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The last several years have witnessed an explosion of methods and applications for

combining image data with ’omics data, and for prediction of clinical phenotypes.

Much of this research has focused on cancer histology, for which genetic perturbations

are large, and the signal to noise ratio is high. Related research on chronic, complex

diseases is limited by tissue sample availability, lower genomic signal strength, and the

less extreme and tissue-specific nature of intermediate histological phenotypes. Data

from the GTEx Consortium provides a unique opportunity to investigate the connections

among phenotypic histological variation, imaging data, and ’omics profiling, frommultiple

tissue-specific phenotypes at the sub-clinical level. Investigating histological designations

in multiple tissues, we survey the evidence for genomic association and prediction of

histology, and use the results to test the limits of prediction accuracy using machine

learning methods applied to the imaging data, genomics data, and their combination.

We find that expression data has similar or superior accuracy for pathology prediction

as our use of imaging data, despite the fact that pathological determination is made

from the images themselves. A variety of machine learning methods have similar

performance, while network embedding methods offer at best limited improvements.

These observations hold across a range of tissues and predictor types. The results

are supportive of the use of genomic measurements for prediction, and in using the

same target tissue in which pathological phenotyping has been performed. Although

this last finding is sensible, to our knowledge our study is the first to demonstrate this

fact empirically. Even while prediction accuracy remains a challenge, the results show

clear evidence of pathway and tissue-specific biology.

Keywords: imaging, genomics, pathology, prediction, integration, histology, machine learning, embedding

1. INTRODUCTION

Histopathology refers to the microscopic examination of tissues in order to identify possible
changes caused by disease, which is still largely conducted by human pathologists using
expert judgment. High resolution imaging has made it possible to use machine learning to
perform histopathological assignment. Moreover, outside of cancer diagnostics, few studies have
attempted to combine histological phenotypes with genomic measurements due to the lack of
available datasets. The Genotype-Tissue Expression (GTEx) project includes histology image
data, with expert pathological classification, and RNA-seq expression data. The Biorepositories
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and Biospecimen Research Branch (BBRB) of the Cancer
Diagnosis Program (CDP) at the National Institute of
Health (NIH) manages the collection of tissue and blood
biospecimens for GTEx from over 900 deceased donors who
were identified through organ and tissue transplant programs
(https://biospecimens.cancer.gov/resources/sops/gtex.asp). The
BBRB has adopted standard operating procedures for various
biobanking practices. One is a protocol for the uniform histologic
analysis of GTEx tissue specimens and for generating a case
summary report for the tissues received and evaluated. The
Comprehensive Biospecimen Resource receives and processes
these tissue specimens and generates digital images. A certified
pathologist reviews the tissue images to confirm the presence of
any pathologic findings.

The design of GTEx makes it an ideal testing ground for the
difficult problem of imaging- and expression-based prediction
of subclinical pathologies. The use of machine learning for
image and genomic analysis in cancer tissue diagnostics is well-
established (Mobadersany et al., 2018; Halama, 2019), but has
not been well-developed for subclinical pathologies, for which
pathological specimens are unlikely to be available. Two reports
have performed limited imaging/expression analysis within one
or two GTEx tissues at a time, for a corresponding pathological
designation. Barry et al. (2018) examined 341 samples in thyroid,
and focused primarily on image feature extraction to predict a
pathological designation, and Ash et al. (2018) examined colon
and thyroid similarly, where the focus was primarily on genomic
associations with extracted image components rather than
pathology directly. The motivation for GTEx (Lonsdale et al.,
2013) was that the expression quantitative trait locus dissection
of disease pathology is best performed using expression in the
same tissue manifesting the pathology. The expression QTL
results from GTEx v8 (GTEx Consortium et al., 2020) provide
incomplete support for this hypothesis, as a large proportion
of significant eQTLs appear to be common across tissues,
raising the possibility of analogous findings for histopathological
designations. In other words, it is unclear whether expression
should be measured in the same tissue as that providing the basis
for diagnosis.

In addition to uncertainty described above, previous work has
left unanswered the question of whether genomic measurements,
images, or a combination of the two provide the best predictive
ability for a sub-clinical pathology. Genomic measurements
provide greater biological interpretability than imaging, and so
might be preferred in many circumstances if tissues are available.

Here we perform a comprehensive investigation of six
pathological designations in five GTEx tissues, exploring the
limits of machine-learning prediction accuracy using imaging
data, expression, and their combination.

2. DATA PREPARATION

2.1. Histopathological Data
Original GTEx histology images were downloaded from the
Biospecimen Research Database (https://brd.nci.nih.gov/brd/
image-search/searchhome). These image files are in Aperio SVS
format, a single-file pyramidal tiled TIFF. The RBioFormats

R package (https://github.com/aoles/RBioFormats), which
interfaces the OME Bio-Formats Java library (https://www.
openmicroscopy.org/bio-formats), was used to convert the files
to JPEG format, and these images were processed using the
Bioconductor package EBImage (Pau et al., 2010). Following
the method proposed by Barry et al. (2018) to segment
individual tissue pieces, the average intensity across color
channels was calculated, and adaptive thresholding was
performed to distinguish tissue from background. A total of
117 Haralick image features were extracted from each tissue
piece by calculating 13 base Haralick features for each of the
three RGB color channels and across three Haralick scales
by sampling every 1, 10, or 100 pixels. After removing overly
small tissue pieces, feature values were averaged across pieces
for each sample. Then features were log2-transformed and
normalized to ensure feature comparability across samples.
Pathology data for all histology samples are available on the
GTEx Portal (https://www.gtexportal.org/home/histologyPage).
Sex and age are also provided. Six pathology categories in
five tissues were selected, based on completeness of data:
fibrosis in lung (n = 831 for image, n = 513 for expression),
congestion in liver (n = 600, n = 205), steatosis in liver
(n = 600, n = 205), atherosclerosis/atherosis/sclerotic in
tibial artery (n = 836, n = 508), Hashimoto’s thyroiditis in
thyroid (n = 892, n = 570), and fibrosis in adipose tissue
(n = 963, n = 574). Each phenotype was coded as presence
(coded 1) or absence (0) of a particular pathology.

2.2. Gene Expression Data
For each tissue type, a subset of subjects also had gene expression
data from RNA-Seq. The v8 release is available on the GTEx
Portal (https://www.gtexportal.org/home/datasets). Gene read
counts were normalized between samples using TMM, and
genes were selected based on expression thresholds explained in
GTEx Consortium et al. (2020). To account for hidden batch
effects in the gene expression data, GTEx implemented the
Probabilistic Estimation of Expression Residuals (PEER) method
(Stegle et al., 2010) to estimate a set of cofactors for each
tissue type. This approach builds on factor analysis methods
that infer broad variance components in the measurements. It
outputs hidden cofactors that explain much of the expression
variability among individuals. These PEER cofactors are treated
as covariates in association models to increase power for
detecting expression traits. Using a standard approach for
our expression analyses, PEER cofactors that were significantly
associated with a phenotype (false discovery q < 0.1) were
included, along with sex, as covariates.

3. ANALYSES

3.1. Integrative Analyses
In order to best represent prediction accuracy for relatively
interpretable models, we used a combination of principal
components and LASSO regression as initial analyses with cross-
validation, and area under the receiver-operator characteristic
curve (AUC) as the performance criterion. To explore the limits

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 555886

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Gallins et al. Phenotype Prediction With Imaging/Omics

FIGURE 1 | Pipeline to build a prediction model with integrated imaging and expression data.

of prediction accuracy, we also performed a suite of additional
machine learning prediction approaches.

3.1.1. Initial Prediction
To reduce the number of image features, principal components
analysis (PCA) was performed as described (Barry et al., 2018),
and the first 10 PCs were included in downstream analyses.
Logistic regression was performed to test if the image PCs alone
can predict pathology by the following methods: (1) including all
observations in a model and output the predicted values directly;
and (2) 50 iterations of five-fold cross-validation and output the
average predicted values. We computed the AUCs between the
predicted values and the phenotype. In a similar manner as Barry
et al. (2018), we subsampled the original images down to 1,000
× 1,000 pixels to illustrate the predictive performance of the ten
image PCs in a logistic regression model. Then we tested if gene
expression alone can predict pathology by running fifty iterations
of five-fold cross-validation of LASSO logistic regression. Within
each fold, we ran the cv.glmnet function in R (alpha=1) on the
training set and selected the gene predictors which gave non-zero
coefficients at the lambda with the smallest mean cross-validated
error. Finally, we ran an integrative analysis of image features and
gene expression to predict pathology. Here the strategy was to
combine the ten imaging PCs with the gene-expressed predictors
selected by LASSO into a single generalized linear regression
model, again using fifty iterations of five-fold cross validation.
For each model, analyses were performed both without and with
covariates. For imaging prediction, the covariates were age and
sex, and additional covariates for expression prediction were the
PEER cofactors as described.

3.1.2. A Larger Suite of Prediction Approaches
We started with the same set of 10 PCs from the image features.
We also ran PCA on the gene expression data, and due to the
higher dimensionality, we included the first twenty expression
PCs in the predictivemodels. For the predictions using image and

expression separately, we ran a suite of six supervised machine
learning methods: random forest (RF), support vector machines
(SVM), naive Bayes (NB), linear discriminant (LD), quadratic
discriminant (QD), and logistic regression (LR). We used the
Classification Learner application inMatlab to train these models
with five-fold cross-validation and for classification. Figure 1
illustrates the pipeline developed for the integrative analysis of
image and gene expression features. Combining these data types
as input, we applied the joint and individual variation explained
(JIVE) method (Lock et al., 2013), which partitions joint and
individual sources of variation between data types. Our approach
used an autoencoder, a type of artificial neural network, to reduce
the dimensionality of the data. We chose the first twenty features
from this method as input to build a predictive model using
random forests.

3.1.3. Pathway Analysis
We ran a regression analysis of pathology phenotype against
gene expression in each tissue, and selected the subset of
significant genes (false discovery q < 0.1) as input for
pathway analysis. We ran the Ingenuity Pathway Analysis
(IPA) software (QIAGEN Inc., https://digitalinsights.qiagen.
com/products-overview/discovery-insights-portfolio/analysis-
and-visualization/qiagen-ipa) and the DAVID functional
annotation tool (Huang et al., 2009a,b). Both methods test if
pathways, annotated by gene sets in their respective databases,
are enriched for significant phenotype-associated genes. Both
approaches uses Fisher’s exact p-values for enrichment of
pathway membership compared to the significant gene set. For
IPA, we used human genes in the Ingenuity Knowledge Base as
the background gene set, along with its default analysis settings.
For DAVID, we used all human genes in their database as the
background gene set, also with its default settings. Pathways from
IPA and functional gene groups from DAVID with FDR q < 0.1
were declared significantly enriched for significant genes.
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FIGURE 2 | Workflow for the network embedding of gene expression.

3.1.4. Network Embedding Analysis
Network embedding (Nelson et al., 2019) has numerous
applications in computational biology. Although the use of
embedding in biological network analysis offers potentially
simplified interpretation, we employ it here primarily for its
potential robustness/denoising properties (Wang et al., 2018),
which may potentially improve prediction. In this part of
work, we applied Graph-Embedded Deep Feedforward Networks
(GEDFN) (Kong and Yu, 2018) which integrate (embed) an
external gene network into the deep neural network architecture.
The GEDFN model has a structure of regular neural network
architecture with the difference that it applies a gene network
called graph-embedding layer instead of the fully connected layer
between the input layer and the first hidden layer. In the GEDFN
model, the resulting network is represented by a square adjacency
matrix, a feature graph which indicates whether pairs of genes
are adjacent or not in the network. it comes from the HINT
database (http://hint.yulab.org) which is a collection of high-
quality protein interactomes from several interactome resources
(Das and Yu, 2012). Figure 2 illustrates network embedding
workflow. In our approach, since there are the large number of
predictors (genes), we considered only the genes which have p-
value < 0.05 to build the gene network. Supplementary Table 1

shows the size of the gene network for all tissues based on
the types of diseases. Then, the input layer of these Deep
Feedforward Networks is the gene expression matrix which feeds
into a graph-embedded layer. The second and third (hidden)
layers are the standard 64-dimensional and 16-dimensional,
respectively, and the output layer is 2-dimensional. The Rectified
Linear Unit (ReLU) (Nair and Hinton, 2010) was used as the
activation function for the model. The Adam optimizer (Kingma
and Ba, 2014), an extension of classical stochastic gradient
descent, was selected to update network weights iteratively in
the training data. Also, five-fold cross validation was used to
avoid overfitting.

3.2. Cross-Tissue Pathology vs. Expression
For cross-tissue comparisons, we selected the 30 GTEx tissues
with both gene expression and imaging data and compared
gene expression relationships to the six pathologies and their
image features. For each gene, we ran four regression models:
phenotype and each of the first three image PCs against
expression, including sex as a covariate. The number of samples
varied widely by tissue, creating potential differences in power
to detect association. Thus, we used the q-value package in R to
estimate the proportion of non-null p-values (π1 = 1 − π0) in
eachmodel, using the overall p-value for the collection of imaging
PCs. The value π1 was used as an estimate of overall expression
vs. phenotype relationship (Storey, 2003) that should be relatively
insensitive to the sample size.

4. RESULTS

We first highlight findings from individual tissues/pathologies,
and then provide an overall summary. Table 1 provides
summaries of predictive performance for histopathology-derived
phenotypes, gene expression data, and integrative analyses.
Figure 3 shows the π1 values each tissue/pathology vs. the tissue
in which expression is measured. Of the six pathologies, only lung
fibrosis, liver congestion, tibial artery atherosclerosis, and thyroid
Hashimoto’s disease resulted in any pathways significant at false
discovery q < 0.01.

In Table 1, columns 2–3 represent the number of individuals
n with imaging data for a given tissue, along with case/control
counts for the corresponding pathology. Column 4 shows the
performance as measured by the area under the receiver-operator
characteristic (ROC) curve (AUC) from the regression model
of pathology against the 10 image PCs. All of the ROC curves
are shown in Supplementary Figure 1. As the ROC curves do
not show many instances of crossing, except for curves that
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TABLE 1 | Summaries of predictive performance for histopathology-derived phenotypes from imaging data, gene expression data, and integrative analyses.

Image Expression Combined

Phenotype Initial Suite Phenotype Initial Suite Embeeding Initial Suite

Tissue—pathology N Yes/No AUC AUC N Yes/No AUC AUC AUC AUC AUC

Lung—fibrosis 831 140/691 0.61 0.62 (RF) 513 74/439 0.63 0.65 (RF) 0.68 0.62 0.57

Liver—steatosis 600 260/340 0.73 0.73 (QD) 205 96/109 0.75 0.74 (RF) 0.81 0.75 0.71

Liver—congestion 600 259/341 0.70 0.69 (NB) 205 80/125 0.76 0.76 (SVM) 0.79 0.76 0.69

Tibial artery—atherosclerosis/atherosis/sclerotic 836 216/620 0.76 0.76 (RF) 508 113/395 0.77 0.76 (LD) 0.76 0.77 0.69

Thyroid—Hashimoto 892 71/821 0.89 0.87 (SVM) 570 37/533 0.95 0.96 (SVM) 0.93 0.96 0.82

Adipose—fibrosis 936 137/826 0.57 0.58 (RF) 574 73/501 0.78 0.68 (LR) 0.84 0.77 0.58

are similar throughout, so the AUC is a reasonable summary
of performance. Column 5 of Table 1 is the best AUC from
among the suite of machine learning methods. Columns 6–7
represent the subset of individuals that also have gene expression
data. Column 8 is the AUC from the LASSO regression model
of pathology against the significant gene predictors. Column
9 is the best AUC from among the suite of machine learning
methods using 20 expression PCs to predict pathology. Column
10 is the AUC from the network embedding analysis with gene
expression networks. Column 11 is the AUC from the integrative
regression model of pathology against the 10 image PCs and
the significant gene predictors. Column 12 is the AUC from the
integrative JIVE method. The AUCs for each method without
covariates are shown, as they were similar to the covariate-
corrected values.

4.1. Lung—Fibrosis
Relative to other tissues, the AUCs for lung fibrosis were
relatively low. One explanation could be that these images appear
to have less definition, resulting in less informative texture
features and possibly more difficult to determine the pathology.
Nonetheless, in Figure 3, π1 for the association of fibrosis against
gene expression across tissues was largest for the lung. Using
IPA pathway analysis for lung fibrosis, two pathways were
significant at q < 0, 01, Phagosome Maturation and Autophagy
(Supplementary File 1).

4.2. Liver—Steatosis and Congestion
The AUCs were modest for both the steatosis and congestion
pathologies. For steatosis, the AUC increased substantially using
network embedding compared to the other analyses involving
expression or image alone. For congestion, predictions using
expression alone were markedly higher than using images
alone. Using DAVID pathway analysis for liver congestion,
two pathway clusters were significant, including those related
to intracellular organelle and nuclear lumen and the Golgi
apparatus (Supplementary File 2).

4.3. Tibial Artery - Atherosclerosis
The prediction performance for tibial artery atherosclerosis
in modest (∼0.76, Table 1), again similar for imaging,
expression, and combined. The imaging-based predictions
are instructive. In Figure 4 (bottom), the images corresponding

to the three lowest and three highest atherosclerosis probabilities
are shown. The high-probability images show calcification
(dark staining) portions, characteristic of the pathology
(Nicoll and Henein, 2013). We note that the “error” in
classification (second thyroid image from right) appears to
show a classic histology pattern for the disorder. Figure 5

is an illustrative observed vs. expected qq plot of p-values
from the regression analysis of pathology phenotype against
gene expression in tibial artery, which revealed that the
atherosclerosis/atherosis/sclerotic pathology is a substantial
source of expression variability.

Immune pathways also topped the list of significant IPA
pathways (FDR q < 0.1) for atherosclerosis. These included
PD-1 Cancer Immunotherapy, iCOS Signaling in T Helper
Cells, and Allograft Rejection Signaling (Supplementary File 1).
Atherosclerosis is a chronic inflammatory disease (Galkina
and Ley, 2009), with lesions containing cells involved in
immune response (Hansson, 2001). Accordingly, it is perhaps
not surprising that DAVID enrichment included clusters for
human leukocyte antigen (HLA), interleukin (IL), and cluster
of differentiation (CD). Proteins produced by HLA exist on the
cell surface and the immune system uses HLAs to differentiate
human cells and non-human (virus) cells (Shiina et al., 2009).
Interleukins participate in the regulation of immune responses,
inflammatory reactions, and formation of blood cells (Sims et al.,
1988). CD molecules are also on the cell surface and provide
targets for immunophenotyping of cells (Chan et al., 1988).

In Figure 3, the π1 value for the association of tibial artery
atherosclerosis against gene expression across tissues was largest
for the tibial artery.

4.4. Thyroid—Hashimoto’s Disease
Image PCs were an excellent predictor of Hashimoto’s disease,
confirming the findings of Barry et al. (2018), as was gene
expression. The expression-based suite AUC is a remarkable 0.96.
In Figure 4 (top), images with a high prediction probability show
clear lymphocytic infiltration (dark staining) portions that are
characteristic of the disease (Pyzik et al., 2015).

Hashimoto’s disease is understood to be an auto-immune
disorder, disproportionately affecting women (Zaletel
and Gaberscek, 2011). As might be expected, the most
significant biological pathways for expression associated
with Hashimoto’s disease involved immune response, with
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FIGURE 3 | Proportion of non-null p-values (π1) in the cross-tissue regression analysis of pathology phenotype vs. gene expression, and for image PCs 1–3 vs.

expression. Larger dots are the π1 values corresponding to the same tissue in which pathology was determined, which is also highlighted in gray in each subfigure.

Arrows indicate the tissue with the highest π1 for phenotype, in many instances coinciding with the phenotype tissue. Tissues used in the cross-tissue analysis are

labeled using the same color scheme used by GTEx Consortium et al. (2020).

top pathways Th1/Th2 Activation, Innate/Adaptive Immune
Cell Communication, and Primary Immunodeficiency at
the top of a large list of immune-related pathways with
FDR q < 0.1 (Supplementary Files 1, 2). In addition to
HLA, IL, and CD, major determinants of this classification
were the immunoglobulin (IG) and toll-like receptor (TLR)
gene groups. Immunoglobulins are antibodies used by the
immune system to neutralize pathogens such as bacteria
and viruses (Lefranc, 2014). Toll-like receptors recognize
molecules derived from microbes and activate immune cell
responses (Delneste et al., 2007).

In Figure 3, π1 for the association of Hashimoto’s disease
against gene expression across tissues was largest for the thyroid.

4.5. Adipose–Fibrosis
These images (not shown) appear to have less definition than
other tissues, and the AUC increased substantially (from ∼

0.78 to 0.84) using network embedding compared to the other
analyses involving expression or image alone. However, the
AUC performance appears to vary somewhat across the various
approaches, including the simple initial analysis and the “best
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FIGURE 4 | Image samples for two tissues and associated pathologies, for the samples with the three highest and lowest predicted probabilities for thyroid

Hashimoto’s disease (Top) and tibial artery atherosclerosis (Bottom).

of suite” analyses, and it is difficult to confidently attribute the
improvement to the embedding process.

4.6. Overall
From Table 1, we can conclude that the AUC results are
fairly similar, whether using images alone or with expression.
Supplementary Table 2 provides a list of the top 20 genes in
the Initial Analysis using gene expression-based prediction. Our
network embedding analysis using gene expression generally
resulted in slightly improved predictions (AUC) compared to the
other analyses involving expression or image alone. Combined
analyses using the integrated approach (imaging and expression
together) failed to improve prediction accuracy, either in
simple form or using the feature extraction-JIVE-random forest
complex analyses. One possibility is that the prediction signal
for imaging and expression were largely overlapping, and thus
not able to reinforce each other or represent sufficient synergy
to overcome the additional model complexity. As discussed
above, Figure 3 summarizes the proportion of non-null p-values
(π1 = 1 − π0) in the cross-tissue regression analysis of
phenotype and image PCs against gene expression. The rationale
is that π1 should reflect the degree of correspondence between
each pathology and the tissue, and be relatively insensitive to
issues such as sample size. Note that π1 for the phenotype
association was generally among the largest for the same tissue
corresponding to the pathology. We consider this observation
to be notable, as the complexity of pathway biology and
the underlying driving tissues could quite conceivably result
in alternate findings. Our findings offer a complementary
counterpoint to the fact that the majority of general (“non-
disease”) expression QTLs are thought to be common across a
variety of tissues (GTEx Consortium et al., 2020). The figure also
shows the same type of plot for association of expression with
imaging PCs 1–3, which sometimes roughly track the π1 values
from phenotype association. This phenomenon is to be expected

FIGURE 5 | QQ plot of p-values from the regression analysis of pathology

phenotype against gene expression for atherosclerosis in tibial artery tissue.

if the phenotype is directly driving much of the PC signal, or
if for any reason the image morphologies are correlated with
expression in a particular tissue.

5. DISCUSSION

Advancements in imaging technology have worked in tandem
with advances in pathology, and machine learning methods
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are learning to mimic or even improve upon the conclusions
reached by pathologists (Bera et al., 2019). In cancer diagnostics,
the availability of large sample sizes has been transformative,
with a narrow purpose to improve diagnostic capability.
Even with such available samples, subcategorization based on
expression signatures has arguably moved faster than imaging-
based analoges, although the two data sources may reinforce each
other (Lundberg et al., 2017).

For traits at a subclinical level, such that biopsies would not
be warranted, there have remained open questions about the
capabilities of automated machine learning and the predictive
ability of genomics. Previous efforts on earlier, smaller version
of the GTEx data (Ash et al., 2018; Barry et al., 2018) have largely
focused on the image data alone, or with limited use of expression
for eQTL-related findings. Here we have used the larger and final
GTEx v8, increased the number of pathologies, and provided a
comprehensive treatment of both imaging and expression data in
the target tissue. In addition, we have brought expression from
a standard set of 30 GTEx tissues into the analysis, providing
important context for cross-tissue comparisons.

In our analyses, the imaging and expression data provided
little evidence that they reinforce each other in building
prediction models, despite considerable effort in our model
building and selection. Moreover, for the phenotypes used in
limited previous publications, our imaging-based AUC is similar
to the previous reports (Ash et al., 2018; Barry et al., 2018),
suggesting that our conclusions are supported within the state of
the art of model-building. Network embedding appears to result
in some prediction improvement, but could be implemented in a
“natural” form for expression data only, as our treatment of the
imaging data does not readily map to network structures.

Both genomic and imaging data sources provide similar and
good prediction performance when analyzed independently. We
find that prediction accuracy varies widely depending on the
pathology/tissue, and that, with a few exceptions, integration
of the imaging and expression data offer limited improvement
over either source alone. Importantly, we examined expression
patterns in a comprehensive set of GTEx tissues and find
that cross-tissue genomic associations tend to be lower than
within-tissue. We further explored expression-based prediction
limits using network embedding methods, and discuss genomic
pathway discoveries in thyroid and tibial artery. Our prediction
accuracy using imaging alone was similar to prior reports, for the

few GTEx tissue pathologies that have previously been analyzed.
Thus, in our hands, we conclude that the results support the use
of genomic expression measurements for their interpretability,
and the ability to generate biological hypotheses, as well as to
perform direct prediction.
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