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Abstract

The predictive and prognostic value of fluorodeoxyglucose (FDG)-positron emission tomography (PET) in non-
small-cell lung carcinoma, colorectal carcinoma and lymphoma is discussed. The degree of FDG uptake is of prog-
nostic value at initial presentation, after induction treatment prior to resection and in the case of relapse of non-small
cell lung cancer (NSCLC). In locally advanced and advanced stages of NSCLC, FDG-PET has been shown to be
predictive for clinical outcome at an early stage of treatment. In colorectal carcinoma, limited studies are available on
the prognostic value of FDG-PET, however, the technique appears to have great potential in monitoring the success of
local ablative therapies soon after intervention and in the prediction and evaluation of response to radiotherapy,
systemic therapy, and combinations thereof. The prognostic value of end-of treatment FDG-PET for FDG-avid
lymphomas has been established, and the next step is to define how to use this information to optimize patient
outcome. In Hodgkin�s lymphoma, FDG-PET has a high negative predictive value, however, histological confirmation
of positive findings should be sought where possible. For non-Hodgkin�s lymphoma, the opposite applies. The newly
published standardized guidelines for interpretation formulates specific criteria for visual interpretation and for
defining PET positivity in the liver, spleen, lung, bone marrow and small residual lesions. The introduction of
these guidelines should reduce variability among studies. Interim PET offers a reliable method for early prediction
of long-term remission, however it should only be performed in prospective randomized controlled trials. Many of the
diagnostic and management questions considered in this review are relevant to other tumour types. Further research
in this field is of great importance, since it may lead to a change in the therapeutic concept of cancer. The preliminary
findings call for systematic inclusion of FDG-PET in therapeutic trials to adequately position FDG-PET in treatment
time lines.
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Introduction

For several years, [18F]fluorodeoxyglucose (FDG)-posi-
tron emission tomography (PET) has become part of the
standard of care in pre-surgical staging of a variety of
malignant diseases, focusing on the detection of malig-
nant lesions at early stages and early detection of recur-
rence and metastatic spread. FDG-PET has been shown
to be successful in distinguishing fibrosis and scar from
viable tumour in residual masses after therapy and in
localization of recurrence in patients with an unexplained
rise of serum tumour markers. FDG-PET has a positive
impact on overall staging and patient management for a

wide variety of malignancies. However, there is more
beyond staging. The metabolic information provided by
FDG-PET makes this technique a promising imaging
biomarker. Biomarkers in medical practice have been
defined as indicators of normal biological or pathologic
processes, or indicators of response to treatment and
they can serve as a surrogate clinical endpoint. Thus,
by definition, many specimen features can be considered
biomarkers. The strength of FDG-PET, however, is that it
permits whole-body imaging in a non-invasive way. It is
therefore not limited to characterizing one or a few target
lesions, but can evaluate multiple tumour sites at the
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same time. Furthermore, serial scanning can be per-
formed, which allows for measurement of functional
changes over time during therapeutic interventions. The
technique can visualize and quantify FDG uptake and is
able to provide several highly reproducible quantitative
parameters of tumour glucose metabolism. As individua-
lized treatment strategies become more relevant and the
choice of anti-tumour agents is expanding considerably,
there is growing interest in the use of FDG-PET as a
response-monitoring tool. Some new therapies may be
cytostatic instead of cytoreductive, in which case success-
ful treatment may not lead to a decrease in tumour
size, which poses new demands on imaging modalities.
The present review aims to discuss the predictive
and prognostic value of FDG-PET. It addresses
the role of FDG-PET in identifying tumour response to
anti-cancer therapies and in identifying subsets of
patients with poor outcome among patients with non-
small-cell lung cancer (NSCLC), colorectal carcinoma
and lymphoma.

Prognostic value of FDG-PET
in NSCLC

The introduction of the combined use of FDG-PET and
computed tomography (CT) has had a major
impact on the diagnosis and staging of lung cancer.
FDG-PET has been employed to evaluate unclassified
pulmonary nodules for malignancy[1,2]. Furthermore,
it provides non-invasive mediastinal staging and reduces
the number of futile thoracotomies and med-
iastinoscopies[3�5]. This imaging modality detects unsus-
pected extrathoracic metastases in 14�17% of patients
otherwise considered potentially resectable[6].
Recently, FDG-PET has also demonstrated its value in

radiation treatment planning and detection of recurrent
disease[7�10]. Currently, there is an increasing interest
in the role of FDG-PET beyond staging, such as the eval-
uation of biological characteristics of the tumour and
prediction of prognosis in the context of treatment strat-
ification and the early assessment of tumour response to
therapy. To date, the tumour�node�metastasis (TNM)
staging system is considered the most important tool to
estimate prognosis and the most important guide in treat-
ment decisions[11]. However, the TNM staging system
provides an incomplete biologic profile of NSCLC,
does not always provide a satisfactory explanation for
differences in relapse and survival and is thus far
from perfect as a prognostic indicator[12]. Quantitative
measures of biological aggressiveness, like FDG
uptake, seem to be better indicators for survival and
risk of relapse[12�15]. For prognostic stratification a
semi-quantitative value that expresses glucose use
(i.e. the standardized uptake value or SUV) can be
calculated using a single whole body FDG-PET that is
routinely performed as part of the pre-therapeutic

staging procedure. A great advantage of measurement
of FDG uptake is that this can be done before any
treatment has been performed.
The prognostic value of FDG-PET at diag-

nosis[12,15�24], after induction therapy[25�28] or in recur-
rent disease[29,30] has been evaluated. These studies have
shown that pre-therapeutic FDG-PET not only improved
patient staging, but also provided prognostic information.
Patients with low FDG uptake in their primary tumour
have a significant longer overall and progression-free sur-
vival than patients with high FDG uptake. Several stu-
dies[16,17,21] found that in patients with high FDG
uptake, prognosis was further reduced if the tumour
also exceeded 3 cm in size.
In contrast to FDG uptake in the primary tumour, the

prognostic ability of the SUV for the regional lymph
nodes remains uncertain. Sasaki et al.[15] observed
that patients with high SUVs of their regional lymph
nodes and low SUVs in their primary tumours did not
experience any local or distant relapse. Therefore, it is at
least speculated that the SUVs for the regional lymph
nodes do not agree with and are not stronger prognostic
factors than the SUVs for the primary tumour. Patients
with complete resolution of prior FDG positive lesions
have been shown to have a good prognosis compared
to those with residual FDG uptake after induction
treatment.
Univariate analyses performed to determine a cut-off

point for the SUV in the primary tumour to discriminate
between a more or less favourable prognosis has ranged
widely from 5 to 20. Vansteenkiste and Higashi
et al.[12,17] showed that dichotomization with a broad
range of SUVs gave significantly discriminative log-rank
probability values. This implies that the relationship
between SUV and prognosis could be a gradual one
rather than based on a threshold. It seems reasonable
to hypothesize that there is no true cut-off point but,
rather, a transition zone, within which the prognosis
gradually worsens.
However, the wide range of SUV values seen in these

studies can also be due to the heterogeneity of the
patient cohorts analysed and to variation in the PET
scanners and acquisition protocols used. Institutional-
based technical factors can lead to variations in
measurement of SUV and might hinder the integrated
or comparative interpretation of the results from one
centre to another[31,32]. Therefore, standardization of
acquisition, reconstruction and ROI methods is preferred
for SUV quantification in multi-centre trials[32].
Agreement on methods of scanning, SUV measurement
and the best cut-off values is needed before this technique
can be fully exploited in clinical medicine to select
patients for adjuvant treatments. Nevertheless, despite
these variabilities and concerns, all 17 studies arrived at
the same conclusion and strongly confirmed that the
degree of tumour glucose use on an FDG-PET scan pro-
vides independent prognostic information.
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Predictive value of FDG-PET in NSCLC

Although the hallmark for evaluation of therapeutic effec-
tiveness of cancer treatment, current morphological ima-
ging techniques have limitations in reliably distinguishing
necrotic tumour or fibrotic scar from residual tumour
tissue[26]. Metabolic response correlated better to patho-
logic response than the change in size on CT and proved
to be a better predictor of long-term survival[33�38].
Indeed, final treatment outcome will be determined
more by the biological aggressiveness of residual
tumour than by its volume[39].
A reduction in glucose use by tumour cells, indicative

of tumour response to therapy, may occur before altera-
tions in tumour size. There seems to be a near linear
relationship between the change in tumour glucose use
(as expressed in the SUV) and the percent of non-viable
tumour cells in resected tumours[36,37]. Fourteen studies
indicated a possible role for PET in assessment of
response during chemotherapy[40�43], induction chemo-
therapy[28,44] during or after radiotherapy[45,46], or a
combination thereof[26,35�38,47]. There are significantly
more complete responders to chemoradiation on PET
than CT, whereas fewer patients are judged to be non-
responders, which implies that chemoradiation may be a
more effective therapy than previous CT-based assess-
ments have suggested[26]. Based on the residual meta-
bolic rate of glucose after one cycle of chemotherapy,
patients with different outcomes can be selected[28,40].
Early prediction of tumour response is of particular

interest in patients with advanced stages of NSCLC.

Tumour progression during first-line chemotherapy
occurs in approximately 30% of patients[48]. Due to rela-
tively slow tumour shrinkage as measured on morpholog-
ical imaging modalities, a significant percentage of
patients will continue to undergo toxic therapy for
weeks without benefit. At present, there are no systematic
data available on patients with NSCLC to determine the
optimal time to perform FDG-PET after radiotherapy.
However, the influence of radiation induced inflamma-
tory reactions does not seem a major issue since all the
reports in a post-radiotherapy setting did not show major
confounding results[26,28,35,38,45,47,49�52]. Despite the fact
that the 12 studies on therapy response assessment were
very heterogeneous with respect to the methods of PET
quantification and data analysis applied, the primary tar-
gets of PET evaluation (primary tumour and/or lymph
nodes), tumour stage, tumour type, and the clinical
end points (histology, survival), all studies showed that
FDG-PET is a significant predictor of therapy outcome
and provides results of great prognostic significance
(Fig. 1).

Prognostic and predictive value of
FDG-PET in colorectal carcinoma

FDG-PET has an established role in staging patients
before surgical resection of recurrence and metastases,
in the localization of recurrence in patients with an unex-
plained rise of serum carcinoembryonic antigen, and
distinguishing fibrosis and scar from viable tumour in

Figure 1 Typical example of a patient with stage IV NSCLC and tumour response to chemotherapy. Relative to baseline
(A), there is an obvious metabolic response on FDG-PET after two cycles of carboplatin/gemcitabine (B). The lung
lesion in combination with some atelectasis persists indefinitely on the post-therapy (B) CT scan, which cannot
distinguish residual vital tumour.
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residual masses of rectal cancer after treatment[53]. In the
pre-surgical evaluation, FDG-PET may be best used in
conjunction with anatomic imaging in order to combine
the benefits of both anatomical (CT) and functional
(PET) information, which leads to significant improve-
ments in pre-operative liver staging and pre-operative
judgement on the feasibility of resection. Integration of
FDG-PET into the management algorithm of these cate-
gories of patients alters and improves therapeutic man-
agement, reduces morbidity due to futile surgery, leads to
substantial cost savings and probably also to a better
patient outcome[54,55]. The following paragraph presents
a literature review of its emerging role in the prediction
and evaluation of treatment response, such as monitoring
of radiotherapy and multimodality treatment response in
primary rectal cancer[56�62], monitoring response after
local ablative therapy of liver metastases[63�66] and mon-
itoring chemotherapy response in advanced colorectal
cancer[67�71].
Several investigators have speculated that the amount

of FDG uptake correlates with biologic factors such as
Ki-67, proliferating cell nuclear antigen, Glut-1, and hex-
okinase[72] and that FDG uptake resembles the biological
behaviour of the tumour, and might be associated with
intrinsic biologic characteristics, like hypoxia[73], low
apoptosis rate[74], cell viability[75], proliferative activ-
ity[76] and p53 overexpression[77]. These characteristics
are all potentially adverse factors in patients treated with
radiotherapy or chemotherapy, while some of them may
also impact negatively in patients treated surgically. To
the best of our knowledge, there are only two stu-
dies[78,79] addressing the prognostic value of FDG-PET
in patients with metastatic colorectal carcinoma. Pre-
treatment FDG uptake in metastatic colorectal cancer
predicted outcome, irrespective of the subsequent treat-
ment modality, as patients with FDG avid disease
showed reduced overall survival.
In rectal cancer, pre-operative chemoradiotherapy is

used in advanced T3 and T4 tumours in an attempt to
down-stage the disease, in order to reduce the risk of local
recurrence and to allow sphincter preserving tumour
resection in selected cases[80,81]. FDG-PET may have a
role in pre-operative multimodality treatment response
evaluation and in a pre-operative strategy aimed at
identifying patients most suitable for sphincter preserving
surgery[56,58]. Reduction in SUV was significantly greater
in (histopathologically confirmed) responders compared
to non-responders and predicted therapy outcome signif-
icantly better than endorectal ultrasound, CT and mag-
netic resonance imaging (MRI)[56,57,59,60].
It is striking that the confounding radiotherapy-induced

effects, as discussed earlier, have less impact on the
results of FDG-PET if it is combined with chemotherapy
and/or regional hyperthermia. This implies that the
nature of the combination of treatment modalities for
neoadjuvant therapy is important in the timing of FDG-
PET evaluation. Further studies are required to ascertain

the exact sequence of time-dependent (radio)biological
effects during neoadjuvant multimodality treatment.
For induction radiotherapy alone, it has not yet been
sufficiently investigated whether FDG-PET could play a
role in the pre-operative radiotherapy response assess-
ment of primary rectal cancer. The generally accepted
interval of at least 6 months for FDG-PET evaluation
after adjuvant radiotherapy is not applicable in a neoad-
juvant setting. Probably due to these expected confound-
ing radiotherapy-induced effects on FDG uptake, only
one study on this subject has been performed[61]. They
found that an overall decrease of glucose utilization
correlated to reduction of tumour burden and cell
death and was predictive for therapy outcome as early
as 2 weeks after radiotherapy. These surprising results
call for systematic investigation of the required interval
for post-radiotherapy evaluation with FDG-PET.
For patients with colorectal liver metastases, surgical

resection offers the best chances for cure. In most
patients with colorectal liver metastases, however, resec-
tion cannot be performed. When this is caused by the
number and/or localization of metastases, local ablative
techniques such as cryosurgery or radiofrequency abla-
tion may offer an alternative treatment that produces
localized intrahepatic tumour destruction and possibly
results in a prolongation of survival. A prospective ran-
domized trial on the impact of radiofrequency ablation
versus chemotherapy (CLOCC) is on-going.
Different morphological imaging techniques have been

used to facilitate intra-operative localization. However,
during the process of local ablation the destruction pro-
cess cannot easily be ascertained with intra-operative
ultrasound imaging because of the hyperechogenicity
that is induced within the treated area[82]. Furthermore,
evaluation with CT scanning or MRI of residual tumour
after the ablation procedure is limited because post-
treatment hyperaemia or tissue regeneration may result
in contrast enhancement in the periphery of the ablative
necrosis[83]. This can lead to either a delayed diagnosis of
treatment failure or to confusion between incomplete
local ablative treatment and the occurrence of new metas-
tases in regions adjacent to the treatment site. Several
studies have described the feasibility of FDG-PET scan-
ning in the surveillance of these patients[63�66]. It appears
to have great potential in identifying residual tumour
soon after local ablative treatments. The negative predic-
tive value of FDG-PET at 3 months was 100%. The data
presented indicate that FDG-PET could play a central
role in optimizing the use of local ablative treatment of
liver metastases as it recognizes early incomplete tumour
ablation that is not detectable by CT scanning. FDG-PET
determines the need for further investigations and guides
the reading of the CT scan, which on its own appears
difficult to interpret in the early period after local ablative
therapy. The combined information of FDG-PET and
CT scans offers the opportunity to re-treat tumours at
an early stage.
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There are five reports suggesting that FDG-PET can
predict response to chemotherapy in patients with
irresectable colorectal cancer liver metastases[67�71]

(Fig. 2). A clear correlation was observed between the
reduction of tumour metabolism 5 weeks after the initia-
tion of chemotherapy and treatment outcome, which was
not observed at 1�2 weeks on treatment[67]. These results
show the importance of the correct timing of FDG-PET
after the onset of chemotherapy. The authors mention
the so-called flare phenomenon that occurs 1�2 weeks
after the initiation of chemotherapy, which can be
observed as a marked increase in FDG metabolism in
lesions that show a response later on. Bender et al.[68]

showed that the flare phenomenon probably does not
play a role as early as 72 h after initiation of chemother-
apy. These preliminary data indicate that acute changes
of glucose utilization following a single application
of chemotherapy seem to be indicative for the final ther-
apeutic outcome.

Predictive and prognostic value of
FDG-PET in lymphoma

In the treatment of curable lymphomas (e.g. Hodgkin�s
lymphoma (HL) and aggressive, i.e. high-grade non-
Hodgkin�s lymphoma (NHL) or diffuse large B-cell lym-
phoma (DLBCL)), the goal of treatment is to achieve a
complete response, which is a prerequisite for cure[84].
Patients who do not achieve a complete response by the

end of treatment are offered extra or salvage treatment.
CT is often unable to differentiate between viable
tumour, necrosis, or fibrosis in a residual mass (Fig. 3).
The awareness of long-term toxicities and treatment
related disease, especially after chemoradiation, has
questioned the standard use of radiotherapy on a residual
mass[85]. The introduction of patient tailored therapy
raised the interest for accurate assessment of response.
Recently, FDG-PET has been introduced for post-treat-
ment remission assessment of these FDG-avid, poten-
tially curable lymphomas. A high negative predictive
value of FDG-PET is consistently reported in DLBCL
and HL, and a negative FDG-PET clearly identifies
patients with an excellent prognosis[86]. Classical HL
deserves special consideration in this regard. In patients
with HL the significance of a positive FDG-PET scan is
less clear, since typically less than 1% of the tumour
mass comprises malignant cells; the remainder is a
benign inflammatory infiltrate[87]. In general, a negative
scan in HL is indicative of a good prognosis, whereas a
positive scan should be interpreted in concert with other
staging investigations. in contrast, in histologically aggres-
sive NHL, there appear to be few false positive results but
negative FDG-PET scans must be viewed with some cau-
tion[88]. CT-defined FDG-PET negative residual masses
require no further treatment. FDG-PET-positive residual
masses require further treatment, preferably after histolo-
gical confirmation. The prognostic value of FDG-PET for
curable lymphomas has been established, however,
the next step is to define how to use this information

Figure 2 Transversal slice through the liver at baseline (A) and after 2 months of chemotherapy (B) in a patient
with liver metastases of colorectal cancer. After 2 months of chemotherapy there is a complete metabolic response;
MRI still shows a liver lesion of 7 cm in diameter.
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to optimize patient outcomes. The role of metabolic
response assessment in aggressive NHL subtypes other
than DLBCL, and in indolent and mantle-cell lympho-
mas, is questionable. Most low-grade lymphomas relapse
over time, regardless of the initial response obtained and
early salvage therapy has not yet been proven to change
survival.
Although HL, DLBCL, follicular lymphoma and

mantle-cell lymphoma are routinely FDG avid, pre-
therapy FDG-PET for assessment of response after treat-
ment is strongly encouraged, because it can facilitate the
interpretation of post-therapy FDG-PET[89�91]. However,
pre-treatment FDG-PET is obligatory for variably
FDG avid lymphomas, like aggressive NHL subtypes
other than DLBCL, such as T-cell lymphomas, and
all subtypes of indolent NHL other than follicular
lymphoma, such as extranodal marginal zone lymphoma
of mucosa associated lymphoid tissue (MALT) and small
lymphocytic lymphoma, to document pre-treatment FDG
avidity at all disease sites noted by CT[89,92,93].
The imaging subcommittee of the International

Harmonization Project (IHP) recommended metabolic
response assessment at the conclusion of therapy at
least 3 weeks after chemo(immuno)therapy and

preferably 8�12 weeks after completion of (chemo)radia-
tion, in order to minimize false-positive interpretation,
due to transient inflammatory changes as a reaction to
therapy[91]. As benign inflammatory FDG uptake in a
residual mass rarely exceeds FDG uptake in the medias-
tinum, a comparison between uptake in the residual mass
and the mediastinum has been proposed by the IHP as a
reference cut-off for standardization of PET criteria.
Residual masses, regardless of their location, with
uptake less than or equal to mediastinal activity should
be considered negative for lymphoma, while uptake
greater than mediastinal uptake should be considered
as residual disease. However, as FDG-uptake in a residual
mass less than 2 cm in diameter is artificially decreased
because of the effect of partial volume averaging, any
uptake higher than the surrounding background should
be suggestive for residual lymphoma. Where abnormal
FDG uptake is seen outside the sites involved initially,
infectious/inflammatory lesions and thymic hyperplasia
have first to be excluded[94]. Such lesions should
only be considered relapsed or progressive disease after
confirmation with other modalities.
Specific criteria for lung nodules have been developed.

New lung nodules 41.5 cm as measured by CT in

Figure 3 (A) Pre-treatment and (B) post-treatment PET-CT of a patient with a stage IIA nodular sclerosing Hodgkin�s
lymphoma. The baseline FDG-PET shows advanced FDG avid disease. A first follow-up study shows complete metabolic
response, whereas the CT scan shows residual mediastinal abnormalities. The patient was classified as having CRu
(complete response unconfirmed) by International Workshop Criteria (IWC) and complete response by IWCþPET.
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a patient with no evidence of pulmonary lymphoma
before therapy should only be considered suggestive of
lymphoma if nodular uptake exceeds that of the medias-
tinum and should always be confirmed with other mod-
alities and ultimately need histologic confirmation.
In cases of complete response at all previously known
disease sites, these new lung FDG-avid nodules should
be considered negative for lymphoma regardless of their
size or uptake because these typically represent infectious
or inflammatory lesions. Unfortunately, residual lym-
phoma cannot be excluded in pre-existent small nodules
51.5 cm in size, that fail to show FDG uptake[91].

FDG uptake that exceeds liver or spleen uptake in pre-
existing hepatic or splenic lesions that are 41.5 cm as
measured on CT should be considered positive for lym-
phoma. If their uptake is less than that of the liver or
spleen they should be considered negative for lymphoma,
whereas persistent hepatic/splenic lesions 51.5 cm in
diameter should be considered negative if their uptake
is equal to or lower than surrounding liver or spleen
uptake. Recent cytokine administration can cause diffu-
sely increased splenic uptake for up to 10 days after ces-
sation of cytokine administration[95]. If the patient has no
history of cytokine administration, diffusely increased
splenic uptake greater than normal liver uptake should
be interpreted as positive for lymphoma.
Diffusely increased bone marrow uptake, is usually due

to post-therapy marrow hyperplasia. However, obviously
increased (multi)focal bone marrow uptake should be
considered positive for lymphoma. Bone marrow
biopsy, however, remains the standard procedure for
assessment of bone marrow, since a negative FDG
uptake in the bone marrow does not exclude mild or
moderate bone marrow involvement[96,97].
In addition to the standardization of FDG-PET inter-

pretation, the IHP has formulated guidelines for
integration of FDG-PET and CT results (IWCþ PET
criteria, see Table 1)[98,99]. In the original International
Workshop Criteria (IWC), based on CT response assess-
ment, complete response unconfirmed (CRu) was
defined by complete disappearance of all detectable

clinical evidence of disease, normalization of biochemical
abnormalities and disease-related symptoms, but with a
residual mass more than 1.5 cm in diameter that has
regressed by more than 75% or indeterminate bone
marrow (increased number or size of aggregates without
cytologic or architectural atypia). FDG-PET increased
the number of patients with complete remission by elim-
inating the CRu category, and enhanced the ability to
discern the difference in progression-free survival
between patients with complete and partial remission
(Fig. 3). It is important that these guidelines are adopted
widely by study groups, pharmaceutical and biotechnol-
ogy companies, and regulatory agencies to facilitate the
development of new and more effective therapies to
improve the outcome of patients with lymphoma.
Use of FDG-PET for early response assessment during

a course of therapy should only be done in a clinical trial
or as part of a prospective registry. Response-adapted
treatment aims to optimize the balance between cure
and toxicity for the individual patient. Early response
assessment could enable this strategy in the future by
minimizing treatment for patients with a good prognosis
and intensifying treatment for patients with a poor prog-
nosis. Most authors are convinced that interim FDG-PET
has at least an equally strong prognostic value compared
to end-of-treatment FDG-PET, but the optimal timing of
interim PET is not yet clear. Several studies have demon-
strated the predictive value of FDG-PET as early as after
one to four cycles of chemo(immuno)therapy, although
no treatment change based on early PET results has
proven to alter patients outcome yet[100,101]. During a
course of therapy, FDG-PET should be performed as
close as possible before the subsequent cycle[91]. It is
not yet clear whether visual or (semi)quantitative assess-
ment is sufficiently reliable to distinguish patients with a
more favourable from those with less favourable out-
come. Nevertheless, measurements of fractional changes
in glucose use over time are only reliable when sequential
scans of the same patient are performed using the same
scanner, under identical scanning, image reconstruction
and data analysis conditions, what means that serial
scans of one patient should be performed in the same
institute. A clear cut-off for an adequate (clinically mean-
ingful) reduction in glucose use remains to be defined in
large trials and may vary on the basis of tumour histology
and type of treatment.

Final remarks

This review provides an overview of the literature on the
prognostic value of FDG-PET at initial presentation
of NSCLC and metastatic colorectal carcinoma, after
induction treatment of NSCLC and lymphoma and in
the case of relapse of NSCLC. In other malignancies,
such as head and neck squamous cell carcinoma[102�108],
breast cancer[77,109,110], glioma[111], oesophageal carci-
noma[112,113], pancreatic cancer[114�117] and

Table 1 International Workshop Criteria and PET-based
response criteria for lymphoma[85,91,98,99]

IWCþ PET
response
designations

Description

CR CR, CRu, PR or SD by IWC; PET completely negative;
BMB negative if positive prior to therapy

PR CR, CRu, PR by IWC; PET positive
SD SD by IWC; PET positive
PD PD by IWC; PET positive corresponding to the CT

abnormality

IWCþ PET, International Workshop Criteria and positron emission
tomography; CR, complete remission; BMB, bone marrow biopsy;
CT, computed tomography; CRu, unconfirmed CR; PR, partial
response; SD, stable disease; PD, progressive disease.
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hepatocellular carcinoma[118] FDG-PET also proved to
be an independent prognostic marker. As was reported
in gastrointestinal stromal tumours[119,120], oesophageal
carcinoma[121�123], gastric carcinoma[124], head and
neck squamous cell carcinoma[125] and cervix carci-
noma[126], FDG-PET proved to have a predictive value
early in the course of treatment of NSCLC and lym-
phoma. In colorectal carcinoma, FDG-PET also appears
to have great potential in monitoring the success of local
ablative therapies soon after intervention and in the eval-
uation of response to radiotherapy, systemic therapy, and
combinations thereof. Further research in this field is of
great importance, since it may induce a change in the
therapeutic concept of oncological patients. If the results
of the reviewed studies can be confirmed, FDG-PET
could shorten the track of early clinical trials that
assess new anti-neoplastic agents and could also improve
patient management by reducing morbidity, efforts and
costs of ineffective treatment in non-responders.
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