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Sibling validation of polygenic risk 
scores and complex trait prediction
Louis Lello1,2*, Timothy G. Raben1 & Stephen D. H. Hsu1,2

We test 26 polygenic predictors using tens of thousands of genetic siblings from the UK Biobank 
(UKB), for whom we have SNP genotypes, health status, and phenotype information in late 
adulthood. Siblings have typically experienced similar environments during childhood, and exhibit 
negligible population stratification relative to each other. Therefore, the ability to predict differences 
in disease risk or complex trait values between siblings is a strong test of genomic prediction in 
humans. We compare validation results obtained using non-sibling subjects to those obtained among 
siblings and find that typically most of the predictive power persists in between-sibling designs. In 
the case of disease risk we test the extent to which higher polygenic risk score (PRS) identifies the 
affected sibling, and also compute Relative Risk Reduction as a function of risk score threshold. For 
quantitative traits we examine between-sibling differences in trait values as a function of predicted 
differences, and compare to performance in non-sibling pairs. Example results: Given 1 sibling 
with normal-range PRS score (< 84 percentile, < + 1 SD) and 1 sibling with high PRS score (top few 
percentiles, i.e. > + 2 SD), the predictors identify the affected sibling about 70–90% of the time across 
a variety of disease conditions, including Breast Cancer, Heart Attack, Diabetes, etc. 55–65% of the 
time the higher PRS sibling is the case. For quantitative traits such as height, the predictor correctly 
identifies the taller sibling roughly 80 percent of the time when the (male) height difference is 2 inches 
or more.

The ability to predict complex human phenotypes, including common disease risks, from DNA alone, is an 
important advance in genomics and biological science1,2. Sibling comparisons are a powerful method with 
which to validate genomic prediction in humans. Siblings (i.e., children who share the same mother and father) 
have typically experienced similar environments while growing up: family social status, exposure to toxins, diet, 
climate, etc. all tend to be similar3,4. Furthermore, siblings are concordant for ancestry and display negligible 
differences in population structure.

If a girl grows up to be taller than her sister, with whom she spent the first 18 years of her life, it seems likely 
at least some of the height difference is due to genetic differences. How much of phenotype difference can we 
predict from DNA alone? If one of the sisters develops breast cancer later in life, how much of the risk was due 
to genetic variants that she does not share with her asymptomatic sister? These are fundamental questions in 
human biology, which we address (at least to some extent) in this paper.

There are real clinical applications of this predictive capability. In Ref.5, this point is elaborated in the case 
of breast cancer. It is shown that the distribution of affected individuals is shifted in PRS score relative to the 
control population. An immediate result of this is that the probability that an individual in this population will 
be diagnosed with Breast Cancer at some point in their life increases with higher PRS. For individuals who are, 
e.g., in the top few percentiles in PRS, the probability of developing breast cancer is roughly 1 in 3, making them 
high risk by American Cancer Society guidelines. According to these guidelines, women with such PRS scores 
might be offered mammograms starting a decade earlier than women with average risk, as is standard of care 
for women with a BRCA risk variant. This example shows how PRS can have practical utility despite a modest 
AUC value of only 0.6 or so. There are roughly an order of magnitude more high risk women due to aggregate 
polygenic effects than due to BRCA variants. These women can now be identified through inexpensive array 
genotyping (to obtain their SNP values).

Other polygenic predictors—e.g., for Heart Attack, Diabetes, Hypothyroidism, etc.—may also have analogous 
clinical utility. Of course, the predictive performance of the final risk model can be improved significantly if other 
covariates (age, population structure, blood pressure, BMI or other biomarkers) are included in the analysis6. 
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(Note that is not our focus here—we concentrate specifically on DNA-based prediction of risk with the knowledge 
that other factors can be included in a straightforward way).

Future work should investigate the cost-benefit characteristics of inexpensive population-level genotyping. 
In Ref.5, a very simplified version of this kind of analysis suggests that the benefits from increasing Breast Cancer 
screening based on PRS stratification alone might pay for the cost of genotyping the entire female population 
through cost savings from early detection. Of course, such a significant conclusion requires much more detailed 
analysis and other researchers have pushed for a similar approach7. In our view, the potential for early detection 
alone provides strong utilitarian motivation for our research, and future research, on the construction of PRS 
for a broad variety of disease conditions.

We study two types of predictors: Polygenic Risk Scores (PRS), which estimate the genetic risk of developing 
a specific common disease condition, and Polygenic Scores (PGS) which predict a quantitative trait such as adult 
height or bone density. Previous studies examined polygenic prediction on individuals without regard to family 
status (e.g.6,8). Our main objective here is to show that most of the predictive power remains even in the context 
of siblings. We compare predictive power in pairs of unrelated individuals to that in pairs of siblings. (We will 
sometimes abbreviate sibling by sib for brevity).

Predictors trained on a large population of non-sibling individuals (see “Methods and data” section below) 
could potentially utilize correlations in the SNP data that arise from environment effects, but are not related to 
direct genetic causation. Two examples are given below. 

1.	 If environmental conditions in a specific region, such as, e.g., Northern England, affect disease risk, the pre-
dictor trained on UK data might assign nonzero effect sizes to SNPs associated with ancestries found in that 
region—i.e., the predictor learns to use population structure correlated to environmental conditions. These 
specific SNPs are correlated to disease risk for environmental reasons, but might not have any connection 
to genetic mechanisms related to the disease. They likely have little power to differentiate between siblings, 
who experienced similar family conditions and have have identical ancestry.

2.	 It is also possible that some SNP variants affect nurture (the way that parents raise their children). These SNPs 
could affect the child phenotype via an environmental mechanism under parental control, not a biochemical 
pathway within the child. This is sometimes referred to as a genetic nurture effect9–13. Note, siblings raised 
together would both be affected by parental genetic nurture variants, so these effects are weakened in family 
designs.

Sibling comparisons reduce the impact of factors such as those described above. We expect some reduction in 
power when predictors trained in a population of non-sibling individuals are tested among sibs. Sibling validation 
likely yields a better estimate of truly causal genetic effects. A more complicated measure of familial relatedness 
might lead to even better results14, but we restrict our analyses here to siblings.

For almost all of the predictors studied here, both PRS and PGS, significant power remains even in the sibling 
tests. Almost all of the predictors we study seem to capture some real genetic effects that cause siblings to differ 
from each other as adults.

Methods and data
The main dataset we use for training is the 2018 release of the UK Biobank15,16. The goal of this work is to study 
the effectiveness of polygenic predictors using siblings in the UK Biobank. In previous work, predictors were 
trained exclusively on genetically British individuals (as identified by principal component analysis17), however 
it has been shown that predictors trained on populations filtered by self-reported ethnicity perform equivalently5. 
We expect the predictor performance between siblings may be diminished to some extent compared to the 
general population because of shared environments, shared genetics, genetic nurture, and other confounding 
factors. For all traits (case/control and quantitative), predictors are trained, validated and tested on individuals 
who self-report as some form of “white ancestry”—i.e., British, Irish, or other white (note this terminology is 
from UK Biobank data tables). From this group, all individuals for whom there is at least one sibling match are 
set aside for use in the sibling test set. This is described in Supplementary Appendix C. In each training run, a 
small fraction of non-sibs is withheld from the training set for validation and model selection, and the set of 
sibling pairs is used as a final test set.

We construct linear models of genetic predisposition for a variety of disease conditions that were presented 
in Ref.5 and linear models of several quantitative human phenotypes, some of which can be found in Ref.8. The 
disease condition phenotype data describes a binary case-control status which is defined either by self-report 
or from a clinical diagnosis.

Polygenic predictors are constructed using compressed sensing18–21. It has been demonstrated that SNP 
matrices of human genome matrices are good compressed sensors: L1 performance guarantee theorems hold 
and phase transition behavior is observed.

We focus specifically on L1-trained predictors because we understand their training and performance charac-
teristics well. There are many other methods used in the creation of polygenic scores. While we make no claims 
concerning those other predictors, we suspect that they would perform similarly in between-sibling validation 
tests such as those performed here. We do also examine two predictors (for Breast Cancer and Coronary Artery 
Disease) which were published in Khera et al.6. These are indicated as such in the figures and one can compare 
with L1-trained predictors on similar phenotypes.

For each disease condition, we compute a set of additive effects �β (each component is the effect size for a 
specific SNP) which minimizes the LASSO objective function:
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where n is the number of samples, || . . . || means L2 norm (square root of sum of squares), || . . . ||1 is the L1 
norm (sum of absolute values) and the term �|| �β||1 is a penalization which enforces sparsity of �β . The value of 
the phenotype variable y for case or control status is simply 1 or 0 (respectively). For quantitative phenotypes, y 
values are z-scored using population means and standard deviations.

The optimization is performed over a set of 50 k SNPs which are selected by rank ordering the p-values 
obtained from single marker regression of the phenotype against the SNPs. The details of this are described in 
Supplementary Appendix G.

Predictors are trained using the implementation of the LASSO algorithm from the Scikit-learn Python 
package22. Specifically, the lassopath algorithm is called on standardized inputs as it generates the full lasso 
path. For disease status, we typically use five non-overlapping sets of cases and controls held back from the 
training set for the purposes of in-sample cross-validation. For each value of � , there is a particular predictor 
which is then applied to the cross-validation set, where the polygenic score is defined as (i labels the individual 
and j labels the SNP)

To select a specific value of the penalization � which defines our final predictor (for final evaluation on out-
of-sample testing sets), we choose the � that maximizes the performance metric in each cross validation set 
thereby creating five different predictors. For case-control phenotypes, the performance metric is AUC, and for 
quantitative phenotypes, it is the correlation between predicted and actual trait value. This is explained in more 
detail in Supplementary Appendices C and G.

Other significant covariates, such as age, sex, principal components from population structure, etc. could be 
included in the model and would serve to enhance the predictive power of these predictors. However, we are 
primarily interested in genetic predictive power alone. In Ref.5, age/sex is included as a covariate and it is shown 
that model prediction improves when these are included. In Ref.8, it was shown that the prediction variance 
accounted for in the top principal components (population structure) for complex traits in the UK Biobank is 
negligible. This is the reason why we do not include them in PRS/PGS construction. The UKB white popula-
tion displays very little population structure—this is elaborated on in Supplementary Appendix D. However, 
the concern that principal component and age differences could explain some of the discriminatory power is 
explored in Supplementary Appendix D where we compare sibling pairs to randomized pairs which are chosen 
to have a similar principal component and age difference structure as the sibling set.

The training computations were performed using the super-computing cluster in the Michigan State Univer-
sity High Performance Computing Center.

Sibling differences in case/control phenotypes
For each trait, 1,000 randomly selected (non-sibling) individuals are set aside (not used in the training) from 
the non-sibling training set, but are used for cross-validation and model selection. For case-control phenotypes, 
there are 500 cases and 500 controls making up the 1,000. (For Breast, Prostate, and Testicular Cancer the cor-
responding numbers are 100 and 100, due to smaller datasets.) This process is repeated 5 times to generate a set 
of 5 predictors so that statistical fluctuations associated with the training process (mean and variance) can be 
estimated. We do not report the performance metrics on the validation sets as they are quantitatively similar to 
that of the final test set—see5 for an example of this.

For all traits, we make use of L1 penalized regression as described in Refs.5,8. Previous work has shown this 
to be an effective method of generating polygenic predictors5,8. The typical outputs of a LASSO run are the 
regularization parameters and a vector of SNP weights—this is discussed at length in Refs.5,6,8 where we use the 
scikit-learn package instead of a custom implementation22. We include results from publicly available predictors 
for Breast Cancer and Coronary Artery Disease from Khera et al.6—scoring from these predictors is described 
in Supplementary Appendix B.2.

The first quantity which is calculated for a predictor is an overall performance metric: for case/control phe-
notypes this corresponds to AUC; for quantitative phenotypes we focus on the correlation coefficient between 
predicted and actual phenotypes. The test set is composed of all individuals who are within a sibling pair in 
the UKB—the performance metric on this test set matches previous results from the literature5,8 and sets the 
baseline of comparison.

Note, case and control PRS distributions were shown in previous work5 to be shifted in mean. From these 
shifted distributions one can estimate the likelihood of case status for an individual with a particular PRS score. 
(That is, the fraction of individuals in a certain PRS bin who are cases vs controls.) In Fig. 1 we show an example 
of such a PRS distribution for both the entire sibling testing set and the restricted affected sibling pair (ASP) 
cohort. The ASP cohort consists of individuals with a sibling that is a case, and its PRS distribution is somewhat 
different from that of the general population. Please see Ref.5 for a more in depth discussion of the PRS distribu-
tions and “Population risk sorting: relative risk reduction” for more analysis of the ASP cohort.

Sibling call rates: case|control.  A first test of polygenic scores in the affected sibling context can be made 
by simply computing the frequency at which the higher PRS sibling corresponds to the affected individual. 
We restrict the test set to all sibling pairs with one affected sibling and one unaffected sibling—i.e., we exclude 

(1)O(�, �β) =
1

2
||�y − X �β||2 + n�|| �β||1,

(2)PGSi or PRSi =

p∑

j=1

Xijβj.



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13190  | https://doi.org/10.1038/s41598-020-69927-7

www.nature.com/scientificreports/

sibling pairs where both are cases or controls. Within this set, we compute the fraction of the time in which the 
sibling with higher PRS is the case. The results are given in Table 1. As a baseline comparison, we also compute 
the fraction called correctly using an equal number of non-sibling case–control pairs randomly drawn from the 
total sibling set.

In Supplementary Appendix E we perform a similar analysis for trios of siblings.

Case identification for high risk sibling.  Here we consider sibling pairs with one affected (case) and one 
control. Further, we focus on the subset of pairs in which one sibling has a high PRS score and the other a PRS 
score in the normal range (i.e., less than + 1 SD above average). In other words, exactly one of the sibs is a high 
risk outlier and we wish to know how often it is the outlier that is a case.

Figure 1.   The left and right panels show case and control distributions in PRS for the entire cohort of sibling 
pairs and the Affected Sibling Pair (ASP) cohort respectively. Phenotype is Hypertension. This plot was made 
using pyplot v3.2.1 under license https​://matpl​otlib​.org/3.2.1/users​/licen​se.html.

Table 1.   Polygenic predictors tested on sibling pairs. The first column is the number of sibling pairs with 
one affected and one unaffected sibling. The second column is the average and standard deviation (over 
five predictors) of the fraction in which the case has higher PRS. Third column gives results for non-sibling 
(random) pairs. Quantities in bold have uncertainties in the central value larger than 10% due to low statistics.

Condition N pairs (single case) Sibling case higher PRS fraction Random case higher PRS fraction

Asthma 3,948 0.618 (0.004) 0.633 (0.005)

Atrial fibrillation 332 0.620 (0.033) 0.636 (0.013)

Basal cell carcinoma 431 0.599 (0.014) 0.616 (0.009)

Breast cancer (LASSO-L1) 583 0.585 (0.020) 0.586 (0.014)

Breast cancer (Khera) 583 0.557 (–) 0.601 (–)

Coronary artery disease (LASSO-L1) 1,072 0.556 (0.012) 0.579 (0.017)

Coronary artery disease (Khera) 1,073 0.596 (–) 0.614 (–)

Gallstones 700 0.592 (0.006) 0.622 (0.014)

Glaucoma 440 0.593 (0.013) 0.602 (0.015)

Gout 631 0.627 (0.007) 0.661 (0.003)

Heart attack 900 0.593 (0.012) 0.603 (0.006)

High cholesterol 4,291 0.596 (0.005) 0.632 (0.002)

Hypothyroidism 2,031 0.658 (0.003) 0.699 (0.005)

Hypertension 6,931 0.627 (0.002) 0.645 (0.001)

Malignant melanoma 360 0.547 (0.040) 0.592 (0.013)

Prostate cancer 106 0.642 (0.015) 0.650 (0.034)

Testicular cancer 24 0.575 (0.090) 0.607 (0.133)

Type 1 diabetes 290 0.646 (0.019) 0.669 (0.006)

Type 2 diabetes 1,594 0.595 (0.005) 0.620 (0.001)

https://matplotlib.org/3.2.1/users/license.html
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The previous analysis focused on the identification of the case in a sibling pair by selecting the larger poly-
genic score even if the difference was very small. While our polygenic scores are themselves additive models, 
individual risk (for example odds ratios as calculated in Refs.5,6 from validation data) can increase or decrease 
non-linearly as a function of PRS in the tails of the distribution—i.e., for outliers in PRS. For most individuals, 
in the middle of the distribution, the risk behavior is approximately linear, and the change in risk per standard 
deviation of change in PRS is not large. Because of this we do not expect strong prediction results when com-
paring two individuals in the normal PRS range. In this analysis, summarized in Table 2, one sibling is labeled 
high risk and the other sibling is normal risk as defined by PRS. In all cases, normal risk is defined as in being 
in the 84th percentile or below (< + 1 SD in PRS), while we vary the threshold used to define high risk (> + 1.5 
SD, + 2.0 SD, + 2.5 SD, etc.).

As we restrict to sibling pairs with a larger risk differential, the predictions of which sibling is the case become 
more accurate (albeit still noisy). In other words: given that one of two siblings is affected, when one sibling is 
normal risk in PRS but the other sibling is in the top few percentile of risk—the larger PRS sibling will be increas-
ingly likely to be the affected sibling as the difference in PRS becomes larger.

We repeat this calculation for a set of pairs in which no individual is paired with his or her sibling. This is done 
using the sibling population by randomizing the pairings. We generate random pairs of non-sibling individuals 
with exactly one case per pair. Further, we consider the subset of pairs in which one member of the pair is normal 
risk (PRS < + 1 SD), while the other is high risk. We then compute the probability that the high risk individual 
is the affected individual. Results are given in Table 3.

Comparing Tables 2 and 3 suggests higher prediction accuracy for non-sibling pairs of individuals. The dif-
ference in accuracy is slightly inflated by the fact that the normal risk individuals in the related (sib) pairs tend 
to cluster closer to the + 1 SD PRS upper limit than those in the non-sibling pairs. This is because, conditional 
on having a high-risk sibling, the distribution of PRS scores is shifted to larger than average values. Nevertheless, 
we see that the success fractions are not very different between the two tables, and almost always overlap within 
one standard deviation uncertainty.

These results suggest that polygenic prediction works almost as well between siblings as in unrelated 
individuals.

In Fig. 2, we repeat the analysis from the tables using a continuously varying threshold (in z-score) to define 
the high risk set of individuals. As the threshold z-score increases the fraction of cases called correctly also 
increases. We display the results for Affected Sibling Pairs (ASP) as well as non-sibling pairs of individuals where 
each pairing consists of one case and one control. There is some reduction in accuracy for sibling pairs versus 
non-sibling pairs, as expected.

The error estimates in the figures and tables are generated as follows. We display the larger of two contribu-
tions to the uncertainty in determining the fraction called correctly (vertical axis): one results from the standard 
deviation among the five predictors we generate for each trait. The other results from sampling error (i.e., having 

Table 2.   Predictors tested on sibling pairs with a single case, where one sibling is high risk ( + 1.5 , + 2 , + 2.5 
SD or 93rd, 97.5th, 99th percentile) and the other is normal risk ( < + 1 SD or < 85th percentile). The first 
column is the number of pairs used. The second column is the fraction of pairs where the high risk sibling is 
the case. 1 SD binomial errors given in parenthesis. Quantities in bold have uncertainties in the central value 
larger than 10% due to low statistics.

Condition N pairs 1 sib 93rd N 1 sib 97th N 1 sib 99th

Asthma 402 0.758 (0.021) 110 0.782 (0.039) 17 0.882 (0.078)

Atrial fibrillation 37 0.757 (0.071) 20 0.750 (0.097) 9 1.0 (–)

Basal cell carcinoma 54 0.648 (0.065) 23 0.826 (0.079) 6 0.667 (0.192)

Breast cancer (LASSO-L1) 45 0.662 (0.071) 11 0.545 (0.150) 2 0.5 (0.353)

Breast cancer (Khera) 52 0.596 (0.068) 12 0.583 (0.142) 3 0.667 (0.272)

Coronary artery disease (LASSO-L1) 131 0.613 (0.043) 48 0.424 (0.071) 10 0.5 (0.158)

Coronary artery disease (Khera) 109 0.706 (0.044) 38 0.816 (0.063) 5 0.800 (0.179)

Gallstones 212 0.720 0.031 158 0.697 (0.037) 85 0.686 (0.050)

Glaucoma 30 0.720 (0.082) 9 0.667 (0.157) 1 –

Gout 70 0.743 (0.052) 37 0.784 (0.068) 16 0.875 (0.083)

Heart attack 68 0.685 (0.056) 16 0.688 (0.116) 4 –

High cholesterol 441 0.660 (0.023) 130 0.662 (0.042) 28 0.786 (0.078)

Hypothyroidism 282 0.780 (0.025) 109 0.890 (0.030) 32 0.906 (0.052)

Hypertension 757 0.726 (0.016) 229 0.777 (0.027) 53 0.811 (0.054)

Malignant melanoma 30 0.600 (0.089) 10 0.600 (0.155) 2 1.0 –

Prostate cancer 8 0.875 (0.117) 0 – 0 –

Testicular cancer 0 – 0 – 0 –

Type 1 diabetes 41 0.805 (0.062) 28 0.893 (0.058) 17 0.824 (0.092)

Type 2 diabetes 137 0.772 (0.036) 37 0.816 (0.064) 8 0.75 (0.153)
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only a finite number of pairs in which to estimate the fraction called correctly). The second source of error is a 
Clopper–Pearson interval with a 68% confidence value.

Figure 2 is given specifically as an example—similar plots are generated for all conditions. These are shown 
in Supplementary Appendix H.

Population risk sorting: relative risk reduction.  Polygenic scores can be used to identify subsets of 
the population who are at high or low risk for a given condition. This information can be used to better allocate 
resources for, e.g., screening or prevention. In Ref.5, it is proposed that polygenic scores could lead to more effec-
tive detection and intervention for a wide variety of health conditions (e.g., breast cancer). The early detection 
of disease conditions could then lead to a net cost reduction and better health outcomes. Throughout this sec-
tion we are specifically focused on genetic risks, but these results could be incorporated into more complete risk 
models or potential clinical applications as found in Refs.23–26.

In this section, we investigate how the number (or fraction) of affected individuals varies as we exclude high 
and low risk individuals from the group. The fraction of affected individuals can be considered an estimator for 
the probability that a randomly selected individual will develop the condition, conditional on either having 1. 
PRS below some upper limit (left panel in figures—a low risk population defined by PRS) or 2. PRS above some 
lower limit (right panel in figures—a high risk population defined by PRS).

The figures here display the fraction of individuals affected when restricted to PRS score either above or below 
a specific value. The upper panels in Figs. 3, 4, 5 and 6 display the results for randomly selected individuals from 
the general population. The orange line in both panels represents the disease prevalence in the entire testing set 
(general population).

These plots are meant to be illustrative. Similar plots are shown for each of the disease conditions we study 
in Supplementary Appendix I.

We examine the behavior of PRS in the context of a known family history by repeating the previous calcula-
tion on a restricted Affected Sibling Pair (ASP) testing set. In the lower panels of Figs. 3, 4, 5 and 6 we compute 
the same disease prevalence as in the upper panels, but for individuals with an affected sibling. That is, all cases 
and all controls used in the calculation have an affected sibling; the existence of this affected sibling defines the 
population analyzed as one with higher than normal risk. The values in the lower panels of Figs. 3, 4, 5 and 6 
reflect an overall higher fraction of affected individuals than in the entire data set. It seems plausible that this 
increased risk is due to the family history of the individuals. However, the results show that low PRS individuals 
have reduced risk relative to others with a similar family history. Given two individuals A and B, where A has an 
affected sibling A’ and B has an affected sibling B’, the graphs show that between A and B, the one with higher PRS 
has a higher probability of having the condition. The green line in both panels represents the disease prevalence 
in the entire testing set—the population of individuals with an affected sibling.

For some of the disease conditions with small rate of incidence, we did not have enough data to directly 
estimate risk as a function of PRS for sibs in the ASP population—i.e., there are not enough sib pairs in which 

Table 3.   Predictors tested on non-sibling (random) pairs w/ a single case where one is high risk ( + 1.5 , + 2 , 
+ 2.5 SD above or 93rd, 97.5th, 99th percentile) and the other is normal risk ( < + 1 Standard Deviation or < 
85th percentile). The first column is the number of pairs. The second column is the fraction of pairs where the 
high risk individual is the case. 1 SD binomial errors given in parenthesis. Quantities in bold have uncertainties 
in the central value larger than 10% due to low statistics.

Condition N pairs 1 sib 93rd N 1 sib 97th N 1 sib 99th

Asthma 777 0.749 (0.016) 289 0.794 (0.026) 72 0.889 (0.050)

Atrial fibrillation 76 0.734 (0.057) 44 0.723 (0.079) 24 0.783 (0.108)

Basal cell carcinoma 65 0.708 (0.067) 34 0.706 (0.098) 9 0.889 (0.211)

Breast cancer (LASSO-L1) 132 0.638 (0.050) 50 0.720 (0.077) 10 0.800 (0.205)

Breast cancer (Khera) 143 0.678 (0.044) 60 0.683 (0.071) 23 0.696 (0.124)

Coronary artery disease (LASSO-L1) 117 0.634 (0.054) 40 0.640 (0.092) 7 0.429 (0.247)

Coronary artery disease (Khera) 187 0.711 (0.037) 78 0.719 (0.060) 22 0.773 (0.124)

Gallstones 210 0.695 (0.035) 149 0.718 (0.041) 65 0.723 (0.066)

Glaucoma 42 0.757 (0.079) 16 0.788 (0.125) 3 1.0 (0.457)

Gout 115 0.852 (0.041) 69 0.870 (0.054) 40 0.850 (0.078)

Heart attack 121 0.645 (0.048) 45 0.622 (0.085) 14 0.571 (0.166)

High cholesterol 881 0.712 (0.016) 340 0.738 (0.026) 108 0.769 (0.048)

Hypothyroidism 505 0.844 (0.018) 240 0.879 (0.025) 79 0.911 (0.044)

Hypertension 1883 0.755 (0.010) 727 0.812 (0.016) 222 0.820 (0.029)

Malignant melanoma 64 0.597 (0.078) 29 0.655 (0.109) 17 0.706 (0.149)

Prostate cancer 37 0.784 (0.089) 12 0.750 (0.184) 9 0.778 (0.221)

Testicular cancer – – – – – –

Type 1 diabetes 86 0.849 (0.049) 56 0.911 (0.056) 35 0.914 (0.076)

Type 2 diabetes 230 0.764 (0.030) 75 0.853 (0.052) 23 0.870 (0.110)
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both are cases. However, we typically did have enough data to estimate mean and standard deviation in PRS for 
affected and unaffected individuals conditional on each individual having an affected sib. (Less data is required 
to estimate a mean and SD than to map out an entire curve bin by bin.) Assuming that the distribution of cases 
and controls are both approximately Gaussian in PRS (something we verified to be true for conditions for which 
we have more data), this allows us to compute the implied risk as a function of PRS. We include this predicted 
risk as a function of PRS (see green curves) on all prevalence plots involving the ASP populations. The results 
are shown in the corresponding figures in Supplementary Appendix I.

Figure 3 is meant to be illustrative and similar plots for all conditions are given in Supplementary Appendix I. 
We include the predicted prevalence as a function of score—the predicted prevalence is calculated assuming that 
cases and controls are normally distributed (a mixed Gaussian distribution). The means, standard deviations 
and total numbers of cases and controls are the only (six) parameters needed for the predicted curve—these are 
calculated directly from the data. See Ref.5 for a more in depth discussion.

Identification within affected sibling pairs (ASP).  To assess the degree to which discriminatory power 
is altered within affected families for case/control phenotypes, we calculate the AUC amongst the full testing set 
(i.e., a proxy for the general population; for convenience we used all individuals with a sibling) and amongst a 
cohort of affected sibling pairs (ASP; all cases or controls must have a sibling who is also a case). The ASP cohort 
is constructed by restricting the testing set to all sibling pairs as follows: controls have at least one sibling which 
is a case; cases must also have at least one other sibling which is a case—i.e., in this new test set, all cases and con-
trols have at least one affected sibling. The difference in the AUC between the entire population and the affected 
sibling testing sets are given in Table 4.

Figure 2.   Predictors tested on random (non-sibling) pairs and affected sibling pairs with a single case. One 
individual is high risk (with z-score given on the horizontal axis) and the other is normal risk (PRS < + 1 SD). 
The error estimates are explained in the text. This plot was made using pyplot v3.2.1 under license https​://matpl​
otlib​.org/3.2.1/users​/licen​se.html.

https://matplotlib.org/3.2.1/users/license.html
https://matplotlib.org/3.2.1/users/license.html
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Table 4 shows that, as expected, prediction accuracy is typically higher in groups of non-sibling individuals. 
However, the decrease in AUC when working with high risk families (i.e., where at least one sib is affected) is 
typically modest.

Sibling differences in quantitative traits
Performance difference: siblings vs non‑sibling pairs.  We now turn to prediction of quantitative 
phenotypes. To evaluate performance one typically computes the correlation between predicted and actual phe-
notypes: ρ(PGS, y) where PGS and y are the predicted phenotype from polygenic score and the measured phe-
notype respectively.

In comparing between-sibling performance to performance in the general (non-sibling) population, it is 
useful to consider pairwise differences in actual phenotype and predicted phenotype (polygenic score): �y and 
�PGS . For example �y could be the (z-scored) difference in height between the two in the pair, and �PGS the 
(z-scored) difference in predicted heights (or PGS score).

We compute the correlation between phenotype and score difference, ρ(�PGS,�y) , for pairs of siblings and 
for pairs of non-sibling individuals. The results are given in Table 5. Figure 7 provides a specific example—results 
are shown for all traits considered in Supplementary Appendix J.

Educational attainment (EA) shows an especially large between-sibling attenuation in performance relative 
to the other predictors. This has been noticed in other studies27. The results suggest that at least some of the 

Figure 3.   Exclusion of individuals above (left panel) and below (right panel) a z-score threshold (horizontal 
axis) with resulting group prevalence shown on the vertical axis. The left panel shows risk reduction in a low 
PRS population, the right panel shows risk enhancement in a high PRS population. Top figures are results in the 
general population, bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with PRS 
among individuals with an affected sib). Phenotype is Type 2 Diabetes. This plot was made using pyplot v3.2.1 
under license https​://matpl​otlib​.org/3.2.1/users​/licen​se.html.

https://matplotlib.org/3.2.1/users/license.html
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observed power in polygenic prediction of EA among non-sibling individuals comes from effects such as subtle 
population stratification (perhaps correlated to environmental conditions or family socio-economic status)12, 
genetic nurture13, or other environmental-genetic correlations9–11. Interestingly, the decrease in power seems 
to be not as large for the phenotype Fluid Intelligence (measured in UKB using a brief 12 item cognitive test).

Rank order accuracy: siblings vs non‑sibling pairs.  We can further compare between-sibling effec-
tiveness of quantitative trait predictors by estimating the probability of predicting rank order—e.g., which sib is 
taller—using PGS.

First, how often does the higher PGS sibling have the larger value of the actual phenotype? We restrict the 
analysis to only those pairs of siblings whose phenotypes are known and then compute the fraction of the time 
in which rank order by PGS agrees with rank order in phenotype. The results are listed in Table 6.

Similar results for trios of siblings are presented in Supplementary Appendix E.

Rank order accuracy as a function of phenotype difference.  In the previous calculation many of 
the failures to correctly predict rank order result from the two individuals in the pair having very close values 
of the phenotype. To further investigate, we consider accuracy of rank order prediction as a function of actual 
phenotype difference in the pair. As expected, probability of correct rank ordering increases with actual differ-
ence in phenotype.

Figure 4.   Exclusion of individuals above (left panel) and below (right panel) a z-score threshold (horizontal 
axis) with resulting group prevalence shown on the vertical axis. The left panel shows risk reduction in a low 
PRS population, the right panel shows risk enhancement in a high PRS population. Top figures are results in 
the general population, bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with 
PRS among individuals with an affected sib). Phenotype is Breast Cancer. This plot was made using pyplot v3.2.1 
under license https​://matpl​otlib​.org/3.2.1/users​/licen​se.html.

https://matplotlib.org/3.2.1/users/license.html
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PGS from sets of five trained predictors are z-scored based on the testing population. The identification of 
pairs with phenotypic difference larger than x (value shown on horizontal axis of Fig. 8) is based upon the aver-
age score value across the five predictors. This selects the sub-cohort with large phenotypic difference. Then the 
fraction called correct is calculated for each of the five polygenic scores. This fraction, for 0.5, 1, and 1.5 standard 
deviation difference in phenotype, can be found in Table 7. The quoted error is computed as the larger of the 
standard deviation resulting from the five different predictors, and the statistical sampling error (Clopper-Pearson 
interval) in estimating the probability p in a binomial distribution. (See earlier discussion in “Case identifica-
tion for high risk sibling”) To clarify: the first error contribution is intrinsic to the construction of the predictor 
(different training runs create slightly different predictors), the second error contribution always arises when 
estimating the (success) probability p from a finite sample of N datum.

We repeat this calculation for non-related individuals, by simply randomizing the pairings so that individuals 
are no longer paired with their siblings. We then perform the same operations: select pairs where the phenotype 
difference is larger than a certain value and then compute the fraction of pairs where the high PGS individual 
has a larger value. This is illustrated in Table 8.

The comparison between non-sibling pairs and sibling pairs is shown in Fig. 8, where we display the fraction 
identified correctly for sibling pairs and for randomly paired individuals, allowing the threshold phenotype dif-
ference to vary continuously. The difference between the blue and orange lines represents the difference between 
predictive power amongst non-sibling and related individuals.

Figure 5.   Exclusion of individuals above (left panel) and below (right panel) a z-score threshold (horizontal 
axis) with resulting group prevalence shown on the vertical axis. The left panel shows risk reduction in a low 
PRS population, the right panel shows risk enhancement in a high PRS population. Top figures are results in 
the general population, bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with 
PRS among individuals with an affected sib). Phenotype is Hypertension. This plot was made using pyplot v3.2.1 
under license https​://matpl​otlib​.org/3.2.1/users​/licen​se.html.

https://matplotlib.org/3.2.1/users/license.html
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Figure 8 is given specifically as an example—similar plots are generated for all continuous traits which are 
discussed in this paper. These are shown in Supplementary Appendix K. The loss of power in polygenic predictors 
is expected, but these calculations illustrate the central point that polygenic predictors can still reliably improve 
the identification of individuals (or rank ordering) when large phenotypic differentials exist.

Discussion
Siblings have typically experienced similar environments during childhood, and exhibit negligible population 
stratification relative to each other. The ability to predict differences in disease risk or complex trait values 
between siblings provides an important validation of polygenic predictors. We compared validation results 
obtained using non-sibling subjects to those obtained among siblings, and found that most of the predictive 
power persists in between-sibling designs.

In the case of disease risk we tested the extent to which higher polygenic risk score (PRS) identifies the affected 
sibling, and also estimated Relative Risk Reduction as a function of risk score threshold. For quantitative traits 
we studied between-sibling differences in trait values as a function of predicted differences, and compared to 
performance in non-sibling pairs.

One exception is the Educational Attainment (EA) predictor, which exhibits a very strong reduction in 
power when applied to sibs. This is not entirely unexpected as effects like the violation of the equal-environment 
hypothesis may be found for EA4, and EA can depend on complicated correlations between environment and 

Figure 6.   Exclusion of individuals above (left panel) and below (right panel) a z-score threshold (horizontal 
axis) with resulting group prevalence shown on the vertical axis. The left panel shows risk reduction in a low 
PRS population, the right panel shows risk enhancement in a high PRS population. Top figures are results in 
the general population, bottom figures are the Affected Sibling Pair (ASP) population (i.e., variation of risk with 
PRS among individuals with an affected sib). Phenotype is Heart Attack.This plot was made using pyplot v3.2.1 
under license https​://matpl​otlib​.org/3.2.1/users​/licen​se.html.

https://matplotlib.org/3.2.1/users/license.html
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genes28. Interestingly, the corresponding reduction for the Fluid Intelligence predictor is much less than for EA. 
This is discussed in more detail below.

Our focus was not primarily on the absolute level of prediction, but rather on the comparison between results 
in non-sibling pairs versus sibling pairs. Improved absolute levels of prediction can be obtained by taking into 
account covariates (e.g., age, specific biomarkers, other correlates), as done in Refs.6,8. For most predictors the 
observed reduction in power tends to be modest. The largest decline in power is observed for the quantitative trait 
Educational Attainment (but see Fluid Intelligence in contrast). The results discussed above suggest that almost all 
of the predictors studied capture some real, direct, genetic effects. These effects survive between-sibling validity 
testing, and attenuation of predictive power tends to be modest (most of the power remains in the sibling tests). 
Our results for height, body mass index (BMI), EA, and Fluid Intelligence are similar to recent results found in 
Ref.29, utilizing data from the Twins Early Development Study (TEDS). As far as we know, this paper is the first 
to analyze a variety of disease risks using between-sibling designs.

We emphasize that predictors trained on even larger datasets will likely have significantly stronger perfor-
mance than the ones analyzed here5,8. As we elaborated in earlier work, where many of these predictors were 
first investigated, their main practical utility at the moment is in the identification of outliers who may be at 
exceptionally high (or low) risk for a specific disease condition. The results here confirm that high risk score 
outliers are indeed at elevated risk, even compared to their (normal range score) siblings.

The main limitation to progress is sample size—number of genotyped individuals available for analysis. As 
larger datasets become available, the accuracy and robustness of these results can only improve. Stronger results 
could be obtained using future datasets, with larger families and larger numbers of families. However, with the 

Table 4.   Polygenic predictors tested on sibling pairs. The first column gives the number of cases/controls and 
the AUC for the entire sibling cohort (proxy for general population). The second column gives the number 
of cases/controls and the AUC for subset of cohort in which all pairs have at least one affected sibling (ASP). 
Quantities in parentheses are standard deviations amongst five predictors.

Condition

All siblings ASPs

N cases/ctrls AUC-All N cases/ctrls AUC-ASP

Asthma 4,519/35,511 0.630 (0.002) 944/3,877 0.628 (0.003)

Atrial fibrillation 327/39,703 0.624 (0.004) 16/330 0.577 (0.019)

Basal cell carcinoma 415/39,615 0.626 (0.007) 16/428 0.528 (0.024)

Breast cancer (LASSO) 963/22,204 0.585 (0.016) 52/583 0.567 (0.015)

Breast cancer (Khera) 963/22,242 0.608 (–) 52/583 0.573 (–)

Coronary artery disease (LASSO) 1,058/38,972 0.582 (0.017) 70/1,069 0.570 (0.019)

Coronary artery disease (Khera) 1,059/39,049 0.621 (–) 70/1,070 0.617 (–)

Gallstones 690/39,340 0.638 (0.003) 40/699 0.586 (0.015)

Glaucoma 422/39,608 0.592 (0.012) 26/439 0.602 (0.030)

Gout 601/39,429 0.660 (0.004) 29/631 0.653 (0.010)

Heart attack 889/39,141 0.602 (0.006) 60/898 0.618 (0.025)

High cholesterol 5,240/34,790 0.632 (0.002) 1,351/4,203 0.622 (0.002)

Hypertension 10,524/29,506 0.648 (0.001) 4,296/6,719 0.635 (0.001)

Hypothyroidism 2,152/37,878 0.709 (0.002) 319/1,997 0.685 (0.007)

Malignant melanoma 334/39,696 0.585 (0.007) 2/359 –

Prostate cancer 262/16,601 0.644 (0.014) 20/106 0.654 (0.030)

Testicular cancer 57/16,806 0.631 (0.012) 0/24 –

Type 1 diabetes 277/39,753 0.676 (0.003) 12/290 0.643 (0.018)

Type 2 diabetes 1,692/38,338 0.617 (0.005) 235/1,576 0.599 (0.014)

Table 5.   Polygenic predictors tested on sibling pairs and non-sibling (random) pairs. First column is number 
of pairs, second and third are correlation between difference in predicted phenotype and actual phenotype for 
sibs and non-sibling pairs.

Trait N pairs ρ(�PGS,�y) siblings ρ(�PGS,�y) non-sibling

BMI 21,556 0.271 (0.003) 0.345 (0.005)

Educational attainment 21,352 0.089 (0.001) 0.256 (0.003)

Body fat percentage 20,990 0.245 (0.002) 0.319 (0.001)

Fluid intelligence 4,968 0.165 (0.004) 0.264 (0.005)

Heel bone density 10,133 0.345 (0.001) 0.415 (0.002)

Standing height 21,418 0.545 (0.001) 0.614 (0.001)

Platelet count 20,534 0.393 (0.002) 0.490 (0.002)
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UK Biobank we were mostly limited to sibling pairs—ideally, a similar analysis could be done with full families 
(parents and children).

The sibling results presented in this paper, together with the many out of sample validations of polygenic 
scores that continue to appear in the literature, suggest that genomic prediction in humans is a robust and 

Figure 7.   Difference in phenotype (vertical axis) and difference in polygenic score (horizontal axis) for pairs of 
individuals. Red dots are sibling pairs and blue dots are random (non-sibling) pairs. This plot was made using 
pyplot v3.2.1 under license https​://matpl​otlib​.org/3.2.1/users​/licen​se.html.

Table 6.   Rank ordering by polygenic score. The first column gives the number of sibling pairs, the second and 
third columns give the fraction called correctly (higher PGS individual has greater phenotype value) in sibling/
non-sibling pairs. Quantities in parenthesis are standard deviations.

Trait N pairs Fraction called (sibling pairs) Fraction called (random pairs)

BMI 21,556 0.588 (0.001) 0.614 (0.003)

Educational attainment 21,352 0.528 (0.001) 0.591 (0.001)

Body fat percentage 20,990 0.583 (0.002) 0.606 (0.001)

Fluid intelligence 4,968 0.558 (0.003) 0.592 (0.006)

Heel bone density 10,133 0.627 (0.002) 0.657 (0.003)

Standing height 21,418 0.684 (0.001) 0.718 (0.001)

Platelet count 20,534 0.646 (0.001) 0.679 (0.001)

Table 7.   Predictors tested on sibling pairs where a phenotype difference is larger than some value ( + 0.5 , 
+ 1.0 , + 1.5 Standard Deviations difference; the adjusted phenotypes are described in the Supplementary 
Appendix). The first column is the number of pairs and the second column is the fraction of pairs where higher 
PGS corresponds to greater phenotype value. The standard deviation among males for height, BMI, body fat 
percentage, years of education, fluid intelligence, heel bone density, and platelet count are respectively 6.76 cm, 
4.23 kg/m2 , 5.80%, 5.19 years, 2.16 points, 0.15 g/cm2 and 55.81 109 cells/l. The standard deviation for females 
for height, BMI, body fat percentage, years of education, fluid intelligence, heel bone density and platelet count 
are respectively 6.12 cm, 5.13 kg/m2 , 6.85%, 5.03 years, 2.02 points, 0.12 g/cm2 and 59.96 109 cells/l.

Trait N pairs �y > 0.5 N �y > 1.0 N �y > 1.5

Body mass index 13,376 0.623 (0.004) 7,387 0.658 (0.006) 3,815 0.694 (0.007)

Educational attainment 11,532 0.545 (0.005) 8,020 0.548 (0.006) 5,402 0.554 (0.007)

Body fat percentage 13,836 0.613 (0.004) 8,075 0.642 (0.005) 4,234 0.670 (0.007)

Fluid intelligence 3,288 0.570 (0.009) 1,875 0.585 (0.011) 952 0.605 (0.016)

Heel bone density 6,365 0.674 (0.006) 3,435 0.716 (0.008) 1,724 0.734 (0.011)

Standing height 12,689 0.762 (0.004) 6,184 0.835 (0.005) 2,488 0.890 (0.006)

Platelet count 13,039 0.702 (0.004) 7,253 0.745 (0.005) 3,591 0.769 (0.007)

https://matplotlib.org/3.2.1/users/license.html
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important advance that will lead to improvements in translational medicine as well as deep insights into human 
genetics.

As shown in earlier work5,8, we expect the predictors to improve substantially as more data become available 
for training. This is conditioned on genotyping that captures a sufficient part of the predictive regions of the 
genome30. It seems clear that with the possible exception of the height phenotype (for which we start to see dimin-
ishing returns; most of the common SNP heritability is captured already in the predictor), training is limited by 
sample size (specifically for risk predictors: number of genotyped cases) and not by algorithm performance or 
computational resources.
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