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Ovarian cancer (OC) leads to the most deaths among gynecological

malignancies. The various epigenetic regulatory mechanisms of histone

acetylation in cancer have attracted increasing attention from scientists.

Long non-coding RNA (lncRNA) also plays an important role in multiple

biology processes linked to OC. This study aimed to identify the histone

acetylation-related lncRNAs (HARlncRNAs) with respect to the prognosis in

OC. We obtained the transcriptome data from Genotype-Tissue Expression

(GTEx) project and The Cancer Genome Atlas (TCGA); HARlncRNAs were first

identified by co-expression and differential expression analyses, and then

univariate Cox regression and the least absolute shrinkage and selection

operator (LASSO) were used to construct the HARlncRNAs risk signature.

Kaplan–Meier analysis, time-dependent receiver operating characteristics

(ROC), univariate Cox regression, multivariate Cox regression, nomogram,

and calibration were conducted to verify and evaluate the risk signature.

Gene set enrichment analysis (GSEA) in risk groups were conducted to

explore the tightly correlated pathways with the risk group. A risk signature

with 14 HARlncRNAs in OC was finally established and further validated in the

International Cancer Genome Consortium (ICGC) cohort; the 1-, 3-, and 5-year

ROC value, nomogram, and calibration results confirmed the good prediction

power of this model. The patients were grouped into high- and low-risk

subgroups according to the risk score by the median value. The low-risk

group patients exhibited a higher homologous recombination deficiency

(HRD) score, LOH_frac_altered, and mutLoad_nonsilent. Furthermore,

consensus clustering analysis was employed to divide OC patients into three

clusters based on the expression of the 14 HARlncRNAs, which presented

different survival probabilities. Principal component analysis (PCA) and

t-distributed stochastic neighbor embedding (t-SNE) were also performed to

evaluate the three clusters. In conclusion, the risk signature composed of

14 HARlncRNAs might function as biomarkers and prognostic indicators with

respect to predicting the response to the anti-cancer drugs in OC.
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Introduction

Globally, ovarian cancer (OC) is the first cause of death

within all gynecological malignancies, leading to approximately

185,000 deaths each year (Miller et al., 2020). The 5-year survival

rate of advanced stage OC is around 30%, with most deaths

occurring within 24 months of diagnosis (Ataseven et al., 2016).

Due to the complexity of clinical symptoms and biological and

molecular features, OC is considered to be one of the most

difficult tumors to overcome. The standard first-line

chemotherapy for those with Stage Ic disease or higher is a

combination treatment of platinum agents with paclitaxel after

primary cytoreductive surgery (Kim et al., 2012). However, either

primary or acquired resistance to platinum compounds is the

main obstacle to successful treatment. Unfortunately, the

biomarkers that could be used as an exact index for diagnosis,

prognosis prediction, and monitoring of treatment for OC

patients are yet to be found.

Compelling pieces of evidence have confirmed epigenetics,

an inheritable phenomenon, made immeasurable contributions

to the initialization and development of tumors (Yang et al.,

2018; Conteduca et al., 2021). It mainly regulates gene expression

through histone modification, DNA methylation, non-coding

RNA regulation, and chromatin structure rebuilding (Li, 2021).

Histone acetylation, a critical form of histone modification, may

change chromatin architecture and regulate gene expression via

opening or closing the chromatin structure (Martin et al., 2021).

In addition to regulating gene expression, histone acetylation has

been found to affect multiple cellular processes, such as

angiogenesis regulation, cell cycle, DNA repair, DNA stress

response, apoptosis, and autophagy (Liu et al., 2019). The

noticeable features of histone acetylation are dynamic and

reversible which are regulated by histone acetyltransferases

(HATs) and histone deacetylases (HDACs) (Hai et al., 2021).

Previous research studies have reported that aberrant expression

of HATs and HDACs were associated with cancer pathologies

(Mi et al., 2017). HDACs were observed to be overexpressed in

different human tumor cell lines, identified as key targets of

tumorigenesis (Rajan et al., 2020). Furthermore, an imbalance

between HATs and HDACs was confirmed to be linked with the

pathogenesis of OC (Huang et al., 2016). In addition, histone

deacetylase inhibitors (HDACis), as a class of epigenetic

regulatory drugs, have attracted increasing attention due to

their important role in regulating cell cycle, proliferation,

differentiation, and activity. Many HDACis have entered

preclinical and clinical trials in OC with a tempting potential

of anti-cancer ability, such as Trichostatin A (Muscolini et al.,

2008) and Belinostat (Dizon et al., 2012). Although the

mechanism of how histone acetylase changes in OC remains

unclear presently, abnormal histone acetylase occurs frequently

in ovarian malignant tumors and is considered to contribute to

the initiation and development of OC (Xie et al., 2021). Hence,

the exploration of histone acetylase has very high expectations for

providing attractive biomarkers for diagnosis, prognosis, and

therapeutic targets in women OC. Recently, Dai and Ye

established a histone acetylation-based gene signature with a

good predictive effect on the prognosis of OC (Dai and Ye, 2022).

It was universally known that the initiation and progression of

OC are intimately connected not only with the abnormal

expression of protein-coding mRNAs but also with the non-

coding RNAs. It was worth mentioning the remarkable role of

long non-coding RNAs (lncRNAs) in multiple biological

processes related to cancers. lncRNAs promote energy

metabolism and cancer progression through posttranslational

modifications of key metabolism-related proteins, containing

ubiquitination, phosphorylation, and acetylation (Hu et al.,

2017; Tan et al., 2021). To make an all-around understanding

of the regulation network of histone acetylation in OC, it was

necessary to explore the possible functions of the histone

acetylation-related lncRNAs (HARlncRNAs), which might

provide more information to aid the regulation of histone

acetylation in OC.

In this present study, we aimed to build a HARlncRNA

signature associated with OC patients’ clinical outcomes. The

risk score was calculated according to the HARlncRNA

signature. The sensitivity and specificity of the HARlncRNA

signature were evaluated by time-dependent receiver

operating characteristic (ROC) analysis. Some analyses were

investigated based on the risk scores, such as nomogram,

calibration, Kaplan–Meier analysis, GSEA, and the

correlation with the HRD score. Furthermore, consensus

clustering analysis was used to identify OC subtypes based

on the HARlncRNAs.

Materials and methods

Data extraction

The RNA-seq omics data and corresponding clinical

information of 375 OC patients were downloaded from the

UCSC Xena database (https://xenabrowser.net/) (Goldman

et al., 2020), and 88 normal human ovarian samples RNA-seq

omics data were also downloaded from the UCSC Xena

database related to the Genotype-Tissue Expression (GTEx,

https://xenabrowser.net). The RNA-seq omics data

and corresponding clinical information of 93 OC

patients from the International Cancer Genome Consortium

(ICGC) were downloaded from https://dcc.icgc.org/ (Hudson

et al., 2010).
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Construction of the prognostic-related
predictive signature

A total of 36 histone acetylation-related genes (HARGs) were

obtained by reference to previous reports about histone acetylase

(Xu et al., 2022), and then all lncRNAs were filtered out through a

biotype in file GRCh38.p13 gtf. To discern HARlncRNAs, we

applied the Pearson correlation to appraise the relevance between

HARGs and lncRNAs and we chose 1,201 HARlncRNAs by the

standards of correlation coefficient > 0.4 and p-value < 0.001;

then, we conducted the Wilcoxon test to filter 628 differentially

expressed lncRNAs between samples of TCGA and GTEx

database in specific criteria (|log2FC| > 1 and FDR <0.05).
The entire dataset was split into train and test datasets at a

proportion of 1:1. In total, 27 HARlncRNAs were obtained after

univariate Cox regression analysis was performed in the TCGA

cohort (R package “survival”); afterward, we used the least

absolute shrinkage, selection operator (LASSO), Cox

regression model, and multivariate stepwise Cox regression (R

package “glmnet”, “survival”), and we got 14 HARlncRNAs in

the risk signature ultimately. The 375 OC patients were grouped

into two groups (low- and high-risk) on account of the median

value. The ROC curve was plotted to estimate the predictive value

of the prognostic gene signature for overall survival (OS) (R

package “timeROC”).

Nomogram and calibration

We used the multivariate Cox regression analysis of clinical

information and risk score to build the nomogram (R package

“rms”); the calibration curves of 1 , 3 , and 5 years were used to

examine the correctness of the nomogram.

Gene set enrichment analysis (GSEA)

GSEA v4.2.3 from the MSigDB database (http://software.

broadinstitute.org/gsea/msigdb/) (Subramanian et al., 2005) was

conducted to find the closely related GO function between low-

and high-risk groups; the criterion of selection was FDR

q-value < 0.25, nominal p-value < 0.05, and |NES| ≥ 1.5.

TCGA DNA damage repair (DDR) data
resources

The HRD score was retrieved from a previous study

(Knijnenburg et al., 2018). The reverse phase protein array

(RPPA) data were retrieved from a previous study (Akbani et al.,

2014). eCARD (expression CDF transformation of rank distribution)

was retrieved from a previous study (Zimmermann et al., 2016).

Determination of molecular subtypes in
ovarian cancer

ConsensusClusterPlus extends the consensus clustering

algorithm (including item tracking, item-consensus, and

cluster-consensus plots), and we conducted a consensus

matrix and CDF plot to determine the supreme cluster

number of subtypes (Wilkerson and Hayes, 2010) and found

FIGURE 1
Flow diagram of the study.
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three clusters. t-distributed stochastic neighbor embedding

(t-SNE) and principal component analysis (PCA) were

performed by the Rtsne R package.

Statistical analysis

All statistical analyses were done using R software 4.1.1.

p-value < 0.05 was considered statistically significant unless

noted otherwise. The log-rank test was used to compute the

log-rank p-value and hazard ratio (HR), the Wilcoxon test was

used for comparisons between two groups, and the

Kruskal–Wallis test was used for more than two groups.

Results

In this study, the data of 375 OC and 88 normal patient

samples from the TCGA and GTEx were collected. The data of

93 OC subjects were collected from ICGC. The workflow

diagram of the study is presented in Figure 1.

Establishment of HARlncRNAs in ovarian
cancer

A total of 36 HARGs were established from the previous reports

about histone acetylation. In total, 1,202 HARlncRNAs were

obtained on the foundation of correlation coefficients of

36 HARGs and 13,425 lncRNAs (correlation

coefficients >0.4 and p < 0.001). Then, 628 differentially

expressed lncRNAs (|Log2FC| > 1 and p < 0.05) between OC

tumor and normal patient samples were ultimately confirmed.

Compared to the normal tissues, 419 HARlncRNAs were

upregulated, and the other 209 were downregulated in ovarian

cancer (OC) samples (Figure 2A). The network figure and data

between HARGs and lncRNAs were shown in Figure 2B and

Supplementary Table S1. The top 50 differentially expressed

HARlncRNAs, which were sorted by Log2 fold change between

tumor and normal patient samples, were visualized in Figure 2C.

Signature construction and validation of
HARlncRNAs in ovarian cancer

Among the 628 HARlncRNAs, 27 HARlncRNAs were found

to be significantly correlated with the overall survival (OS) of OC

patients according to univariate Cox regression analysis (p < 0.05,

Figure 3A). The heatmap of the 27 HARlncRNAs was shown in

Figure 3B. To avoid overfitting the prognostic signature, we

performed the LASSO regression on the 27 HARlncRNAs;

furthermore, we conducted multivariant Cox regression of the

27 HARlncRNAs. Of them, 14 HARlncRNAs were exacted to be

related with histone acetylation in OC when the first-rank value

of Log(λ) was the minimum likelihood of deviance (Figures

3C,D). Furthermore, we plotted the regulation between the

27 HARlncRNAs and HARGs in the Sankey diagram, and

most relationships between HARGs and HARlncRNAs were

positive (Figure 3E).

Afterward, we computed the risk score as follows:

LEMD1 − AS1 × (−1.0520) + AC138904.1 × (−0.8239)
+ AC010422.2 × (1.3250) + AC021016.1 × (0.5876)
+ LINC02321 × (−0.6593) + AC008752.1 × (−0.7215)
+ AL590652.1 × (−0.8644) + AL157871.2 × (−1.0107)
+ AC092171.2 × (0.4927) + AC060766.6 × (−0.6976)
+ AC093734.1 × (1.4787) + AC011445.1 × (0.5794)

FIGURE 2
Identification of histone acetylation-related lncRNAs (HARlncRNAs) in patients with ovarian cancer (OC). (A) Volcano plot of the differentially
expressed HARlncRNAs. Green points indicate the significantly downregulated genes. Red points indicate the significantly upregulated genes. (B)
Networks between histone acetylation-related genes and lncRNAs (correlation coefficients >0.4 and p < 0.001). (C) Top 50 differentially expressed
HARlncRNAs which were sorted by Log2 fold change between tumor and normal patients.
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FIGURE 3
Establishment of the histone acetylation-related lncRNAs (HARlncRNAs) prognostic model in ovarian cancer (OC). (A) Prognostic-associated
lncRNAs were extracted using univariate Cox regression analysis. (B) Expression profiles of 27 prognostic HARlncRNAs. (C) 10-fold cross-validation
for variable selection in the LASSO regression analysis. (D) LASSO coefficient profile of HARlncRNAs. (E) Sankey diagram of pyroptosis genes and
HARlncRNAs.
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AC040169.1 × (−0.4930) + UBE2Q1 − AS1 × (−0.6988).

The risk score median value was used as a cutoff to divide

375 OC cases into the high- and low-risk groups. The

distribution of the risk score was plotted in the train, test,

and entire dataset, respectively, which all demonstrated that

patients in the high-risk group had poorer OS than those

patients in the low-risk group (Figure 4A). In addition, the

result from the ICGC cohort was consistent with that from the

TCGA cohort: the shorter OS was shown in the high-risk

group patients (Figure 4B). Kaplan–Meier analysis was

performed after risk stratification using FIGO stage, age,

grade, and tumor residual size (Figure 4C). Patients in the

low-risk group showed improved OS compared with patients

with high-risk for stage III–IV (p < 0.001), age<50 (p < 0.001),

age≥50 (p < 0.001), grade 3 (p < 0.001), and tumor residual

size (p < 0.001).

Estimation and evaluation of nomogram

A nomogram was built to forecast the survival risk in OC

patients on the basis of the total TCGA cohort. First, the

univariate and multivariate Cox regression analyses were used

to determine the independent prognostic values of the risk

score from the 14 HARlncRNAs, age, FIGO stage, histological

grade, and tumor residual size in OC. The results were shown

in Figures 5A,B, demonstrating that the risk score of this

model was an independent prognostic factor for OC patients

(p < 0.001, HR = 1.113, 95% CI = 1.068–1.159, Figure 5A; p <
0.001, HR = 1.101, 95% CI = 1.053–1.152, Figure 5B). We also

figured out another independent prognostic factor: age (p =

0.006, HR = 1.024, 95% CI = 1.007–1.041, Figure 5B).

Moreover, a nomogram was conducted for predicting the 1-

, 3-, and 5-year OS incidences of OC patients (Figure 5C). We

also used the 1-, 3-, and 5-year calibration plots to prove that

FIGURE 4
Prognosis value of the 14-histone acetylation-related lncRNA (HARlncRNAs) signature in the train, test, and all sets. (A) Kaplan–Meier survival
curves of overall survival (OS) of patients between high- and low-risk subgroups in the train, test, and all sets, respectively. (B) Kaplan–Meier survival
curves of OS of patients between high- and low-risk subgroups in the ICGC cohort. (C) Kaplan–Meier survival curves of OS prognostic value stratified
by age, grade, stage, and tumor residual size between high- and low-risk subgroups in the entire set.
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the nomogram had a good concordance with the prediction of

1-, 3-, and 5-year OS (Figure 5D). In order to assess the

sensitivity and specificity of the risk model on the

prognosis, the ROC was performed. We also illustrated the

outcomes of ROC with the area under the ROC curve (AUC).

The HARlncRNAs risk model displayed AUC values of 0.818,

0.796, and 0.856 at 1, 3, and 5 years in the ROC analysis in the

train set, respectively. The AUC values in the test set were

FIGURE 5
Nomogram and assessment of the risk signature based on 14 histone acetylation-related lncRNAs (HARlncRNAs). (A,B) Univariate Cox and
multivariate regression analyses of the risk score and clinical factors with overall survival (OS). (C) Nomogram that integrated the risk score, age,
grade, stage, and tumor residual size predicted the probability of the 1-, 3-, and 5-year OS. (D)Calibration curves for the 1-, 3-, and 5-year OS. (E) The
1-, 3-, and 5-year time-dependent receiver operating characteristic (ROC) curves of the train, test, and all sets, respectively. (F) ROC curves of
the risk score, nomogram total score, and clinical characteristics.
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0.683, 0.569, and 0.582 at 1, 3, and 5 years. In the entire set, the

AUC values were 0.751, 0.693, and 0.721 at 1, 3, and 5 years

(Figure 5E), revealing effective predictions of survival by the

HARlncRNAs risk signature. Furthermore, compared with

other clinical characteristics including age (AUC = 0.729),

FIGO stage (AUC = 0.604), histologic grade (AUC = 0.496),

and tumor residual size (AUC = 0.588), there was a higher

AUC value 0.818 at a 1-year OS time for the risk score

(Figure 5F). These data suggested that the risk score model

might possess higher sensitivity and accuracy in predicting the

prognosis of patients with OC.

Functional analysis of the 14 HARlncRNAs
signature

For the investigation of differences in biological functions

between high- and low-risk groups on the basis of the risk

score, we used GSEA software to search for the GO terms in

the entire set. The related GO terms in the low-risk group

were GOBP cellular response to steroid and regulation of

protein maturation. GOMF phosphatidylinositol

binding and phosphatidylinositol bisphosphate binding

(Figure 6A).

FIGURE 6
Different molecular characteristics between the groups. (A) GSEA of the significant GO terms significantly enriched in the high-risk group. (p <
0.05; FDR <0.25; |NES| > 1.5). (B)Comparison of the homologous recombination deficiency (HRD) status between the high- and low-risk groups (p <
0.05). (C) Comparisons of some other molecular features between the risk groups (p < 0.05).
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FIGURE 7
Three distinct expression clusters characterized by consensus clustering analysis. (A) Patients are divided into three clusters by
ConsensusClusterPlus. (B) t-SNE of risk groups and clusters. (C) Principal component analysis (PCA) of risk groups and clusters. (D) Sankey diagramof
clusters with their risk types and survival status. (E) Kaplan–Meier survival curves of overall survival (OS) in three clusters.
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Different molecular characteristics
between the high- and low-risk groups

Genomic scarring with large-scale genome instability has

been attributed to HRD (Watkins et al., 2014). We calculated an

HRD score, combined from HRD-LOH (Abkevich et al., 2012),

LST (large-scale state transitions) (Popova et al., 2012), and TAI

(number of telomeric allelic imbalances) scores (Birkbak et al.,

2012). The score of HRD, HRD_LOH, HRD_ LST, and

HRD_TAI was confirmed to be higher in the low-risk group

than that in the high-risk group (p < 0.001, Figure 6B). At the

same time, for some newmolecular indicators, the low-risk group

owned the higher level of LOH_frac_altered and

mutLoad_nonsilent (p = 0.037, p = 0.012, Figure 6C). In

addition, the higher level of eCARD score was observed in the

low-risk group (p < 0.001, Figure 6C), which exhibited a

consistent association with OS among high-grade ovarian

cancer patients in recent research studies (Zimmermann et al.,

2016).

Identification of the three distinct
HARlncRNAs expression subtypes in
ovarian cancer

We used consensus clustering on the basis of the

14 HARlncRNAs expression which came from the risk model,

three distinct clusters were displayed (Figure 7A); then, t-SNE

and PCA analysis of 14 HARlncRNAs expression were clearly

divided into three clusters, and the pre-defined high- and low-

risk groups could also be divided into two clusters (Figures 7B,C),

and the Sankey diagram was adopted to display relationships of

clusters with their risk types, clusters, and survival status

(Figure 7D). Survival analysis demonstrated a significant

difference between the three clusters. Cluster 3 seemed to

show the lowest survival probability (Figure 7E).

Discussion

OC is one of the most common causes of mortality among

gynecologic cancers in the world, of which OC accounts for the

greater proportion. One of the reasons is the lack of effective

biomarkers or risk models to guide treatments. In recent years,

lncRNAs have attracted a lot of attention due to its broad spectrum

of the content of biological effects in oncogenesis and tumor

progression; with the development of diverse potential drugs

targeting epigenetic regulators in preclinical and clinical trials

(Cheng et al., 2019), the role of histone acetylation in cancer

biological processes have become more and more important. In

this study, we constructed a novel risk signature to predict prognosis

and the survival for OC based on the histone acetylation-associated

lncRNAs, and validated it in another ICGC cohort; the prediction

efficiency was verified by ROC, nomogram, and a calibration curve.

The response to target treatment (PARP inhibitors, PARPis) might

be different between low- and high-risk groups due to significantly

different molecular characteristics. In addition, the 375 OC patients

were divided into three clusters based on the expression of the

14 HARlncRNAs by consensus clustering analysis, presenting the

patients in different clusters that presented different survival

probabilities.

LncRNA-mediated gene expression regulation might involve

epigenetic mechanisms through direct interaction with proteins

with epigenetic mechanisms, including histone modification and

chromatin remodeling (Zhang et al., 2020). The interaction

between differentially expressed lncRNAs, such as

MALAT1 and CDKN2B-AS1, and histone-modifying or

chromatin-remodeling complexes has been implicated in

transcriptional regulation, enabling the progression of

different cancer types (Hanly et al., 2018). In this study, first,

36 HARGs were confirmed from previous research studies. Then,

the RNA expression profile of these genes from the TCGA and

GTEx datasets were collected, and 628 differentially expressed

HARlncRNAs were obtained through co-expression and

differential expression analysis. Univariate Cox regression,

multivariate Cox regression, and the LASSO analyses were

conducted step by step to establish a 14 HARlncRNAs risk

signature, which was verified in the train, test, and entire set,

respectively. The result presented that the risk score might be

served as an independent prognostic biomarker for OC with an

excellent predicting ability for survival. Importantly, the risk

signature was further validated in the ICGC cohort.

It was well-known that cancer patients with HRD phenotype

usually exhibit a high response to platinum compound

chemotherapy (Pennington et al., 2014). Moreover, patients with

HRD caused by different etiologies might be more suitable for the

treatment with PARPis. In this study, the significantly higher HRD

score and higher levels of HRD_LOH, HRD_ LST, and HRD_TAI

were observed in the low-risk group than in the high-risk group,

indicating that the low-risk group patients might benefit more from

PARPis treatments. There existed different molecular features

between the groups. The low-risk group showed the higher level

of LOH_frac_altered and mutLoad_nonsilent, indicating that the

low-risk group seemed to carry a higher mutation burden. DDR

pathway deficiencies were demonstrated to be associated with

mutation burden and mutational diversity, which might

potentiate the response to immune therapies. In addition, the

eCARD score was obviously higher in the low-risk group, which

was used to investigate chemo-sensitivity in ovarian cancer patients

from TCGA. The result might aid in the prediction for the response

to platinum chemotherapy according to the risk score.

In OC, hundreds of lncRNAs were observed to be differentially

expressed between OC and normal control tissues (Wang et al.,

2016). Recently published reviews summarized some examples of

differentially expressed lncRNAs associated with OC prognosis

(Abildgaard et al., 2019; Wang et al., 2019). Given the increasing
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evidence, it could be considered that lncRNAs could not only serve

as prognostic and predictive markers but also as highly specific

therapeutic targets. As for the 14 HARlncRNAs, LEMD1-AS1

suppresses OC progression through sponging miR-183-5p and

regulation of TP53 (Guo and Qin, 2020). Moreover, the

prognosis implication of LEMD1-AS1 has been demonstrated in

OC in the previous study (Zheng et al., 2020). AC011445.1, an

lncRNA involved in immune and autophagy, was shown to be

associated with OC patients’ clinical outcomes (Meng et al., 2020;

Peng et al., 2022). However, the other HARlncRNAs have not been

reported in OC up to date.

There were still some existing limitations in this research. It was

necessary to further study the functions and molecular mechanisms

of these 14 HARlncRNAs in combination withmore experiments in

OC; this may be helpful to find out HARlncRNAs that can be used

as therapeutic targets. In addition, a larger sample size was needed to

verify the accuracy of the risk signature and molecular subtypes in

the future.

Conclusion

To summarize, a risk signature composed of 14 HARlncRNAs

was provided in OC. Significant differences in the survival rate and

HRD status were observed between the high- and low-risk groups,

which might provide the effective prediction for clinical outcomes

and individual therapeutic strategies for patients with OC. Further

lab experiments were needed to explore the molecular mechanisms

of these 14 lncRNAs involved in histone acetylation in vitro and in

vivo. In addition, a larger clinical sample size of OC was needed to

recruit and validate the accuracy and efficacy of the 14-HARlncRNA

signature.
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