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SR Protein Kinases (SRPKs), discovered approximately 30 years ago, are widely known as
splice factor kinases due to their decisive involvement in the regulation of various steps of
mRNA splicing. However, they were also shown to regulate diverse cellular activities by
phosphorylation of serine residues residing in serine-arginine/arginine-serine dipeptide
motifs. Over the last decade, SRPK1 has been reported as both tumor suppressor and
promoter, depending on the cellular context and has been implicated in both
chemotherapy sensitivity and resistance. Moreover, SRPK2 has been reported to
exhibit contradictory functions in different cell contexts promoting either apoptosis or
tumor growth. The aim of the current review is to broaden and deepen our understanding
of the SRPK function focusing on the subcellular localization of the kinases. There is ample
evidence that the balance between cytoplasmic and nuclear SRPK levels is tightly
regulated and determines cell response to external signals. Specific cell states coupled
to kinase levels, spatial specific interactions with substrates but also changes in the extent
of phosphorylation that allow SRPKs to exhibit a rheostat-like control on their substrates,
could decide the proliferative or antiproliferative role of SRPKs.
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INTRODUCTION

There are more than 170 review articles in PubMed on signaling proteins that can function both as
oncogenes or tumor suppressors in human cancer. The pro- and anti-tumorigenic activities depend on the
cellular context and are usually ascribed on the different expression levels of these proteins and/or their
involvement in different signaling pathways. Among these molecules are members of the CMGC family of
protein kinases that share the common property to phosphorylate SR proteins andmodulate their activity,
thus regulating alternative splicing. DYRK2 has been reported to trigger antitumor and pro-apoptotic
signals, while in parallel other studies identified DYRK2 as a highly overexpressed kinase in various cancer
types and DYRK2 inhibitors were shown to exhibit antiproliferative properties (Tandon et al., 2021). This
puzzling dual function of DYRK2 was mostly attributed to the phosphorylation of distinct substrates
promoting either progression or suppression of tumors (Tandon et al., 2021).

SRPKs have also been related both to chemotherapy sensitivity and resistance (see analysis below).
Moreover, SRPK1, the most-studied member of SRPKs, has been reported to function as both an
oncogene and tumor suppressor depending on its expression level (Wang et al., 2014). Wang et al.
(2014) proposed that aberrant SRPK1 expression in either direction induced constitutive Akt
activation, thus implying that SRPKs can mediate tumorigenesis independently of their splicing
effects, by modulating signaling pathways such as Akt. Yet, while SRPK1 has been reported to
intervene in numerous signaling pathways in various cancers (Bullock and Oltean, 2017; Czubaty
and Piekiełko-Witkowska, 2017; Nikas et al., 2019) none of these pathways has been implicated in the
tumor suppressor function of the kinase nor was correlated with drug responsiveness.
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The total SRPKs’ protein abundance in a cell has been
considered as the determinant factor in their function. Yet,
SRPKs are mobile proteins that can rapidly transit between
the cytoplasm and nucleus. Their high response sensitivity to
external signals, such as for example stress signals, is best
evidenced by the fact that inefficient fixation with low
concentrations of formaldehyde during the
immunofluorescence process for just 5 min was suffient to
stimulate nuclear translocation of SRPK1 in HeLa cells (Sigala
et al., 2021a). Hence, the balance between nuclear and
cytoplasmic pools of the kinases in a given cellular context is
critical in determining cell behaviour. This fine-tuned
compartmentalization is not only required to achieve
phosphorylation of different target proteins but also to
regulate the extent of phosphorylation of specific substrates.
Given that SRPKs phosphorylate multiple serine residues
within RS domains their mode of action is more akin to a
rheostat than a binary switch, thus transducing changes in
phosphorylation state into changes in protein function.

Here, we review the signaling pathways and the respective
post-translational modifications that mediate the cytoplasmic-to-
nuclear relocalization of SRPKs and discuss how these molecular
mechanisms result in a well-defined change in nuclear kinase
levels and activity which in turn may elicit specific functional
outcomes. We also re-examine carefully the literature to shed
some light onto the question why SRPKs have been reported both
to promote and suppress cell proliferation and also to provide an
explanation on the enigmatic and rather contradictory role of the
kinases in mediating either sensitivity or resistance of cancer cells
to chemotherapeutic drugs.

SRPKS LOCALIZE MAINLY IN THE
CYTOPLASM IN YEAST AND CANCER
CELLS
Our current knowledge regarding the subcellular localization of
SRPKs is largely based on experiments in highly proliferating cells
such as cancer and yeast cells. In cancer cells SRPK1 localizes
predominantly in the cytoplasm with a more or less faint staining
in the nucleus, while the nuclear staining profile of SRPK2 is more
apparent (see for example Ding et al., 2006; Zhong et al., 2009;
Sigala et al., 2021a). A similar cytoplasmic localization of Sky1
and dsk1 has also been observed in budding and fission yeast,
respectively (Takeuchi and Yanagida, 1993; Siebel et al., 1999).
The large non-conserved spacer region that separates the two
catalytic kinase domains is required for localization of SRPKs in
the cytoplasm during interphase, both in yeast and mammalian
cancer cells, since its deletion results in almost exclusive nuclear
localization of the mutant kinases (Takeuchi and Yanagida, 1993;
Siebel et al., 1999; Ding et al., 2006). The spacer domains in
SRPK1 and SRPK2, despite being quite variable in sequence, seem
to function interchangeably in restricting the kinases in the
cytoplasm (Ding et al., 2006). Mechanistically, the spacer
region was shown to associate with molecular chaperones,
thus anchoring the kinases to the cytoplasm (Zhong et al.,
2009; Zhou et al., 2012). There are rather contradictory data

regarding the anchorage mechanism between chaperones and
SRPKs. Zhou et al. (2012) reported that in HeLa cells the Hsp70-
containing complexes were responsible for anchoring and thus
restricting the kinases in the cytoplasm, whereas the Hsp90-
containing complexes facilitated SRPK translocation to the
nucleus. Accordingly, Hsp90 knockdown prevented SRPK1
nuclear translocation. However, the same group reported
earlier that inhibition of the Hsp90 ATPase activity induced
dissociation of SRPK1 from the chaperone complexes resulting
in translocation of the kinase from the cytoplasm to the nucleus
(Zhong et al., 2009). In line with this report, Lu et al. (2015) have
shown that, in a human liver carcinoma cell line, Hsp90 was
responsible for anchoring SRPK2 in the cytoplasm, while Hsp90
knockdown or pharmacological inhibition promoted SRPK2
nuclear translocation.

The predominant cytoplasmic localization of SRPK1 and
SRPK2 strongly supports the notion that these kinases mainly
function outside the nucleus (Ding et al., 2006; Bustos et al.,
2020). According to the classical view, cytoplasmic SRPKs
phosphorylate newly synthesized SR proteins and facilitate
their nuclear import via a specific member of the importin-
beta family, transportin-SR2 (Lai et al., 2000; Lai et al., 2001).
Besides SR proteins, RS or RS-like domains are also present in a
variety of cytoplasmic proteins (Calarco et al., 2009; Bustos et al.,
2020), including ZO-2 and RNF12 that have already been
identified as SRPK1 targets (Quiros et al., 2013; Bustos et al.,
2020). The nuclear fraction of SRPKs, in collaboration with CLKs,
adjusts the degree of phosphorylation of SR proteins and thus
modulates the splicing pattern of several genes. (Stamm, 2008;
Aubol et al., 2016; Naro et al., 2021; Pastor et al., 2021).
Furthermore, it may also regulate other nuclear processes via
the phosphorylation of additional nuclear substrates (see below).

SIGNALS AND POST-TRANSLATIONAL
MODIFICATIONS THAT MODULATE THE
CYTOPLASM TO NUCLEUS
TRANSLOCATION OF SRPKS

The “steady-state” cytoplasmic localization of SRPKs is altered by
external signals that dissociate the kinases from the chaperone
complexes, resulting in their translocation to the nucleus. Kinase
activity is a prerequisite for the nuclear translocation of SRPKs.
Blocking SRPK activity either by inactivating mutations or by the
selective SRPK1/2 inhibitor, SRPIN340, efficiently impeded the
entry of the kinases into the nucleus (Ding et al., 2006; Jang et al.,
2009; Zhou et al., 2012; Koutroumani et al., 2017; Moreira et al.,
2018; Sigala et al., 2021a).

Earlier reports indicated that cell cycle signals triggered the
translocation of SRPKs to the nucleus at the late G2 phase in yeast
and HeLa cells (Takeuchi and Yanagida, 1993; Ding et al., 2006)
and suggested that phosphorylation was implicated in the
observed relocation of the kinases (Takeuchi and Yanagida,
1993). Two protein bands corresponding to
Schizosaccharomyces pombe dsk1 were observed in SDS-PAGE.
The fast migrating form was enriched in interphase cells, while
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the slowly migrating form was prominent in mitotic cells. The
disappearance of the slowly migrating band following
phosphatase treatment strongly suggested that mitotic dsk1
was phosphorylated.

Activation of the PI3K-Akt signaling pathway by EGF was
then shown to be involved in SRPK1/2 nuclear translocation.
Specifically, Jang et al. (2009) reported that activated Akt
phosphorylated SRPK2 on Thr492, thus promoting its nuclear
import, while Zhou et al. (2012) reported that, even though
SRPK1 was not a direct substrate of Akt, Akt induced the
autophosphorylation of Thr326 and Ser587 located in the
spacer and the C-terminal catalytic domain of SRPK1,
respectively. This autophosphorylation event released the
kinase from the chaperone complex and resulted in its
relocation to the nucleus. By using specific inhibitors against
components of the EGF pathway, Zhou et al. (2012) suggested
that both SRPKs act below PI3K but above mTOR. Yet, some
years later, Lee et al. (2017) showed that mTORC1 triggered a
series of phosphorylation events leading to SRPK2 nuclear
translocation. According to this cascade, mTORC1
phosphorylated and activated ribosomal S6 kinase 1 (S6K1),
which in turn phosphorylated SRPK2 at Ser494, priming
Ser497 phosphorylation by casein kinase 1 (CK1). Of note,
Ser494 and Ser497 were also found phosphorylated by MS/MS
spectrometric and Western blotting analysis in non-treated head
and neck squamous cell carcinoma (HNSCC) cells
(Radhakrishnan et al., 2016).

On the other hand, nuclear translocation of SRPKs is closely
related to the DNA damage response. Vivarelli et al. (2013)
reported that the nuclear accumulation of SRPK2 in
neuroblastoma cells after oxidative and genotoxic stress was
mediated by phosphorylation of Ser588 (Ser581 in mouse
SRPK2). Even though this residue was considered by the
authors to be a casein kinase 2 (CK2) site, on the basis of a
previous mapping and analysis of SRPK1 phosphorylation sites
(Mylonis and Giannakouros, 2003), and the fact that caffeine, a
potent inhibitor of ATM/ATR kinases, blocked SRPK2 nuclear
translocation strongly suggested that SRPK2may act downstream
of ATM/ATR. In this respect, we have recently shown that
treatment of HeLa and T24 cells with 5-fluorouracil (5-FU)
induced SRPK1 phosphorylation on two residues located
within S/TQ motifs, Thr326 and Ser408, in an ATR/ATM-
dependent manner, thus resulting in nuclear accumulation of
the kinase (Sigala et al., 2021a). Furthermore, in cisplatin-treated
cells, pharmacological inhibition of ATM or Chk2, which is the
main kinase that functions as a downstream effector of ATM,
prevented nuclear accumulation of SRPK2, whereas blocking the
activity of ATR had only a marginal impact on the translocation
of the kinase to the nucleus (Sigala et al., 2021b). These data
suggest that nuclear SRPK2 may act downstream of Chk2 in the
ATM/Chk2 cascade. Of note, cisplatin had little effect on the
nuclear entry of SRPK1, implying that distinct signaling pathways
are activated in response to these two chemotherapeutic agents.

In most of the above-mentioned phosphorylation events,
phosphorylation was both necessary and sufficient to induce
the relocation of the kinases from the cytoplasm to the
nucleus, since the phosphorylation-defective mutants were

restricted in the cytoplasm, whereas the phosphorylation-
mimicking mutants localized in the nucleus even in the
absence of any treatment. Yet, in 5-FU treated HeLa cells,
while the phosphorylation-defective double mutant
(SRPK1326/408A) was almost completely restricted to the
cytoplasm, the phosphorylation-mimicking double mutant
(SRPK1326/408D) partially localized in the nucleus in the
absence of 5-FU treatment, suggesting that phosphorylation of
these residues was necessary but not sufficient for nuclear
translocation of SRPK1 and additional modification(s) was
(were) required (Sigala et al., 2021a). In this respect, Edmond
et al. (2011) showed that knockdown of Tip60 acetyltransferase in
lung cancer cells resulted in strong nuclear accumulation of
SRPK1 and SRPK2. Recently, Wang et al. (2020) identified by
mass spectrometry analysis five lysine residues in SRPK1 that
could be acetylated in a Tip60-dependent manner, Lys215,
Lys258, Lys265, Lys301 and Lys318, while previously
Choudhary et al. (2009) identified two additional lysine
residues, Lys585 and Lys588. Mutation of all these seven sites
to arginine induced nuclear translocation of SRPK1 in HeLa and
MCF7 cells (Wang et al., 2020). There are no reports so far on
which lysine residues of SRPK2 are acetylated by Tip60. Even
though, blocking acetylation seemed to be sufficient to drive the
nuclear import of SRPK1/2 and despite the observation that
overexpressing a deacetylase did not have any impact on the
subcellular localization of the kinases (Edmond et al., 2011), we
favor a previously formulated hypothesis that an inverse
correlation between SRPK1/2 acetylation and phosphorylation
may modulate the kinase localization (Wang et al., 2020).

Finally, SRPK2 was also found to be O-GlcNAcylated at
Ser490, Thr492, and Thr498 in non-treated MCF-7 and
HEK293T cells (Tan et al., 2021). O-GlcNAcylation promoted
interaction of SRPK2 with importin a, thus facilitating the nuclear
translocation of the kinase. According to the authors,
O-GlcNAcylation functions in parallel with the mTORC1/
S6K1/CK1 pathway (Lee et al., 2017) and these two distinct
types of post-translational modifications do not interfere with
each other. Yet, blocking O-GlcNAcylation by O-GlcNAc
transferase (OGT) knockdown or pharmacological inhibition
abolished almost completely nuclear staining of SRPK2 (Tan
et al., 2021).

Figure 1 illustrates the currently known post-translational
modifications of SRPK1/2.

FUNCTIONAL SIGNIFICANCE OF SRPK1/2
NUCLEAR TRANSLOCATION

The balance between cytoplasmic and nuclear SRPK levels is
critical for the cell. Shifting the balance in favor of nuclear
localization should be tightly regulated by how and to what
extent SRPKs are post-translationally modified in order to
allow cells to respond appropriately to external signals. In this
regard, activated Akt-induced autophosphorylation of SRPK1
resulted in partial relocation of the kinase to the nucleus in
EGF-treated HEK293T cells (Zhou et al., 2012). Our in vitro
assays revealed that activated Akt1 induced phosphorylation of
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SRPK1 at a very low stoichiometry (Sigala et al., 2021a). Yet, while
these substoichiometric levels of phosphorylation are of low
importance in vitro, they may be functionally significant in the
cellular context, allowing a well-defined number of SRPK1
molecules to enter the nucleus. Partial nuclear translocation of
SRPK1 was also observed in EGF-treated melanoma cells
(Moreira et al., 2018). Both nuclear and cytoplasmic staining
of SRPK2 were obtained in EGF-treated HEK293T cells or cells
transfected with activated Akt, whereas an antibody against
p-SRPK2 stained only the nuclei of certain cells, implying that
a fraction of the kinase was phosphorylated and entered the

nucleus (Jang et al., 2009 Supplementary data; Zhou et al., 2012).
Furthermore, despite the vital role of O-GlcNAcylation in
inducing nuclear translocation of SRPK2, thus promoting
posttranscriptional de novo lipogenesis and cancer cell growth,
in about 50% ofMCF-7 cells no staining of SRPK2 was detected in
the nucleus, while in the remaining 50%, SRPK2 was mainly
cytoplasmic, suggesting that only a fraction of the kinase was
O-GlcNAcylated and imported to the nucleus (Tan et al., 2021).
Similarly, insulin induced partial nuclear translocation of SRPK2
that promoted splicing of lipid synthesis-related mRNAs, via
activation of the mTORC1/S6K1/CK1 pathway (Lee et al., 2017).

FIGURE 1 | Schematic representation of human SRPK1 and SRPK2 indicating post-translationally modified amino acids and enzymes responsible.
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On the other hand, genotoxic/stress signals largely induce
nuclear accumulation of SRPKs, either by promoting the
phosphorylation of the same or different sites with a
significant increase in phosphorylation stoichiometry, and/or
by the additive effect of a second modification such as
deacetylation. Thus, nuclear SRPKs may also be regarded as
key mediators of the cellular response to DNA damage
(Edmond et al., 2011; Vivarelli et al., 2013; Sigala et al., 2021a;
Sigala et al., 2021b).

The increased nuclear levels of SRPKs were primarily, if not
exclusively, associated with alterations of the splicing machinery
(Figure 2). In general, it is believed that a growth factor/
hormone-mediated increase in the nuclear concentration of
SRPKs may alter the level of phosphorylation of SR proteins
and consequently their activity on their primary transcript
targets, favoring the expression of splicing isoforms that
contribute to cell growth and promote tumorigenic properties
(Zhou et al., 2012; Lee et al., 2017; Tan et al., 2021). On the
contrary, nuclear accumulation of SRPKs, mediated by deletion of
the spacer region, causes aggregation of splicing factors, which
results in splicing inhibition and may lead to general inhibition of
gene expression (Siebel et al., 1999; Ding et al., 2006).

The variations in SRPK nuclear levels may also have opposing
effects on other nuclear activities of the kinases indirectly related
to splicing, such as the formation of R-loops (Figure 2). R-loops
are nucleic acid structures formed during transcription when the
nascent RNA molecule hybridizes with the template DNA strand
and may compromise genomic integrity (Sollier and Cimprich,
2015). Sridhara et al. (2017) reported that SRPK2 phosphorylates
the DDX23 helicase, thus suppressing the formation of R-loops.
However, RNA processing defects result in elevated levels of

R-loops (Stirling et al., 2012; Montecucco and Biamonti, 2013).
Hence, signals that promote the nuclear accumulation of SRPK2
and the subsequent dysregulation of the splicing machinery
would also be anticipated to lead to the formation of R-loop
structures. In this respect, it was also previously shown that
R-loop formation confers sensitivity to cisplatin (Cai et al., 2020).

Additional nuclear events may be critically regulated by the
nuclear levels of SRPKs, via the phosphorylation of proteins other
than SR splicing factors (Figure 2). Lamin B Receptor (LBR), a
key factor tethering peripheral heterochromatin (Solovei et al.,
2013), is a well-characterized substrate of SRPK1 and possibly of
SRPK2 (Nikolakaki et al., 1996; Sellis et al., 2012).
Phosphorylation plays a significant role in regulating the
attachment of LBR to chromatin (Takano et al., 2004). Thus, a
regulated increase in the nuclear levels of SRPKs, mediated by an
external signal, may fine-tune gene expression through the
detachment of specific chromatin regions from the nuclear
periphery and their subsequent displacement to a
transcriptionally active microenvironment (for reviews see
Misteli, 2005; Nikolakaki et al., 2017). On the other hand,
nuclear accumulation of SRPKs mediated by cell cycle or
genotoxic/stress signals may lead to complete detachment of
chromatin from the nuclear envelope. Such a detachment is
indeed observed in mitotic prophase and this contributes to
nuclear envelope breakdown (Guttinger et al., 2009) and also
at early stages of the apoptotic process prior to nuclear envelope
breakdown, chromatin condensation and nuclear fragmentation
(Lindenboim et al., 2020).

A direct role for SRPK1 in the transcription-related DNA
damage response has also been proposed by Boeing et al. (2016).
In this study a genome-wide siRNA screen assessing gene

FIGURE 2 | Concentration-dependent effects of SRPKs on splicing regulation and chromatin reorganization.
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products that affect transcription after UV-irradiation was
performed, while in parallel the UV-induced
phosphoproteome was analyzed. SRPK1 was one of the main

kinases that scored in the RNAi screen and was also associated
with 20 proteins showing UV-induced phosphorylation. The
three most highly phosphorylated SRPK1-interacting proteins

FIGURE 3 | Fluorescent patterns of SRPK1 and SRPK2 in HeLa cells, human gingival fibroblasts (HGFs), HeLa cells treated with 20 μg/ml 5-FU for 48 h and HeLa
cells treated with 20 µM cisplatin for 24 h (left panels). SRPK1 and SRPK2were detected using the respective anti-SRPK1 and anti-SRPK2monoclonal antibodies, while
the nuclei were stained with PI. Scale bar: 10 µm. In each case the effect of kinase inhibition, by SRPIN340, on the number of viable cells was measured using an MTT
assay (right panels). Viability is expressed as a percentage of the viability of untreated cells, which was set to 100 percent. The data on HeLa cells were taken from
Sigala et al. (2021a) and Sigala et al. (2021b).
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were the tumor-associated genes BCLAF1 and THRAP3, and
apoptotic chromatin condensation inducer 1 (ACIN1), all three
of which were found to interact with RNA Polymerase II.
Furthermore, SRPK1, BCLAF1, THRAP3, and ACIN1 were
associated with several networked proteins that also scored in
the RNAi screen, suggesting that SRPK1 is part of a network
involved in the transcription-related DNA damage response.

OPPOSING EFFECTS OF SRPK
KNOCKDOWN/INHIBITION

SRPKs are critical in promoting cancer cell proliferation and
viability. There are numerous reports showing that down-
regulation or pharmacological inhibition of the kinases results
in decreased proliferative capacity and increased apoptotic
potential (Figure 3; see also Nikas et al., 2019; Naro et al.,
2021 and references therein). However, findings from normal
cells or near normal cells, i.e., immortalized but non-transformed
cells, question the notion that the predominant cytoplasmic
localization of SRPKs is associated with cell proliferation.
Specifically, vascular smooth muscle cells treated with siRNA-
SRPK1 exhibited enhanced cell proliferation, repressed cell
apoptosis, and increased vascular remodeling (Li and Wang,
2019). Furthermore, knocking down SRPK1 in immortalized
MEFs lacking p53 (p53−/−) promoted cell transformation
resulting in significant anchorage independent growth. These
immortalized SRPK1-null MEFs were also able to develop into
tumors when injected into nude mice, while on the contrary wild
type MEFs immortalized by the T antigen were not tumorigenic
(Wang et al., 2014). Since the subcellular localization of SRPK1
was not examined in these reports, we performed an initial
immunofluorescent study in human gingival fibroblasts which
are the main cellular constituent of gingival tissue and are
embryo-like cells with the capacity of self-renewal. As shown
in Figure 3 and in accordance with previously reported
immunohistochemical data (Mytilinaios et al., 2012), SRPK1
localized mainly in the cytoplasm but a nuclear staining was
also clearly observed, while SRPK2 showed more marked nuclear
localization. Interestingly, blocking SRPK1/2 activity by
SRPIN340 in these cells promoted cell proliferation (Figure 3).

On the other hand, nuclear accumulation of the kinases
mediated by genotoxic signals was shown to be actively
involved in drug toxicity and thus knocking down or
inhibiting the activity or preventing the nuclear entry of the
kinases neutralized the effects of the drug. Specifically, blocking
SRPK1 activity by SRPIN340 or blocking the activity of the ATR/
ATM cascade by pharmacological agents prevented the nuclear
accumulation of SRPK1 in 5-fluorouracil (5-FU)-treated HeLa
cells and conferred partial resistance to the drug (Figure 3; see
also Sigala et al., 2021a). Similarly, blocking SRPK2 nuclear
accumulation in cisplatin-treated HeLa cells neutralized the
effect of cisplatin (Figure 3; see also Sigala et al., 2021b), while
inhibition of SRPK1/2 by SRPIN340 protected cardiomyocytes
from oxidative stress-induced apoptosis and cell death (Huang
et al., 2019). Furthermore, in cisplatin treated non-small cell lung
cancer cells Tip60 acetyltransferase was down-regulated resulting

in nuclear accumulation of SRPK2 and cell apoptosis (Edmond
et al., 2011). Apoptosis was impaired in kinase-depleted cells,
highlighting the crucial role of nuclear SRPK2 in the apoptotic
process. Interestingly, high levels of Tip60 have been associated
with cisplatin resistance in prostate, epidermoid and lung cancer
cells (Miyamoto et al., 2008).

There has been considerable debate within the literature as to
whether SRPKs are related to chemotherapy sensitivity or
resistance. The conflicting results were derived mainly from
studies on SRPK1 in cisplatin-treated cells (Schenk et al., 2001;
Schenk et al., 2004; Hayes et al., 2006; Plasencia et al., 2006; Hayes
et al., 2007; Krishnakumar et al., 2008; Odunsi et al., 2012). In all
these reports only the protein levels of SRPK1 were correlated to
drug responsiveness. While nuclear accumulation of SRPK1/2
mediates drug toxicity, cisplatin induces rather limited nuclear
translocation of SRPK1, the extent of which may vary between
different cell types (Schenk et al., 2001; Edmond et al., 2011; Sigala
et al., 2021a). The different nuclear levels of the kinase may
account at least partially for the observed divergent data. Yet,
apart from the subcellular localization, the sensitivity of a cancer
cell line to cisplatin seems also to be critical in determining the
role of SRPK1 in drug responsiveness. In this regard, the most
highlighted example, where SRPK1 expression was associated
with both cisplatin sensitivity and resistance, is ovarian cancer.
Schenk et al. (2001) used the A2780 cell line which represents the
most common histology type of ovarian cancer and is very
sensitive to cisplatin, while Odunsi et al. (2012) used the
SKOV3 cell line which exhibits about ten times lower
sensitivity to cisplatin than the A2780 cell line. Actually,
SKOV3 cells were even more resistant to cisplatin than A2780
resistant cells (Odunsi et al., 2012). Reduction of SRPK1
expression using shRNAs in SKOV3 cells led to enhanced
sensitivity to cisplatin (Odunsi et al., 2012), whereas down-
regulation of SRPK1 by antisense treatment induced resistance
of A2780 cells to cisplatin (Schenk et al., 2001). Notably, there
seems to be a threshold concentration of the drug, above which,
the cytotoxic effects cannot be reversed (Schenk et al., 2001; Sigala
et al., 2021a). In accordance with their ovarian cancer study,
Schenk et al. (2004) reported later that cisplatin responsiveness of
male germ cell tumors, which are among the most cisplatin-
sensitive tumors, closely correlated with high levels of SRPK1
expression, while a similar observation was also made by
Krishnakumar et al. (2008) in archival Rb tumors. On the other
hand, in breast (MCF7 and MCF7A), colon (Caco2 and HT29) and
pancreatic (MiaPaCa2 and Panc1) cancer cell lines that were either
insensitive (MCF7, MCF7A, Caco2, HT29) or exhibited low
sensitivity to cisplatin (MiaPaCa2, Panc1), under the treatment
conditions used by the authors (10 μM cisplatin for 24 h), down-
regulation of SRPK1 by siRNA encoding constructs potentiated the
effect of cisplatin (Hayes et al., 2006; Hayes et al., 2007). These data
are in line with a proposed exclusive cytoplasmic localization of
SRPK1 in cisplatin-treated breast cancer cells due to an unanticipated
increase of Tip60 levels in these cells (Wang et al., 2020), which is
contrary to the data presented by Miyamoto et al. (2008) and
Edmond et al. (2011). Moreover, cisplatin-resistant MDA-MB-231
and MCF7 cells could also be re-sensitized by inhibiting SRPK1
activity using SRPIN340 (Wang et al., 2020).
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The observation that aberrant nuclear accumulation of SRPK2
has toxic effects on cancer cell proliferation and survival seems
also to be overturned by the findings on LAM 621-101 cells that
carry inactivating mutations in both alleles of the Tuberous
Sclerosis Complex 2 (TSC2) gene (TSC2−/− cells). TSC2 is a
negative regulator of mTORC1 and therefore in these cells the
mTORC1/S6K1/CK1 pathway is constitutively activated, SRPK2
is highly phosphorylated and as expected was found almost
exclusively to the nucleus (Lee et al., 2017). Primary LAM
621–101 cells stop proliferating and enter into senescence after
a few passages due to p53 amplification (Zhang et al., 2003; Yu
et al., 2004). To circumvent premature senescence the cells have
to be immortalized. LAM 621-101 cells used by Lee et al. (2017)
were immortalized by expression of the HPV16 E6 and E7 genes
as well as human telomerase (Siroky et al., 2012). The
immortalized cells showed high rates of proliferation and were
highly tumorigenic. This artificial route to boosting cell
proliferation and growth may reprogram the cells to take
advantage of the high levels of SRPK2 nuclear activity in order
to meet their intense lipid requirements. Accordingly,
supplementation with fatty acids and cholesterol partially
restored the growth of cells in which SRPK2 was knocked-
down or inhibited by SRPIN340. Interestingly, Lee et al.
(2007) proposed that while mTOR inhibitors may exert
protective effects against DNA damage agents to benign
tumors such as tuberous sclerosis, they enhance the effects of
chemotherapeutics in tumors such as non-small-cell lung
carcinomas and ovarian cancer.

CONCLUSION

Based on our recent data (Sigala et al., 2021a; Sigala et al., 2021b)
we formulated the hypothesis that the predominant cytoplasmic
localization of SRPKs is associated with cell proliferation, whereas
nuclear accumulation of the kinases is closely related to inhibition
of growth. The best evidence in support of this hypothesis comes

from experiments showing that forced nuclear accumulation of
SRPKs due to deletion of their spacer region, without any other
cell treatment, results in harmful effects. Yet, the cell state seems
also to have an important role in determining SRPK function. In
cells showing a high proliferation rate (cancer cells, immortalized
highly tumorigenic cells, cells resistant to drugs) SRPKs are
critical in maintaining the high proliferation rate and thus,
they may exert a tumor promoting function, whereas in cells
with a lower proliferation rate (normal mammalian cells,
immortalized but not tumorigenic cells) SRPKs are critical in
maintaining the lower proliferation rate and the non-tumorigenic
features and thus they may exert a tumor suppressor function.
Furthermore, in non-proliferating cells (primary TSC2−/− cells,
sensitive cancer cells treated with chemotherapeutic drugs)
nuclear SRPKs are critical in sustaining the non-proliferative
state and/or mediating drug toxicity. This suggests that SRPKs
have a complicated role in cancer that seems to depend on the cell
state, the subcellular localization and the threshold levels of the
kinases. Deciphering this coordinated mode of action not only
can provide valuable insights into the roles of SRPKs but can have
a significant impact on medical research.
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