preparative ODS column
(YMC-Pack-ODS-A, 250 × 10 mm i.d, 5 µm) and an analytical ODS column (YMC-Pack-ODS-A,
250 × 4.6 mm i.d, 5 µm)(YMC Corporation, Kyoto, Japan).

3.2. BV-2 Microglial Cell Culture and Treatment

The BV-2 murine microglial cells were cultured in DMEM (Dulbecco’s modified Eagle medium)
supplemented with 5% fetal bovine serum and 1% penicillin/streptomycin (100 units/mL) at 37 ◦C in a
humidified 5% CO2 incubator. The cell was seeded at a density of 2.5 × 105 cells/mL and pretreated
with the same concentration of samples and followed by LPS incubation (200 ng/mL) [27].

3.3. Cell Viability and Nitrite Assay

The BV-2 microglial cells seeded at a density of 2.5× 105 cells/well were pretreated with 50~100 µM
of compounds 1–5 for 1 h, followed by LPS (200 ng/mL) for 24 h. Twenty microliters of MTT solution
(2 mg/mL, conc.) was added to each well in 24 wells. After 1 h, the supernatant was sucked and
dissolved the formazan crystals in viable cells from DMSO. Optical density was measured at 550 nm
using a microplate reader and values were determined in comparison to control cells. For the nitrite
assay, the BV-2 microglial cells seeded at a density of 2.5 × 105 cells/well were pretreated with
50~100 µM of compounds 1–5 for 1 h, followed by LPS (200 ng/mL) for 24 h. One hundred microliters
of supernatants was collected and transferred to new microplate. After transfer, the supernatants
were mixed with an equal volume of Griess reagent for 10 min at room temperature in the dark.
The amount of nitrite in each sample was measured by using a range of sodium nitrite dilutions as
standard solutions. Absorbance was determined at 540 nm using a microplate reader [27].

3.4. Total RNA Extraction and Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA extraction of BV-2 microglial cells was prepared using Trizol reagent following the
manufacturer’s instructions. RNA (2.5 µg) was reverse-transcribed using ReverTra Ace-α kit and PCR
amplification was carried out using specific primers [28].

3.5. Western Blot Analysis

Treated BV-2 cells (5 × 105 cells/well) were washed twice with PBS and lysed for 10 min using
RIPA lysis buffer at 4 ◦C to obtain the total cell lysate. The cells were centrifuged at 14,000 rpm at 4 ◦C
and collected and separately stored for further analysis. DC Protein Assay kit was used for the protein
concentration of isolated compounds. Equal amounts of protein (35 µg for cells) were separated by 10%
sodium dodecyl sulfate–polyacrylamide electrophoresis, and the resolved proteins were transferred to
polyvinylidene difluoride membranes. The membranes were incubated for 1 h with 5% skim-milk in TBS
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buffer to block nonspecific binding. The blots were visualized by a PowerOpti-ECL kit obtained from the
detection system (Animal Genetics Inc., Tallahassee, FL, USA) [28].

3.6. Fungal Strain and Fermentation

The strain 168CLC-17.1 was isolated from a sediment sample, and collected at Cu Lao Cham Island,
Quang Nam, Vietnam in August 2016. The strain was identified by DNA amplification and the
sequencing of the ITS region (GenBank accession number AB293968.1) and named as Penicillium
janthinellum 168CLC-17.1. The cultivation and fermentation of the fungal strain have been previously
described [29].

3.7. Isolation of Compounds 1–5

The mycelia and rice media were extracted with EtOAc and then concentrated to yield a crude
extract (6 g). The crude extract was partitioned on ODS by flash column chromatography on using
a gradient of MeOH/H2O (1:4, 2:3, 3:2, 4:1 and 100% MeOH, each fraction 300 × 3). The third fraction
eluted with 80% MeOH was purified with a semi-preparative reversed-phase HPLC (2.0 mL/min,
RI detector, 22% MeCN/H2O) to obtain 1 (7.5 mg, tR = 28 min) and 2 (3.2 mg, tR = 18 min). The first
fraction eluted with 40% MeOH was further fractionated on ODS by column chromatography,
eluting with a step gradient of MeOH/H2O (20:80 to 40:60, v/v) to give ten fractions (Fr. A-H).
Fr. B (82 mg) was subjected to ODS HPLC (YMC-Pack-ODS-A, 250 × 10 mm i.d, 5 µm, flow rate
3.0 mL/min, RI detector) with 25% MeOH in H2O to yield compound 3 (62 mg, tR = 14 min). Compound
4 (5.1 mg, tR = 46 min) was purified from the third fraction eluted with 60% MeOH by a semi-preparative
reversed-phase HPLC (3.0 mL/min, RI detector, 55% MeOH/H2O). The first fraction eluted with 100%
MeOH was further partitioned by column chromatography on ODS eluting with a step gradient of
MeOH/H2O (90:10 to 100:0, v/v) to yield ten fractions (Fr. A-J). Fr. C-F (182 mg) was purified by a ODS
HPLC (YMC-Pack-ODS-A, 250 × 10 mm i.d, 5 µm, flow rate 4.0 mL/min, RI detector) with 95% MeOH
in H2O to yield 5 (85 mg, tR = 12 min).

Restricticin B (1): pale brown oil; [α]20
D + 65 (c 0.2, MeOH); CD (MeOH), λmax (∆ε) 305 (54.59)

nm; IR νmax 2933, 1727, 1653, 1617, 1458, 1328, 1201, 1109, 1035, 985 cm−1; UV(MeOH) λmax (log ε)
317 (3.39), 276 (3.77), 236 (3.47), 201 (3.53) nm; HRESIMS m/z 496.2306 [M + Na]+ (calcd for 496.2311,
C26H35NO7Na); 1H NMR (CD3OD, 500 MHz) and 13C NMR (CD3OD, 125 MHz) see Table 1.

3.8. Synthesis of Compound 6

Then, 4-Hydroxy-6-methyl-2-pyrone (10 mg, 0.079 mmol), glycine (10 mg, 0.133 mmol), and triethyl
orthoformate (12 mg, 0.081 mmol) were dissolved in 2-propanol (1 mL). The reaction mixture was
stirred overnight at 70 ◦C. After the reaction, the mixture was distilled under reduced pressure and
was subjected to chromatography to afford a pure product 6.

(E)-((6-methyl-2,4-dioxo-2H-pyran-3(4H)-ylidene)methyl)glycine (6): LR-MS m/z: 212.13 [M + H]+;
1H NMR (600 MHz, CD3OD) δH ppm: 8.44 (1H, s, H-3, minor), 8.33 (1H, s, H-3, major), 5.75 (1H, s, H-6),
4.36 (2H, s, H-2, minor), 4.34 (2H, s, H-2, major), 2.17 (3H, s, H-9, minor), 2.16 (3H, s, H-9, major).

3.9. Calculation of ECD Spectra

Conformational searches were performed by CONFLEX version 8.0 program (CONFLEX Corporation,
Tokyo, Japan) with a molecular mechanics force field (MMFF) within a window of 3.0 kcal/mol.
The conformers were further optimized by the B3LYP/6-311G (d,p). The theoretical calculations of the
ECD data were conducted using the time-dependent density functional theory (TD-DFT) method at the
B3LYP/6-311G (d,p), which were performed with Gaussian 16 software (Gaussian Inc., Wallingford, CT,
USA). The calculated ECD spectra data were averaged based on their Boltzmann populations.
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4. Conclusions

Two restrciticin derivatives (1 and 2), along with three known compounds (3–5) were isolated
from the rice medium cultures of the marine-derived fungus Penicillium janthinellum 168CLC-17.1.
The structures of the isolated compounds were determined by the analysis of their NMR and mass
spectrometric data. The absolute configuration of restricticin B (1) was established by NOESY
correlations, comparison of specific rotation values with those of restricticin derivatives reported and
electronic circular dichroism (ECD). Interestingly, the new restricticin 1 possessed an α-pyrone ring
connected to the NH of glycine moiety and showed signal duplication as a 3:2 mixture of isomers.
Two isolated restricticins exhibited inhibitory activity on NO production in LPS-stimulated BV-2
microglial cells. Moreover, the restricticins suppressed iNOS and COX-2 expression (both at the protein
and mRNA levels), and also inhibited the LPS-induced production of pro-inflammatory cytokines.
Additionally, compound 1, possessing α-pyrone moiety and linked to NH. showed stronger activity
than 2 containing the N-acetyl group. To the best of our knowledge, this is the first report on the
anti-neuroinflammatory activity of restrciticins and compounds 3–5.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/9/465/s1,
Figures S1–S10, Table S1: HRESI-MS data, 1H NMR, 13C NMR, COSY, HSQC, HMBC, NOESY and experimental
spectra of 1, Figure S23, Tables S2–S7: ECDs of 1, Figures S11–S22: LRMS data, 1H NMR, 13C NMR and
experimental spectra of 2–5.
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