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Introduction
According to the 2005–2012 data in the Taiwan 
Renal Registry Data System, the incidence of 
end-stage renal disease (ESRD) increased from 
376 to 426 people per million, and the preva-
lence increased from 2111 to 2926 people per 
million in the Taiwan population.1 Hemodialysis 
is the most frequently prescribed treatment 
option for kidney failure worldwide. 
Approximately 90% of ESRD patients in Taiwan 
receive hemodialysis.2

In 2010, chronic kidney disease (CKD) was ranked 
18th in global mortality causes by a systematic 
analysis for the Global Burden of Disease Study, 
with an annual death rate of 163 per 100,000  
people.3 The increase in CKD-related mortality 
indicates that the burden of renal disease is increas-
ing globally. Laboratory blood tests are major indi-
cators for medical management in hemodialysis 
patients. The survival predictability of various 
patient characteristics, hemodialysis vintage, and 
laboratory tests in maintenance hemodialysis 

Higher-order clinical risk factor interaction 
analysis for overall mortality in maintenance 
hemodialysis patients
Cheng-Hong Yang , Sin-Hua Moi, Li-Yeh Chuang and Jin-Bor Chen

Abstract:
Background and Aims: In Taiwan, approximately 90% of patients with end-stage renal 
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patients has been reported by several recent  
studies.4,5 Overall survival is considered a long-
term outcome of hemodialysis patients.6–10 An 
acceptable level of overall survival in hemodialysis 
patients should be achieved to indicate that the 
quality of dialysis treatment is acceptable.

The interaction between risk factors is considered 
clinically relevant for survival outcome estimation, 
particularly in observational studies.11 Conven- 
tional statistical approaches such as regression 
analysis can explain the association and statistical 
interaction of CKD with clinical or environmental 
risk factors or both; however, these approaches are 
inadequate for detecting higher-order interactions 
among clinical risk factors. The multifactor 
dimensionality reduction (MDR) method is a 
novel computational approach initially developed 
for detecting complex multifactor interactions.12 
Several new MDR-based methods, such as gener-
alized MDR,13 classification based MDR,14 bal-
anced MDR,15 multi-objective MDR,6,17 and 
other approaches have been proposed for improv-
ing the performance and applicability of the gen-
eral MDR method. Evenly distributed case–control 
data sets are required for general MDR-based 
analyses. Previous studies have commonly used 
resampling or undersampling approaches while 
using general MDR-based methods.18 A balanc-
ing function for adjusting the ratio in risk classes 
and classification errors for imbalanced cases and 
controls using MDR, named MDR-ER, improved 
the classification and error rate evaluation func-
tions to fit imbalanced data sets without increas-
ing the number of steps in the procedure and the 
number of parameters.19 These computational 
approaches have rarely been used for detecting the 
complex interactions among clinical risk factors in 
a hemodialysis population.

Compared with common clinical methods, includ-
ing logistic and Cox regression analyses, MDR-ER 
uses the case–control proportion to determine the 
dichotomous threshold between multifactor 
higher-order interactions without increasing the 
computational difficulty. Notably, here, the 
robustness of interaction model was confirmed 
through cross validation. Moreover, the non-para-
metric nature of MDR-ER could alleviate the lim-
itation of the small sampling size. In addition, the 
MDR-ER model could be used to efficiently 
investigate the higher-order marginal or non- 
marginal interaction effects of unique risk factor 

combinations and determine the impact on the 
survival outcome. Here, we used a combination of 
logistic regression and MDR-ER analyses for con-
structing an optimal clinical risk factor interaction 
detection model for overall mortality by using 
imbalanced data sets of patients on maintenance 
hemodialysis. The main purpose of this study was 
to examine the interaction of the indicated clinical 
factors and their contribution to overall mortality 
in patients on regular hemodialysis. Furthermore, 
we aimed to recognize the clinical significance in 
higher-order interaction of multi clinical factors to 
demonstrate mortality risk combinations that are 
unique to the study population and provide whole-
scale patient care clinically.

Materials and methods

Study design and participants selection
The data of 909 patients were reviewed; however, 
128 of these patients were excluded because of 
having incomplete data or being aged <18 years. 
The remaining 781 patients who received outpa-
tient hemodialysis dialysis three times per week at 
Kaohsiung Chang Gung Memorial Hospital 
(CGMH), Taiwan before 1 January 2009 were 
included, and their mortality outcome was tracked 
from the date of initial study inclusion to 31 
December 2013. Finally, the retrospective hemo-
dialysis data set comprised 182 deceased (cases) 
and 599 surviving (controls) patients.

Ethics content
The present study was approved by the 
Committee on Human Research at Kaohsiung 
Chang Gung Memorial Hospital (201800595B0) 
and conducted in accordance with the 
Declaration of Helsinki with a waiver of patient 
consent. All patients were verbally informed that 
their medical information would be collected at 
the beginning of treatment, and all the medical 
information is maintained by the corresponding 
department. All data was retrospectively col-
lected from the medical review database without 
involving any identifiable private information 
under the consent of the corresponding depart-
ment. CGMH allowed a waiver of consent for 
the current study as the research involves no 
more than minimal risk to subjects, and the 
waiver did not adversely affect the rights and 
welfare of the subjects.
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Variables and measurements
The age of patients is the age at entering hemodi-
alysis. Other variables and measurements of the 
study population were collected at January 2009. 
All participants received three-session hemodialy-
sis weekly with bicarbonate-containing dialysate 
and high-efficiency (cellulose acetate) and high-
flux dialyzers (polysulfone, polymethyl meth-
acrylate). All blood tests were examined mid-week 
(Wednesday and Thursday) in fasting status 
before hemodialysis. The corrected Ca levels 
were calculated using the following equation: 
measured total Ca (mg/dL) + 0.8 [4.0 – serum 
albumin (g/dL)]. Urea reduction ratio was calcu-
lated by using the following equation: [predialysis 
BUN – postdialysis BUN/predialysis BUN] × 100%. 

Kt/V urea was calculated by using the following 
equation: Kt/V urea = –Ln (R – 0.008 × t) + [4–
(3.5 × R)] × UF/W, where R is the ratio of postdi-
alysis and predialysis serum urea nitrogen, t (in 
hours) is the duration of dialysis, UF is the ultra-
filtrate amount (L), and W is the postdialysis 
body weight (kg). All blood samples were meas-
ured using commercial kits and an autoanalyzer 
(Hitachi 7600-210, Hitachi Ltd., Tokyo, Japan). 
Albumin levels were measured using the bromo-
cresol green method. The CT ratio was measured 
using chest radiographs obtained after hemodial-
ysis: cardiac size was first measured by drawing 
parallel lines at the most lateral points of each side 
of the heart and then measuring the distance 
between them. Thoracic width was subsequently 

Table 1. Dichotomous characteristics for clinical factors in hemodialysis patients.

Factors Variable AUC Score 1 Score 0 Sensitivity Specificity Youden 
index

LR+

1 Sex 0.513 Female Male 0.571 0.454 0.025 1.047

2 DM 0.586 Yes No 0.368 0.803 0.171 1.869

3 Age, years 0.653 ⩾61.59 <61.59 0.670 0.636 0.306 1.842

4 Hemodialysis vintage, years 0.495 ⩾7.49 <7.49 0.357 0.633 0.010 0.972

5 Hemoglobin, g/dL 0.404 ⩾10.48 <10.48 0.374 0.434 0.192 0.660

6 White blood cell, 103/µL 0.528 ⩾6.19 <6.19 0.445 0.611 0.056 1.144

7 Platelet, 103/µL 0.510 ⩾195 <195 0.451 0.569 0.020 1.046

8 Albumin, g/dL 0.676 <3.76 ⩾3.76 0.637 0.715 0.352 2.233

9 Ferritin, ng/cc 0.571 ⩾415.48 <415.48 0.610 0.533 0.143 1.305

10 Blood urea nitrogen, mg/dL 0.463 ⩾68.77 <68.77 0.462 0.464 0.074 0.861

11 Creatinine, mg/dL 0.616 <10.65 ⩾10.65 0.681 0.551 0.232 1.517

12 Potassium, meq/L 0.458 ⩾5 <5 0.560 0.524 0.085 1.178

13 Corrected serum calcium, mg/dL 0.519 ⩾9.53 <9.53 0.506 0.533 0.039 1.081

14 Phosphorus, mg/dL 0.470 ⩾5 <5 0.544 0.516 0.060 1.124

15 Urea reduction ratio 0.453 ⩾0.74 <0.74 0.511 0.409 0.080 0.865

16 Kt/V urea-Daugirdas score 0.560 ⩾1.70 <1.70 0.643 0.478 0.121 1.230

17 Cardiothoracic ratio 0.619 ⩾0.51 <0.51 0.593 0.644 0.237 1.669

18 Intact parathyroid hormone, pg/mL 0.469 ⩾402.06 <402.06 0.319 0.619 0.062 0.837

AUC, area under the curve; DM, diabetes mellitus; LR+, positive likelihood ratio.
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measured by drawing parallel lines down the 
inner aspect of the widest points of the rib cage 
and then measuring the distance between the 
lines. Finally, the CT ratio was calculated as the 
cardiac size divided by the thoracic width. All the 
introduced variables and measurements were 
included in ROC analysis.

ROC analysis
Conventional statistical approaches, such as 
logistic regression, and the innovative 

MDR-based methods are both non-linear. 
However, the clinical factors for maintenance 
hemodialysis patients are commonly measured in 
a continuous spectrum. Hence, a ROC analysis 
and the AUC were employed to dichotomize the 
continuous spectrums into categorical items.42 
ROC analysis is commonly used to demonstrate 
the performance of diagnostic tests, relying on the 
true-positive rate (sensitivity) compared with the 
false-positive rate (1-specificity) at various thresh-
old settings. The AUC can summarize the overall 
discriminant accuracy of the continuous 

Table 2. Logistic regression analysis using backward selection for overall mortality.

Variables Comparison Univariate Multivariate

Crude OR (95% CI) p Adjusted OR 
(95% CI)

p

Sex Female versus male 1.11 (0.79–1.55) 0.544 –  

DM Yes versus no 2.37 (1.65–3.41) <0.001 1.87 (1.25–2.81) <0.001

Age, years ⩾61.59 versus <61.59 3.55 (2.50–5.05) <0.001 2.09 (1.41–3.10) <0.001

Hemodialysis vintage, years ⩾7.49 versus <7.49 0.84 (0.59–1.17) 0.300 –  

Hemoglobin, g/dL ⩾10.48 versus <10.48 0.46 (0.33–0.64) <0.001 0.62 (0.42–0.90) 0.643

White blood cell, 103/µL ⩾6.19 versus <6.19 1.26 (0.90–1.76) 0.177 –  

Platelet, 103/µL ⩾195 versus <195 1.08 (0.78–1.51) 0.637 –  

Albumin, g/dL <3.76 versus ⩾3.76 4.40 (3.10–6.24) <0.001 2.65 (1.81–3.88) <0.001

Ferritin, Fe, ng/cc ⩾415.48 versus <415.48 1.78 (1.27–2.50) 0.001 –  

Blood urea nitrogen, mg/dL ⩾68.77 versus <68.77 0.74 (0.53–1.04) 0.079 –  

Creatinine, mg/dL <10.65 versus ⩾10.65 2.62 (1.85–3.73) <0.001 1.51 (0.98–2.31) 3.725

Potassium, meq/L ⩾5 versus <5 1.4 (1.01–1.96) 0.046 –  

Corrected serum calcium, mg/dL ⩾9.53 versus <9.53 1.16 (0.84–1.62) 0.368 –  

Phosphorus, mg/dL ⩾5 versus <5 1.27 (0.91–1.77) 0.158 –  

Urea reduction ratio ⩾0.74 versus <0.74 0.72 (0.52–1.01) 0.057 –  

Kt/V urea-Daugirdas score ⩾1.70 versus <1.70 1.64 (1.17–2.32) 0.004 0.60 (0.40–0.89) <0.001

Cardiothoracic ratio ⩾0.51 versus <0.51 2.64 (1.88–3.72) <0.001 1.64 (1.12–2.40) <0.001

Intact parathyroid hormone, pg/mL ⩾402.06 versus <402.06 0.76 (0.53–1.08) 0.129 0.29 (0.18–0.47) 1.083

Bold font indicates statistically significant results with p-value less than 0.05.
Adjusted-OR, adjusted odds ratio estimated from multivariate logistic regression; CI, confidence interval; Crude-OR, crude odds ratio estimated 
from univariate analysis.
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spectrums. All clinical factors, the hemodialysis 
vintage, age, Hgb, albumin, Fe, blood urea nitro-
gen, serum creatinine, potassium, corrected 
serum calcium (Ca), phosphorus, urea reduction 
ratio, Kt/V urea-Daugirdas score, the CT ratio, 
and parathyroid hormone, were recorded as con-
tinuous variables.

The k-means is a method of vector quantization 
which aims to partition n observations into k 
clusters with the within-cluster variances. In this 
study, we used the k-means algorithm to deter-
mine within-cluster variances which could be 
used as a dichotomized reference level for later 
analysis. First, all clinical factors were dichoto-
mized according to the cutoff points of k-means, 
mean, median, or clinical indicator or all, regard-
less of sex and DM status (Supplemental Table 
S2). ROC analyses were employed to estimate 
the distinguishing characteristic used for classify-
ing participants from the overall mortality data 
set. The highest AUC was considered the appro-
priate cutoff point for clinical factor dichotomi-
zation for the subsequent non-linear analysis 
(Supplemental Table S3). Youden index (sensi-
tivity + specificity − 1) is used for determining the 
performance of dichotomous test in single varia-
bles. The likelihood ratio was calculated through 
likelihood testing by comparing the results of the 
dichotomous test in single variables, in which an 
increased value (>1) indicates an increase in 
mortality in patients with score 1 conditions.

Logistic regression
Backward selection was used for final model 
selection for logistic regression with an elimina-
tion criterion of p > 0.02, and univariate logistic 
regression was used to demonstrate the effects of 

independent clinical factors for overall mortality. 
MDR and MDR-ER results were compared in 
the final model to determine the significance of 
the effects of risk factors were included rather 
than chance findings. ORs and 95% CIs were 
computed. The crude ORs were estimated using 
univariate analysis, and the adjusted ORs were 
estimated using multivariate logistic regression. 
Both ORs indicated the risk of clinical risk factors 
for overall mortality. A p value of < 0.05 was con-
sidered statistically significant. All statistical anal-
yses were performed using STATA Version 11.0.

MDR
MDR is a novel computational method for detect-
ing higher-order interactiocns in various diseases. 

Table 3. MDR-ER analysis results for overall mortality.

Order Best model CVC TN TP Error 
rate

OR 95% CI RR 95% CI

Two-order DM, albumin 10/10 354 142 0.31 5.55 3.73–8.24 3.61 2.62–4.88

Three-order DM, age, albumin 4/10 397 134 0.30 5.49 3.79–7.95 3.70 2.75–4.98

Four-order DM, age, albumin, CT ratio 10/10 435 129 0.27 7.07 4.86–10.30 4.05 3.05–5.39

Five-order DM, age, albumin, CT ratio, ferritin 3/10 427 131 0.26 7.79 5.31–11.42 4.17 3.13–5.54

CI, confidence interval; CT, cardiothoracic; CVC, cross validation consistency; DM, diabetes mellitus; MDR-ER, balancing functions for adjusting the 
ratio in risk classes and classification errors for imbalanced cases and controls using multifactor-dimensionality reduction; OR, odds ratio; RR, risk 
ratio estimated from MDR-ER; TN, true negative; TP, true positive.

Figure 1. Proportion of the diabetes mellitus (DM) 
status and albumin level combinations associated with 
high and low risks for overall mortality in hemodialysis 
data sets from the MDR-ER two-order interaction 
model. The white bars indicate survivals proportion 
and the black bars indicate deaths proportion, the 
darker shading indicates the high-risk group.
MDR-ER, balancing functions for adjusting the ratio in risk 
classes and classification errors for imbalanced cases and 
controls using multifactor-dimensionality reduction.
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MDR was designed to detect categorical inde-
pendent variables and a dichotomous case–con-
trol status. In MDR, an exhaustive search is 
performed to evaluate all possible combinations 
of independent variable strata and finally select 
the most relevant combinations according to vari-
ous parameters. CVC, the most critical parameter 
for evaluating MDR results, indicates the number 
of times a model is identified as the optimal model 
consistent to the cross validation (CV) sets. High 
CVC can avoid overfitting results for the existing 
data set, thereby increasing the predictive ability 
of the model produced. The MDR process 
includes the following six steps:
Step 1. Randomly sort and divide the case–control 
data sets into 10 partitions for CV, as shown in (1).

K={k1,k2,k3, ...,kn}  (1)

Step 2. Arrange n combinations in a contingency 
table with the all possible multifactor cell. The value 
of n is designated depending on the number of fac-
tors being considered. Subsequently, a set of n clini-
cal factors is selected. The number of cases and 
controls for each strata combination is counted.

Step 3. Calculate the case–control ratio compared 
with the threshold (T = 1). For MDR, the multi-
factor class count and ratio is calculated. The ratio 
in the multifactor cell that meets or exceeds the 
threshold is labeled high-risk (H), indicating the 
high-risk group. The multifactor cell under the 
threshold is labeled low-risk (L), indicating the 
low-risk group. The equation is shown in (2).

Step 4. Repeat steps 1–3 to search for all possible 
combinations in each stratum of independent 
variables

Figure 2. Proportion of age, the diabetes mellitus (DM) status, albumin level and cardiothoracic (CT) ratio 
combinations associated with high and low risks for overall mortality in hemodialysis data sets from the 
MDR-ER four-order interaction model. The white bars indicate survivals proportion and the black bars indicate 
deaths proportion, the darker shading indicates the high-risk group.
MDR-ER, balancing functions for adjusting the ratio in risk classes and classification errors for imbalanced cases and 
controls using multifactor-dimensionality reduction.
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where P is the case data set, N is the control data 
set, P* is the number of case groups in the training 
set, N* is the number of control groups in the train-
ing set, and K is a vector of variable combinations.

Step 5. Compute the misclassification error for all 
possible interaction models. The function u(K,A) 
is a match if all parameters K in the vector K 
match their cases or controls and is scored as 1, 
whereas a misclassification error is scored as 0. 
The minimum classification error rate is chosen 
as the optimal model in each CV. The equation in 
(3) was used to estimate the error rate.

f C
FN FP

TP FN FP TN
( ) = +

+ + +
 (3)

where C is the evaluated model. TP is true posi-
tive, the total number of cells labeled high-risk 
(H) in the case data. FP is false positive, the total 
number of cells labeled high-risk (H) in the con-
trol data. FN is false negative, the total number of 
cells labeled low-risk (L) in the case data. TN is 
true negative, the total number of cells labeled 
low-risk (L) in the control data.

Step 6. Repeat steps 1–5 for each partition CV until 
the last partition is met. Select the optimal model 
according to the minimized error rate and CVC.

MDR-ER
As mentioned, MDR has limited applications for 
the imbalanced data sets. Traditionally, under-
sampling and resampling approaches have been 
used to overcome this limitation. Conversely, the 
MDR-ER method estimates the classification error 
from the existing case–control proportion and uses 
the case–control ratio to weigh the outcome prob-
ability. Previous studies have proven the feasibility 
of MDR-ER in association analysis in gene–gene 
and gene–environment interactions for imbal-
anced data sets.19 The functions of MDR-ER 

modified to fit imbalanced data sets are as follows 
and the complete MDR-based MDR-ER proce-
dure is illustrated in Supplemental files.

In the MDR-ER method, the case–control ratio 
(percentage) for each multifactor cell is calculated 
to enhance the ratio between the cases and con-
trols in the ratio function of MDR. The ratio in 
the multifactor cell that meets or exceeds a thresh-
old is labeled H, whereas others are labeled L. 
The equation is shown in (4).
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where P is the case data set, N is the control data 
set, P* is the number of case groups in the training 
set, N* is the number of control groups in the train-
ing set, and K is a vector of variable combinations.

The adjusted misclassification error, based on the 
arithmetic mean of the sensitivity and specificity, 
is algebraically identical to the error rate if the 
data set is imbalanced. The adjusted equation is 
shown in (5).

f C
FN

TP FN
FP

FP TN
( ) = ×

+
+

+






0 5.  (5)

where TP is true positive, the total number of 
cells labeled H in the case data. FP is false posi-
tive, the total number of cells labeled high-risk 
(H) in the control data. FN is false negative, the 
total number of cells labeled low-risk (L) in the 
case data. TN is true negative, the total number of 
cells labeled low-risk (L) in the control data.

Results

Receiver operating characteristic (ROC) 
approach
A total of 781 patients were analyzed. The ROC 
approach was used to dichotomize all variables 
into the categorical form to fit the non-linear 
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analysis. Table 1 summarizes the dichotomous 
characteristics of 16 clinical factors according to 
the overall mortality status. The top three clinical 
factors according to the area under the ROC curve 
(AUC) values were albumin, age, and cardiotho-
racic (CT) ratio. Albumin had the highest AUC 
(0.676), with a sensitivity of 0.637, a specificity of 
0.715, a Youden index of 0.352, and a positive 
likelihood ratio (LR+) of 2.233. Age showed an 
AUC of 0.653, with a sensitivity of 0.670, a speci-
ficity of 0.636, a Youden index of 0.306, and an 
LR+ of 1.842. The CT ratio exhibited an AUC of 
0.619, with a sensitivity of 0.593, a specificity of 
0.644, a Youden index of 0.237, and an LR+ of 
1.669. Supplemental Material Table S1 online 
summarizes the clinical factor distribution among 
hemodialysis patients according to the overall mor-
tality status. Compared with the survival (control) 
group, the death (case) group had a significantly 
higher proportion of the following characteristics: 
diabetes mellitus (DM), age ⩾61.59 years, Hgb 
levels <10.48 g/dL, albumin levels <3.76 g/dL, 
ferritin (Fe) levels ⩾415.48 ng/cc, creatinine levels 
<10.65 mg/dL, potassium levels ⩾5 meq/L, Kt/V 
urea-Daugirdas score ⩾1.70, and CT ratio ⩾0.51.

Logistic regression approach using backward 
selection
Backward selection in logistic regression was used 
for the final model selection (Table 2). The clinical 
factors that satisfied the statistical criteria (p < 0.2) 
were included in the multivariate analysis. In the 
final model analysis, the clinical factors significantly 
associated with overall mortality were DM status 
(yes versus no, adjusted odds ratio (OR) = 1.87, 95% 
confidence interval (CI) = 1.25–2.81, p < 0.001), 
age (⩾61.59 years versus <61.59 years, adjusted 
OR = 2.09, 95% CI = 1.41–3.10, p < 0.001), albu-
min levels (<3.76 g/dL versus ⩾3.76 g/dL, adjust- 
ed OR = 2.65, 95% CI = 1.81–3.88, p < 0.001), 
Kt/V urea-Daugirdas score (⩾1.70 versus <1.70, 
adjusted OR = 0.60, 95% CI = 0.40–0.89, p < 0.001), 
and CT ratio (⩾0.51 versus <0.51, adjusted 
OR = 1.64, 95% CI = 1.12–2.40, p < 0.001). Similar 
results were obtained in the univariate analysis 
(Table 2).

Interactions between multiclinical risk factors
Shown in Table 3, the two- and four-order inter-
action models had the highest cross validation 
consistency (CVC). The two-order interaction 
model exhibited a combination of DM and 

albumin levels (OR = 5.55, 95% CI = 3.73–8.24; 
risk ratio (RR) = 3.61, 95% CI = 2.62–4.88) with 
a satisfactory CVC (10/10, error rate = 0.31). The 
four-order interaction model exhibited a combi-
nation of risk factors, including DM, age, albu-
min level, and CT ratio, which could reduce 
patient survival (OR = 7.07, 95% CI = 4.86–
10.30; RR = 4.05, 95% CI = 3.05–5.39) with a 
satisfactory CVC (10/10, error rate = 0.27). In 
addition, the results showed the three- and five-
order interaction model have not reached the sat-
isfactory CVC. The three-order interaction model 
(CVC = 4/10, error rate = 0.30) included a combi-
nation of DM, age, and albumin level (OR = 5.49, 
95% CI = 3.79–7.95; RR = 3.70, 95% CI = 2.75–
4.98), and the five-order interaction model 
(CVC = 3/10, error rate = 0.26) included a combi-
nation of DM, age, albumin, CT ratio, ferritin 
level (OR = 7.79, 95% CI = 5.31–11.42; RR = 4.17, 
95% CI = 3.13–5.54).

Figures 1 and 2 respectively present the most sat-
isfactory two- and four-order models summa-
rized according to the proportion of clinical risk 
factor combinations associated with high and low 
risks for overall mortality in the imbalanced 
hemodialysis data set. The high-risk pattern for 
overall mortality depended on the presence of 
DM and low albumin levels (<3.76 g/dL), old 
age (⩾61.59 years), and a high CT ratio (⩾0.51).

Discussion
With the combined use of ROC dichotomous 
methods, logistic regression, and a novel MDR-
based method, our results demonstrated a system-
atic analysis of both main effects and interactions 
using an imbalanced data set for overall mortality 
in maintenance hemodialysis patients. Previous 
studies have reported that conventional statistical 
approaches, including logistic regression, are inad-
equate for detecting higher-order interactions.20,21 
The MDR method is a novel, non-parametric, 
non-linear method for detecting the complex effect 
of multifactor associations among risk factors.22–25 
The MDR-based MDR-ER method uses modified 
functions to overcome its limitations in imbal-
anced data sets. The interaction of a typical linear 
model such as generalized linear model or logistic 
regression was mainly dependent on the linear 
equation; however, an MDR-based algorithm 
could determine the high-order interaction using a 
non-linear model. In addition, the model-free and 
non-parametric nature of MDR-based approaches 
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also avoids the sample size restriction compared 
with linear analysis approaches. The backward 
selection multivariate logistic regression was used 
to analyze associations among all dichotomous risk 
factors for overall mortality, and the MDR-ER was 
used to construct an optimal multiclinical risk fac-
tor interaction model for overall mortality in hemo-
dialysis patients based on common clinical risk 
factors. Conventional regression-based analysis 
was useful to evaluate the association between 
overall mortality and clinical factors. On the other 
hand, the high-order interaction analysis was more 
complex than the regression-based analysis but 
was restricted because of sample distribution. The 
MDR-based algorithm was non-parametric and 
useful for interpreting multifactor risk interaction 
at a glance. Similarly, the MDR-ER obtained simi-
lar results with conventional logistic regression 
findings. The present study proposed a different 
strategy to detect the effects of complex interac-
tions between multiclinical risk factors on overall 
mortality, and the implications on practice might 
need additional clinical prospective investigation.

For the backward selection logistic regression 
results, the mortality risk was associated with 
DM, old age, low Hgb levels, low albumin lev-
els, low Kt/V urea-Daugirdas score, and a high 
CT ratio. The clinical risk factors detected in 
the two- to five-order interaction models for 
overall mortality were DM, age, albumin, ferri-
tin levels, and CT ratio. According to the pro-
portion of clinical risk factor combinations 
associated with high and low risks for overall 
mortality (Figures 1 and 2), both analysis 
approaches detected highly similar clinical risk 
factors for the high-risk groups for mortality. In 
addition, the overlapping clinical factors in the 
interaction models, DM, age, and albumin lev-
els, and CT ratio, were associated with mortal-
ity in CKD, which has been reported by several 
studies.26–30

DM and old age increased the mortality risk in 
hemodialysis patients.27,31 Albumin levels were 
highly associated with overall mortality.31 Serum 
albumin level <4.0 g/L was considered a critical 
contributing factor to the mortality of hemodialy-
sis patients. The CT ratio was computed as the 
ratio of the heart diameter to the transverse tho-
racic diameter. A high CT ratio indicated cardiac 
enlargement, which is associated with adverse 
outcomes in dialysis patients.32 Several 

continuous clinical variables, such as age, albumin 
levels, and CT ratio, were dichotomized accord-
ing to the highest AUC value in ROC estimation 
from the cutoff points derived using various statis-
tical inference (Supplemental Table S2). These 
cut-off points provide a possible tolerable range 
for the existing clinical indicator standard and 
may assist in clinical decision making. The impact 
of interaction between inflammation, malnutri-
tion, and fluid status upon survival among patients 
who underwent hemodialysis has been demon-
strated in prior studies.33–35 Thence, analyzing 
interaction between clinical factors is more precise 
for mortality assessment among patients undergo-
ing hemodialysis.

The retrospective design of this study limited the 
set of clinicopathological factors; hence, the num-
ber of potentially associated factors that can be 
included in our analysis was limited. Although we 
could not consider all potential covariates or con-
founding factors, we have included factors that 
are most commonly associated with overall mor-
tality in hemodialysis patients. The CT ratio was 
used as a proxy of cardiovascular function despite 
the lack of cardiovascular disease history. The 
application data set restricted the possible associ-
ation and interaction results in hemodialysis 
patients, including vascular access category, 
hemodialyzer category, ultrafiltration amount in 
hemodialysis session and components of dialysate 
in hemodialysis session. Furthermore, the time 
effects of the follow-up interval were not included 
in this study. Despite the aforementioned limita-
tions, the determined high-order interaction 
results are beneficial in demonstrating the risk 
characteristics of overall mortality in hemodialysis 
patients. This study proposed a different strategy 
to detect the complex interaction between multi-
clinical risk factors on overall mortality, and the 
implication to practice might require additional 
clinical prospective investigation yet.

Overall, the study results suggested that a combi-
nation of the ROC, logistic regression, and 
MDR-ER methods suitably detects both main 
effects and interactions for overall mortality using 
an imbalanced case–control maintenance hemodi-
alysis data set. We found that the albumin level 
exhibited the main effects on overall mortality in 
hemodialysis patients. Likewise, the albumin 
level, DM, age group, and CT ratio may have 
exhibited high-order interaction effects on overall 
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mortality in hemodialysis patients. The main 
effect indicated that any effect could serve as a 
guide for determining the correct multiclinical 
factor interaction in overall mortality, and the 
interaction effect indicated that the least proper 
subset of risk factors interacted suitably. Consistent 
with the conventional statistical approaches, the 
higher-order interaction model could indicate the 
impact of potential risk combination unique to 
maintenance hemodialysis patients on the survival 
outcome. Moreover, the MDR-based higher-order 
interaction model contributed to higher-order 
interaction effect detection among multiclinical 
factors by using non-parametric strategies and 
provided more detailed risk characteristic combi-
nation for mortality risk. Therefore, higher-order 
clinical risk interaction analysis is a reasonable 
strategy for determining the non-traditional risk 
factors’ interaction effects unique to patients on 
maintenance hemodialysis on the survival out-
come, such as the effects of inflammation, adi-
pokines, appetite-related gut hormones, and 
oxidative stress on clinical outcomes.36–41
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