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Abstract: In the context of the COVID-19 pandemic, conducting antibody testing and vaccination is
critical. In particular, the continued evolution of SARS-CoV-2 raises concerns about the effectiveness
of vaccines currently in use and the activity of neutralizing antibodies. Here, we used the Escherichia
coli expression system to obtain nine different SARS-CoV-2 RBD protein variants, including six single-
point mutants, one double-point mutant, and two three-point mutants. Western blotting results show
that nine mutants of the RBD protein had strong antigenic activity in vitro. The immunogenicity
of all RBD proteins was detected in mice to screen for protein mutants with high immunogenicity.
The results show that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y,
especially the former two, had better immunogenicity than the wild type. This suggests that site E484
has a significant impact on the function of the RBD protein. Our results demonstrate that recombinant
RBD protein expressed in E. coli can be an effective tool for the development of antibody detection
methods and vaccines.
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1. Introduction

The beta-coronavirus SARS-CoV-2 has become the seventh discrete coronavirus species
that is capable of causing human disease [1]. SARS-CoV-2 is easily transmitted and highly
pathogenic [2,3]. There are now outbreaks in more than 216 countries, areas, and territories
around the world. As of 27 July 2022, the total number of confirmed cases has exceeded
570 million, with more than 6.3 million deaths, and these numbers are increasing every day.
Vaccination is a highly effective strategy to prevent and stop the spread of SARS-CoV-2
in light of its high pathogenicity and transmissible nature. Well-protected vaccines can
significantly reduce the incidence and transmission of the virus and are of great significance
to the prevention and treatment of COVID-19. Many different SARS-CoV-2 vaccines are
being developed around the world. According to the technology, the current vaccines
are divided into three main categories: novel coronavirus-inactivated vaccines, subunit
recombinant protein vaccines, and nucleic acid vaccines [4,5].

Studies have shown that SARS-CoV-2 spike (S) protein can serve as a suitable antigen
with strong immunogenicity that can effectively stimulate the host immune system to
induce the production of neutralizing antibodies [5–7]. The receptor-binding domain (RBD)
in the SARS-CoV-2 S protein mediates viral cell fusion to induce host infection through
site-directed binding to the receptor protein angiotensin-converting enzyme 2 (ACE2) [8,9].
Therefore, the S protein has become a priority target for the design of recombinant subunit
vaccines [5,10,11]. SARS-CoV-2 was first detected in 2019 [12]. As the virus has spread
globally, new variants of the virus have emerged in the past two years, some of which
have significantly increased their infectivity, transmissibility, and immune escape potential
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compared to wild viruses [13–15]. In multiple variants of SARS-CoV-2 that have been
reported so far, the S protein has been mutated, especially at some sites in the RBD,
resulting in an increase in the binding affinity between the S protein and the receptor
protein ACE2 [16,17]. For example, the RBD mutation N501Y appears in lineages B.1.1.7
(Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.1.529 (Omicron) [15,17]. The L452R mutation
appears in lineages B.1.617.2 (Delta), B.1.429 (Epsilon), and B.1.617.1 (Kappa) [18]. The
K417N mutation appears in lineage B.1.351 (Beta), while the K417T mutation appears in
lineages P.1 (Gamma) and B.1.1.529 (Omicron) [15,17]. The E484K mutation is present in
lineages B.1.351 (Beta), P.1 (Gamma), P.2 (Zeta), B.1.525 (Eta), and B.1.526 (Iota), the E484Q
mutation is present in lineage B.1.617.1 (Kappa), and the E484A mutation is present in
lineage B.1.1.529 (Omicron) [15,19]. Therefore, it can be inferred that K417, L452, E484,
and N501 in the RBD are key sites affecting the function of the S protein and are prone to
mutation. In particular, three different mutations have appeared in the E484 site.

Previous studies have shown that different SARS-CoV-2 mutants have different mu-
tations in the RBD of the S protein, causing changes in viral pathogenicity and infectiv-
ity [17,20]. This means that some vaccines currently in use may be less protective against
some of the currently existing variants, which could lead to the widespread transmission
of the mutated virus in the population, making it more difficult to control future COVID-19
outbreaks. Therefore, there is an urgent need to develop vaccines that confer strong broad-
spectrum protection against existing or emerging mutated viruses. In this study, different
mutant RBD proteins were expressed in an Escherichia coli expression system, and their
antigenicity and immunogenicity were compared and evaluated in mice in order to screen
candidates for vaccine design and drug targets and to facilitate virus antibody detection
kit development.

2. Materials and Methods
2.1. Bacterial Strains, Construction, and Growth Conditions

E. coli XL1-Blue was used as a host to express the RBD protein. The bacterial strains in
our experiment were cultured in LB medium at 37 ◦C. Ampicillin was added as needed. The
fragment of the SARS-CoV-2 S protein gene (GenBank: NC_045512.2) (991–1749 bp) corre-
sponding to amino acids 331−583 of the SARS-CoV-2 S protein (GenBank: YP_009724390.1)
was synthesized. The expression vector pQE30 was digested with BamHI and HindIII
restriction enzymes. The ClonExpress® Ultra One Step Cloning Kit (Vazyme, Nanjing,
China) was used to ligate the target fragment into the vector. Primers used for cloning and
mutant construction are shown in Table 1.

Table 1. List of primers used in this study.

Primers Name Sequence (5′-3′)

RBD-F TCGCATCACCATCACCATCACAATATTACAAACTTGTGCCCTTTTG
RBD-R GAGTCCAAGCTCAGCTAATTTTACTCAAGTGTCTGTGGATCACGG

K417T-F CAAACTGGAACCATTGCTGATTATAATTATAAATTACC
K417T-R CAGCAATGGTTCCAGTTTGCCCTGGAGCGATTTGTC
K417N-F CAAACTGGAAACATTGCTGATTATAATTATAAATTACC
K417N-R CAGCAATGTTTCCAGTTTGCCCTGGAGCGATTTGTC
L452R-F ATAATTACCGCTATAGATTGTTTAGGAAGTCTAATC
L452R-R CAATCTATAGCGGTAATTATAATTACCACCAACCTTAG
E484K-F AATGGTGTTAAGGGTTTTAATTGTTACTTTCCTTTAC
E484K-R TTAAAACCCTTAACACCATTACAAGGTGTGCTACCG
E484Q-F AATGGTGTTCAGGGTTTTAATTGTTACTTTCCTTTAC
E484Q-R TTAAAACCCTGAACACCATTACAAGGTGTGCTACCG
N501Y-F CCAACCCACTTACGGTGTTGGTTACCAACCATACAGAG
N501Y-R CAACACCGTAAGTGGGTTGGAAACCATATGATTGT
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2.2. Protein Expression and Purification

The recombinant strains were streaked on LB plates (containing 200 µg/mL ampicillin).
Single colonies were inoculated in LB medium containing 100 µg/mL ampicillin and
cultured overnight at 37 ◦C. Cultures were transferred to 1 L LB medium. When the OD600
value of the bacterial solution reached 0.5, IPTG was added at a final concentration of
0.5 mM and bacteria were cultured at 37 ◦C for 8–12 h. The cultured cells were harvested
and resuspended in 15 mL lysis buffer (10 mM imidazole, 300 mM NaCl, 50 mM NaH2PO4,
pH 8.0). Then, 0.5 mL lysozyme (50 mg/mL) was added and the lysate was placed on ice
for 20 min. Ultrasonic disruption was performed with the following parameters: total time
16 min, working time 6 s, intermittent time 3 s, and power 300 W. After centrifugation for
20 min at 12,000 rpm and 4 ◦C, the supernatant was discarded, and the precipitate (inclusion
body) was retained. Next, 20 mL of precipitation lysis buffer (8 M urea, 100 mM NaH2PO4,
100 mM Tris-HCl, pH 8.0) was added to the inclusion body. After sufficient oscillation,
ultrasonication was carried out. The supernatant (containing protein after inclusion body
dissolution) was collected by centrifugation for 20 min at 12,000 rpm and 4 ◦C, and the
precipitate was discarded. The RBD protein was purified under denaturing conditions
with HisSep Ni-NTA Agarose Resin. The inactive RBD protein was added to refolding
buffer (100 mM Tris, 400 mM L-arginine, 2 mM EDTA, 5 mM GSH, 0.5 mM GSSG, 10%
(v/v) glycerol, pH 8.0) and incubated for 12 h at 4 ◦C. Finally, the refolded RBD protein was
concentrated and desalted by a 10 kDa ultrafiltration tube.

2.3. SDS-PAGE and Immunoblotting

The recombinant RBD protein was mixed with protein loading buffer, boiled for 5 min,
and centrifuged for 10 min at 12,000 rpm. Next, proteins were separated by 12% SDS-PAGE
(5 µL of supernatant per lane). For Coomassie Bright Blue staining, CBB Fast Staining
Solution (Tiangen biotech, Beijing, China) was used. For Western blot (WB) analysis, the
proteins were transferred from the gel to a nitrocellulose membrane by semi-dry membrane
transfer (the membrane transfer parameters: 25 V, 1 A, and 25 min). The membranes
were incubated in blocking buffer (5% BSA in TBST buffer (Tris 9.68 g/L, NaCl 32 g/L,
0.02% Tween-20)) at room temperature for 2 h. After washing the membrane with TBST
buffer three times, the membrane was incubated with mouse monoclonal anti-His tag
(1:5000, Clone: 9C11, Yeasen Biotechnology, Shanghai, China) or human monoclonal anti-
RBD (1:1000, Clone: 7H6, KMD Bioscience, Tianjin, China) overnight at 4 ◦C. Following
incubation, the membranes were washed and incubated with horseradish peroxidase
(HRP)-conjugated goat anti-mouse (1:10,000) or HRP-conjugated goat anti-human for 1 h at
room temperature. After washing, the membrane was immersed in a chromogenic solution
and protein bands were imaged with a UVI gel imager (UVItec, Cambridge, UK).

2.4. Mouse Immunization

Ten RBD proteins were prepared and mixed with Freund’s adjuvants at a ratio of
1:1. In this experiment, three mice were immunized in each experimental group. Female
BALB/c mice aged 6–8 weeks were subcutaneously immunized with 500 µL of RBD protein
solution (30 µg of protein/mouse) or PBS and boosted on days 7 and 14. Blood was sampled
on days 0 (prevaccination), 13, and 25. After coagulation at room temperature for 1 h, sera
were collected by centrifugation (5000 rpm, 30 min, 4 ◦C) and stored at −80 ◦C until use.

2.5. Enzyme-Linked Immunosorbent Assay (ELISA)

ELISA was used to analyze antibody responses in serum. Microplate wells were coated
with RBD protein (100 ng/well) in PBS coating buffer and incubated overnight at 4 ◦C.
Plates were washed three times using PBST containing 0.1% Tween 20 and blotted dry. The
plates were sealed at room temperature with 5% BSA for 2 h. Continuously diluted serum
with PBS buffer was added to the microplate (100 µL/well), which was incubated for 1 h at
37 ◦C. Then, the plate was washed. HRP-conjugated goat anti-mouse (100 µL/well, 1:2000
in PBS) was added to each well, followed by incubation for 1 h at room temperature. Next,
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the plate was washed six times and incubated with 100 µL 3,3′,5,5′-tetramethylbenzidine
(TMB) solution for 15 min. To stop the reaction, 50 µL of stop solution (1 M H2SO4) was
added to each well, and Infinite M200 fluorescent multifunctional enzyme marker (Tecan,
Männedorf, Switzerland) was used to read the absorbance at 450 nm.

2.6. Statistical Analysis

Data are expressed as mean ± standard deviation. Significant differences were deter-
mined by a one-way analysis of variance followed by the Tukey’s multiple comparison test.
Data were analyzed and graphs were drawn using Origin software (version 8.0, OriginLab,
Northampton, MA, USA) and GraphPad Prism software (version 5.0, GraphPad Software,
San Diego, CA, USA). Each experiment was independently replicated three times and
statistical significance was defined as p < 0.05.

3. Results
3.1. The Nine RBD Protein Mutants Were Obtained by Prokaryotic Expression and
Affinity Chromatography

The expression of the recombinant SARS-CoV-2 RBD protein was induced in E. coli
XL1-Blue cells and detected by SDS-PAGE. Although the recombinant RBD protein could
be expressed in E. coli cells, the protein existed in the form of an inclusion body (Figure 1A).
Therefore, denaturation and refolding were required. A large number of induced bacterial
cells were collected, and the inclusion body protein was obtained after cell rupture. Af-
ter dissolution with 8 M urea, a Ni-NTA agarose flow column was used for purification
(Figure 1B). When the purified denatured RBD protein was refolded, a recombinant RBD
protein with biological activity was obtained, and the molecular weight of ≈30 kDa was
consistent with the expected theoretical value. In this study, nine RBD protein mutants were
constructed by reverse PCR [21], including six single-point mutants, K417T, K417N, L452R,
E484K, E484Q, and N501Y; a two-locus mutation, L452R-E484Q; and two three-site mutants,
K417T-E484K-N501Y and K417N-E484K-N501Y. In this experiment, affinity chromatog-
raphy and ultrafiltration were used to remove the endotoxin in the recombinant protein.
After repeated operations, the endotoxin content in all mutant protein solutions was less
than 2.0 eu/mL. The SDS-PAGE results after denaturation, refolding, and concentration of
the nine RBD protein mutants and wild-type are shown (Figure 1C,D).

Viruses 2022, 14, x FOR PEER REVIEW 4 of 10 
 

 

°C. Plates were washed three times using PBST containing 0.1% Tween 20 and blotted dry. 

The plates were sealed at room temperature with 5% BSA for 2 h. Continuously diluted 

serum with PBS buffer was added to the microplate (100 μL/well), which was incubated 

for 1 h at 37 °C. Then, the plate was washed. HRP-conjugated goat anti-mouse (100 

μL/well, 1:2000 in PBS) was added to each well, followed by incubation for 1 h at room 

temperature. Next, the plate was washed six times and incubated with 100 μL 3,3′,5,5′-

tetramethylbenzidine (TMB) solution for 15 min. To stop the reaction, 50 μL of stop solu-

tion (1 M H2SO4) was added to each well, and Infinite M200 fluorescent multifunctional 

enzyme marker (Tecan, Männedorf, Switzerland) was used to read the absorbance at 450 

nm. 

2.6. Statistical Analysis 

Data are expressed as mean ± standard deviation. Significant differences were deter-

mined by a one-way analysis of variance followed by the Tukey’s multiple comparison 

test. Data were analyzed and graphs were drawn using Origin software (version 8.0, 

OriginLab, Northampton, MA, USA) and GraphPad Prism software (version 5.0, 

GraphPad Software, San Diego, CA, USA). Each experiment was independently repli-

cated three times and statistical significance was defined as p < 0.05. 

3. Results 

3.1. The Nine RBD Protein Mutants Were Obtained by Prokaryotic Expression and Affinity 

Chromatography 

The expression of the recombinant SARS-CoV-2 RBD protein was induced in E. coli 

XL1-Blue cells and detected by SDS-PAGE. Although the recombinant RBD protein could 

be expressed in E. coli cells, the protein existed in the form of an inclusion body (Figure 

1A). Therefore, denaturation and refolding were required. A large number of induced 

bacterial cells were collected, and the inclusion body protein was obtained after cell rup-

ture. After dissolution with 8 M urea, a Ni-NTA agarose flow column was used for puri-

fication (Figure 1B). When the purified denatured RBD protein was refolded, a recombi-

nant RBD protein with biological activity was obtained, and the molecular weight of ≈30 

kDa was consistent with the expected theoretical value. In this study, nine RBD protein 

mutants were constructed by reverse PCR [21], including six single-point mutants, K417T, 

K417N, L452R, E484K, E484Q, and N501Y; a two-locus mutation, L452R-E484Q; and two 

three-site mutants, K417T-E484K-N501Y and K417N-E484K-N501Y. In this experiment, 

affinity chromatography and ultrafiltration were used to remove the endotoxin in the re-

combinant protein. After repeated operations, the endotoxin content in all mutant protein 

solutions was less than 2.0 eu/mL. The SDS-PAGE results after denaturation, refolding, 

and concentration of the nine RBD protein mutants and wild-type are shown (Figure 

1C,D). 

 

Figure 1. Expression and purification of the RBD protein mutants. (A) Lane 1: total protein of wild 

Enterobacter; Lane 2: total protein of uninduced recombinant strain; Lane 3: total protein of the re-

combinant strain after induction; Lane 4: supernatant protein after ultrasonic enucleation; Lane 5: 

precipitated protein after ultrasonic enucleation. (B) Lane 1: 8M urea dissolved total inclusion body 

Figure 1. Expression and purification of the RBD protein mutants. (A) Lane 1: total protein of wild
Enterobacter; Lane 2: total protein of uninduced recombinant strain; Lane 3: total protein of the
recombinant strain after induction; Lane 4: supernatant protein after ultrasonic enucleation; Lane 5:
precipitated protein after ultrasonic enucleation. (B) Lane 1: 8M urea dissolved total inclusion body
protein; Lane 2: unbound protein collection solution; Lane 3: recombinant RBD protein collection
solution. (C,D) SDS-PAGE analysis of denatured, renatured, and concentrated recombinant RBD
protein and mutant protein. (C) Lane 1: mutant K417T; Lane 2: mutant K417N, Lane 3: mutant
L452R; Lane 4: mutant E484K; Lane 5: mutant E484Q; Lane 6: mutant N501Y. (D) Lane 1: wild-type
RBD protein; Lane 2: mutant L452R-E484Q; Lane 3: mutant K417T-E484K-N501Y; Lane 4: mutant
K417N-E484K-N501Y.
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3.2. The RBD Protein Mutants Possessed Antigenicity In Vitro

In order to ensure that the purified wild-type RBD protein and mutant proteins have a
biological function, their specific antigenicity was analyzed using WB. Mouse monoclonal
anti-His tag (Figure 2A) and human monoclonal anti-RBD (Figure 2B) were used as primary
antibodies. The results show that a distinct single band is detected at approximately
30 kDa, which indicates that the wild RBD protein and nine purified mutant proteins had
strong antigenicity and could be used as antigens for subsequent immune experiments.
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(B) RBD human monoclonal antibody. The bands from left to right were wild RBD, K417T, K417N,
L452R, E484K, E484Q, N501Y, L452R-E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y.

3.3. The Mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y Displayed
Excellent Immunogenicity in Mice

To evaluate the in vivo immunogenicity of the mutated RBD proteins, mice were immu-
nized with both wild-type RBD and the nine RBD protein mutants, and blood samples were
taken on days 0, 13, and 25. The total antibody titer against the SARS-CoV-2 RBD protein
was evaluated by ELISA using HRP-conjugated goat anti-mouse as the secondary antibody.
Before prevaccination, no anti-RBD was detected in the serum of all mice (Figure 3A). On day
13, anti-RBD was detected in mice immunized with both wild-type RBD and the nine RBD
protein mutants (Figure 3B). On day 25, total antibody levels were significantly increased in
all mice immunized with RBD and RBD mutant proteins (Figure 3C). After receiving three
doses, the total resistance was greatly enhanced compared with the resistance levels after
receiving only two doses. Interestingly, different RBD proteins yielded significantly different
antibody titers after immunization (Figure 3D). On day 25, the antibody titers induced by
mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y were 4.7-, 4.8-, 6.8-,
and 5.0-fold higher than those induced by wild-type RBD, respectively. These results indi-
cate that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y have
excellent immunogenicity. In addition, the titers of mutants K417N, L452R, and L452R-E484Q
were about 2-fold higher than that of wild-type RBD. However, surprisingly, the titers of
mutants K417T and N501Y were approximately equal to that of wild-type RBD, suggesting
that the single mutations at K417T and N501Y may not cause significant changes in the
immunogenicity of RBD.

3.4. The Site E484 Has a Significant Impact on the Function of the RBD Protein

To further evaluate the extensive antigenicity of mutants E484K, E484Q, K417T-E484K-
N501Y, and K417N-E484K-N501Y, we coated microplate wells with E484K, E484Q, K417T-
E484K-N501Y, and K417N-E484K-N501Y proteins, respectively, and after blocking, antibody
titers in mouse serum collected on day 25 were determined. When RBD mutant proteins
of E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y were coated separately
as antigens, higher antibody titers were detected in the sera of mice immunized with
E484Q (Figure 4B). These results indicate that the mutant E484Q can induce high levels
of antibodies, and the antibodies induced by the mutant have high antigenic binding
ability to a wide spectrum of mutant RBD proteins. After coating with E484K protein, a
high antibody titer was detected in the sera of all immunized mice (Figure 4A), indicating
that E484K as an antigen has a high binding ability to antibodies induced by wild-type
and other mutant RBD proteins. Although antibody titers against RBD were detected
in the serum of all immunized mice after coating with K417T-E484K-N501Y (Figure 4C)



Viruses 2022, 14, 2020 6 of 10

and K417N-E484K-N501Y (Figure 4D) proteins alone, there was no significant difference
between the antibody titer produced after the mice were immunized with other mutant
proteins, except for the mutants E484K and E484Q. This means that the mutant proteins
K417T-E484K-N501Y and K417N-E484K-N501Y may not be suitable as antigens in antibody
detection. In conclusion, the above results indicate that the mutant proteins E484K, E484Q,
K417T-E484K-N501Y, and K417N-E484K-N501Y all have good immunogenicity and can
induce antibody production more strongly than wild-type RBD protein in mice.
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Figure 3. Anti-SARS-CoV-2 RBD antibody levels in mice by ELISA. It was coated with 100 ng of wild
RBD protein, and after blocking with 2 times gradient diluted serum. (A–C) represent the antibody
levels of RBD on days 0, 13, and 25, respectively. (D) The RBD antibody titers were expressed as the
minimum concentration (maximum dilution) required for binding antigen. Statistical significance
was defined as p < 0.05, and * p < 0.05, ** p < 0.01.
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4. Discussion

The cumulative multiple mutations of SARS-CoV-2 have formed highly infectious
Delta and Omicron variants [22,23], which will trigger another outbreak of the COVID-19
epidemic around the world, exacerbating the global pandemic and threatening public
health. The SARS-CoV-2 Omicron variant is of particular concern because of its increased
transmissivity and the high number of mutations in the spike protein, which have the
potential to evade neutralizing antibodies induced by the currently used COVID-19 vac-
cines [24,25]. In addition, it has been shown that the mechanical stability of SARS-CoV-2
RBD protein was 250 pN, while that of SARS-CoV RBD protein was 200 pN, which may
play an important role in increasing transmissivity of the COVID-19 pandemic [26].

The spike protein of SARS-CoV-2 consists of two major functional domains containing
a total of 1273 amino acids. Located at the N-terminus of the S protein is the S1 functional
region containing the NTD and RBD domains. The remaining part is the S2 functional
region containing two trimeric structures mediating membrane fusion [4]. Therefore, the
NTD and RBD domains in the S1 functional region are candidates for the development of
vaccines or superior antigens [27,28]. Several SARS-CoV-2 mutants are currently in focus,
such as the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Kappa (B.1.617.1),
and Omicron (B.1.1.529) variants. The binding affinity of their corresponding mutant RBD
protein to ACE2 also changes. For example, the Alpha (B.1.1.7), Beta (B.1.351, Gamma
(P.1), Kappa (B.1.617.1), and Omicron (B.1.1.529) RBD proteins showed a higher affinity for
ACE2 than wild-type RBD. Alpha (B.1.1.7) and Kappa (B.1.617.1) RBD proteins had a much
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higher affinity for ACE2 than wild-type RBD, while the Delta (B.1.617.2) RBD protein had a
lower affinity for ACE2 than wild-type RBD [17,22]. In addition, it is interesting that K417T-
E484K-N501Y, K417N-E484K-N501Y, and K417T-E484A-N501Y mutant RBD proteins had a
lower affinity for ACE2 than the N501Y mutant RBD [16,29]. E484 and N501 are key sites
to improve the binding affinity between RBD and ACE2 [17,22]. However, Koelher et al.
investigated some RBD mutations, which described the effect of receptor binding energetics
and neutralization of the SARS-CoV-2 variants by atomic force microscopy and molecular
dynamics. They found that N501Y and E484Q mutations were particularly important for
greater stability of the RBD-ACE2 complex, but the N501Y mutations were unlikely to
significantly affect antibody neutralization [30].

Several RBD mutants selected in this study were present in the above SARS-CoV-2
variants. The recombinant RBD protein was expressed by E. coli, and after purification
by affinity chromatography, BALB/c mice were immunized and antibodies against RBD
were detected in serum (Figure 3B,C). The results show that RBD protein expressed by a
prokaryotic expression system had good immunogenicity although it could not be modified
by folding and glycosylation. The mutants E484K, E484Q, K417T-E484K-N501Y, and K417T-
E484K-N501Y all showed higher antibody titers than wild-type RBD (Figure 3D), indicating
that these sites can significantly enhance the immunogenicity of RBD protein to induce
the production of high levels of neutralizing antibodies. However, the mutant N501Y
showed a lower antibody titer than the wild type (Figure 3D). Although many studies have
shown that the mutant N501Y can significantly increase the binding affinity between RBD
and ACE2 [17,22,29,31], its immunogenicity to RBD in our study was not enhanced but
decreased. Therefore, we assume that the binding affinity between RBD and ACE2 may
not be directly related to the immunogenicity of the RBD protein.

To verify the above hypothesis, we used four RBD mutants, E484K, E484Q, K417T-
E484K-N501Y, and K417T-E484K-N501Y, as antigens and detected the antibodies against
RBD in the serum of all immunized mice. The results show that single mutants E484K and
E484Q, when used as antigens, could not only detect high antibody titers in the sera of
all immunized mice but also detect higher antibody titers in the sera of mice immunized
with mutants E484K and E484Q as compared with mice immunized with wild-type and
other mutant RBD proteins (Figure 4). It has been shown that intratype antigenic variation
due to mutation(s) is widely considered the main hurdle to appropriate FMD vaccine
development, such that two substitutions of distantly located aa at B-C (T48I) and G-H
(A143V) loops, in combination, distorted the VP1 G-H loop, which leads to the variation
of the antigen [32]. The study of Huang et al. showed that single mutations L452R and
F490S reduce the antigenicity to neutralizing antibodies [33]. The mutant E484Q can
also significantly enhance the binding affinity between RBD and ACE2 [17,30], but the
results of our study indicate that the mutant E484Q can also significantly enhance the
immunogenicity of RBD protein. In addition, surprisingly, although the mutant E484K
could not significantly enhance the binding affinity between RBD and ACE2, the results of
this study show that the mutant E484K could also enhance the immunogenicity of RBD
protein. The above results verify our conjecture that the binding affinity between RBD
mutants and ACE2 does not determine the immunogenicity of the mutant as an antigen.

5. Conclusions

In a pandemic where a virus frequently mutates, the broad-spectrum effectiveness of
neutralizing antibodies and vaccines is crucial, so these studies are now the focus of many
researchers. In the present study, different RBD mutants were selected as immunogens to
investigate the differences in the levels of antibodies induced by them, and two significant
mutants, E484K and E484Q, were found. Therefore, it can be inferred that the E484 amino
acid residue on RBD not only significantly affects the binding affinity with the receptor
ACE2, but also has a significant impact on the immunogenicity of the RBD protein, and it
may even affect the transmissibility and pathogenicity of the mutant virus.



Viruses 2022, 14, 2020 9 of 10

Author Contributions: Conceptualization, S.C. and C.W.; investigation, Z.Z. and X.W.; resources,
X.W. and X.L.; software and data curation, X.W. and X.L.; writing—original draft preparation, Z.Z.;
writing—review and editing, S.C. and C.W.; funding acquisition, Z.Z. and C.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the China Postdoctoral Science Foundation (2021M701594),
Guangdong Science and Technology Program Key Projects (No.2021B1212030014).

Institutional Review Board Statement: The animal study was reviewed and approved by Animal
Ethics Committee of Guangdong Medical Laboratory Animal Center (C202107-11).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Yushan Jiang and Chenguang Shen for their help in animal experi-
mentation techniques.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wu, J.T.; Leung, K.; Leung, G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV

outbreak originating in Wuhan, China: A modelling study. Lancet 2020, 395, 689–697. [CrossRef]
2. Sanche, S.; Lin, Y.T.; Xu, C.; Romero-Severson, E.; Hengartner, N.; Ke, R. High Contagiousness and Rapid Spread of Severe Acute

Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2020, 26, 1470–1477. [CrossRef] [PubMed]
3. Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020, 41, 1100–1115.

[CrossRef] [PubMed]
4. Hu, B.; Guo, H.; Zhou, P.; Shi, Z. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [CrossRef]
5. Dai, L.; Gao, G.F. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [CrossRef]
6. Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; et al. Phase 1–2

Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020, 383, 2320–2332. [CrossRef]
7. Liu, X.; Drelich, A.; Li, W.; Chen, C.; Sun, Z.; Shi, M.; Adams, C.; Mellors, J.W.; Tseng, C.; Dimitrov, D.S. Enhanced elicitation of

potent neutralizing antibodies by the SARS-CoV-2 spike receptor binding domain Fc fusion protein in mice. Vaccine 2020, 38,
7205–7212. [CrossRef]

8. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike
receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [CrossRef]

9. Xu, C.; Wang, Y.; Liu, C.; Zhang, C.; Han, W.; Hong, X.; Wang, Y.; Hong, Q.; Wang, S.; Zhao, Q.; et al. Conformational dynamics
of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM. Sci. Adv. 2021, 7, eabe5575.
[CrossRef]

10. Yang, S.; Li, Y.; Dai, L.; Wang, J.; He, P.; Li, C.; Fang, X.; Wang, C.; Zhao, X.; Huang, E.; et al. Safety and immunogenicity of a
recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: Two randomised,
double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect. Dis. 2021, 21, 1107–1119. [CrossRef]

11. Gao, F.; An, C.; Bian, L.; Wang, Y.; Zhang, J.; Cui, B.; He, Q.; Yuan, Y.; Song, L.; Yang, J.; et al. Establishment of the first Chinese
national standard for protein subunit SARS-CoV-2 vaccine. Vaccine 2022, 40, 2233–2239. [CrossRef]

12. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and
epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [CrossRef]

13. Weissman, D.; Alameh, M.; de Silva, T.; Collini, P.; Hornsby, H.; Brown, R.; LaBranche, C.C.; Edwards, R.J.; Sutherland, L.;
Santra, S.; et al. D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host Microbe 2021, 29, 23–31.
[CrossRef]

14. David, D. What scientists know about new, fast-spreading coronavirus variants. Nature 2021, 594, 19–20.
15. Kannan, S.R.; Spratt, A.N.; Sharma, K.; Chand, H.S.; Byrareddy, S.N.; Singh, K. Omicron SARS-CoV-2 variant: Unique features

and their impact on pre-existing antibodies. J. Autoimmun. 2022, 126, 102779. [CrossRef]
16. Laffeber, C.; de Koning, K.; Kanaar, R.; Lebbink, J.H.G. Experimental Evidence for Enhanced Receptor Binding by Rapidly

Spreading SARS-CoV-2 Variants. J. Mol. Biol. 2021, 433, 167058. [CrossRef]
17. Kumar, V.; Singh, J.; Hasnain, S.E.; Sundar, D. Possible Link between Higher Transmissibility of Alpha, Kappa and Delta Variants

of SARS-CoV-2 and Increased Structural Stability of Its Spike Protein and hACE2 Affinity. Int. J. Mol. Sci. 2021, 22, 9131.
[CrossRef]

18. Escalera, A.; Gonzalez-Reiche, A.S.; Aslam, S.; Mena, I.; Laporte, M.; Pearl, R.L.; Fossati, A.; Rathnasinghe, R.; Alshammary, H.;
van de Guchte, A.; et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission.
Cell Host Microbe 2022, 30, 373–387. [CrossRef]

19. Biswas, S.; Dey, S.; Chatterjee, S.; Nandy, A. Combatting future variants of SARS-CoV-2 using an in-silico peptide vaccine
approach by targeting the spike protein. Med. Hypotheses 2022, 161, 110810. [CrossRef]

http://doi.org/10.1016/S0140-6736(20)30260-9
http://doi.org/10.3201/eid2607.200282
http://www.ncbi.nlm.nih.gov/pubmed/32255761
http://doi.org/10.1016/j.it.2020.10.004
http://www.ncbi.nlm.nih.gov/pubmed/33132005
http://doi.org/10.1038/s41579-020-00459-7
http://doi.org/10.1038/s41577-020-00480-0
http://doi.org/10.1056/NEJMoa2026920
http://doi.org/10.1016/j.vaccine.2020.09.058
http://doi.org/10.1038/s41586-020-2180-5
http://doi.org/10.1126/sciadv.abe5575
http://doi.org/10.1016/S1473-3099(21)00127-4
http://doi.org/10.1016/j.vaccine.2022.02.048
http://doi.org/10.1016/S0140-6736(20)30251-8
http://doi.org/10.1016/j.chom.2020.11.012
http://doi.org/10.1016/j.jaut.2021.102779
http://doi.org/10.1016/j.jmb.2021.167058
http://doi.org/10.3390/ijms22179131
http://doi.org/10.1016/j.chom.2022.01.006
http://doi.org/10.1016/j.mehy.2022.110810


Viruses 2022, 14, 2020 10 of 10

20. Chen, L.; Lu, L.; Choi, C.Y.; Cai, J.; Tsoi, H.; Chu, A.W.; Ip, J.D.; Chan, W.; Zhang, R.R.; Zhang, X.; et al. Impact of Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variant-Associated Receptor Binding Domain (RBD) Mutations on the
Susceptibility to Serum Antibodies Elicited by Coronavirus Disease 2019 (COVID-19) Infection or Vaccination. Clin. Infect. Dis.
2022, 74, 1623–1630. [CrossRef]

21. Li, C.; Wen, A.; Shen, B.; Lu, J.; Huang, Y.; Chang, Y. FastCloning: A highly simplified, purification-free, sequence- and
ligation-independent PCR cloning method. BMC Biotechnol. 2011, 11, 92. [CrossRef] [PubMed]

22. Han, P.; Li, L.; Liu, S.; Wang, Q.; Zhang, D.; Xu, Z.; Han, P.; Li, X.; Peng, Q.; Su, C.; et al. Receptor binding and complex structures
of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 2022, 185, 630–640. [CrossRef]

23. Zhang, Y.; Wei, M.; Wu, Y.; Wang, J.; Hong, Y.; Huang, Y.; Yuan, L.; Ma, J.; Wang, K.; Wang, S.; et al. Cross-species tropism and
antigenic landscapes of circulating SARS-CoV-2 variants. Cell Rep. 2022, 38, 110558. [CrossRef]

24. Pérez-Then, E.; Lucas, C.; Monteiro, V.S.; Miric, M.; Brache, V.; Cochon, L.; Vogels, C.B.F.; Malik, A.A.; De la Cruz, E.; Jorge,
A.; et al. Neutralizing antibodies against the SARS-CoV-2 Delta and Omicron variants following heterologous CoronaVac plus
BNT162b2 booster vaccination. Nat. Med. 2022, 28, 481–485. [CrossRef]

25. Guo, H.; Gao, Y.; Li, T.; Li, T.; Lu, Y.; Zheng, L.; Liu, Y.; Yang, T.; Luo, F.; Song, S.; et al. Structures of Omicron Spike complexes
and implications for neutralizing antibody development. Cell Rep. 2022, 39, 110770. [CrossRef]

26. Moreira, R.A.; Chwastyk, M.; Baker, J.L.; Guzman, H.V.; Poma, A.B. Quantitative determination of mechanical stability in the
novel coronavirus spike protein. Nanoscale 2020, 12, 16409–16413. [CrossRef]

27. Ren, W.; Sun, H.; Gao, G.F.; Chen, J.; Sun, S.; Zhao, R.; Gao, G.; Hu, Y.; Zhao, G.; Chen, Y.; et al. Recombinant SARS-CoV-2 spike
S1-Fc fusion protein induced high levels of neutralizing responses in nonhuman primates. Vaccine 2020, 38, 5653–5658. [CrossRef]

28. Su, Q.; Zou, Y.; Yi, Y.; Shen, L.; Ye, X.; Zhang, Y.; Wang, H.; Ke, H.; Song, J.; Hu, K.; et al. Recombinant SARS-CoV-2 RBD with a
built in T helper epitope induces strong neutralization antibody response. Vaccine 2021, 39, 1241–1247. [CrossRef]

29. Liu, H.; Wei, P.; Zhang, Q.; Chen, Z.; Aviszus, K.; Downing, W.; Peterson, S.; Reynoso, L.; Downey, G.P.; Frankel, S.K.; et al.
501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to bamlanivimabin vitro. mAbs 2021, 13, 1919285. [CrossRef]

30. Koehler, M.; Ray, A.; Moreira, R.A.; Juniku, B.; Poma, A.B.; Alsteens, D. Molecular insights into receptor binding energetics and
neutralization of SARS-CoV-2 variants. Nat. Commun. 2021, 12, 6977. [CrossRef]

31. Liu, H.; Zhang, Q.; Wei, P.; Chen, Z.; Aviszus, K.; Yang, J.; Downing, W.; Jiang, C.; Liang, B.; Reynoso, L.; et al. The basis of a more
contagious 501Y.V1 variant of SARS-CoV-2. Cell Res. 2021, 31, 720–722. [CrossRef] [PubMed]

32. Islam, M.R.; Rahman, M.S.; Amin, M.A.; Alam, A.; Siddique, M.A.; Sultana, M.; Hossain, M.A. Evidence of combined effect of
amino acid substitutions within G-H and B-C loops of VP1 conferring serological heterogeneity in foot-and-mouth disease virus
serotype A. Transbound. Emerg. Dis. 2021, 68, 375–384. [CrossRef]

33. Wang, M.; Zhang, L.; Li, Q.; Wang, B.; Liang, Z.; Sun, Y.; Nie, J.; Wu, J.; Su, X.; Qu, X.; et al. Reduced sensitivity of the SARS-CoV-2
Lambda variant to monoclonal antibodies and neutralizing antibodies induced by infection and vaccination. Emerg. Microbes
Infect. 2022, 11, 18–29. [CrossRef] [PubMed]

http://doi.org/10.1093/cid/ciab656
http://doi.org/10.1186/1472-6750-11-92
http://www.ncbi.nlm.nih.gov/pubmed/21992524
http://doi.org/10.1016/j.cell.2022.01.001
http://doi.org/10.1016/j.celrep.2022.110558
http://doi.org/10.1038/s41591-022-01705-6
http://doi.org/10.1016/j.celrep.2022.110770
http://doi.org/10.1039/D0NR03969A
http://doi.org/10.1016/j.vaccine.2020.06.066
http://doi.org/10.1016/j.vaccine.2021.01.044
http://doi.org/10.1080/19420862.2021.1919285
http://doi.org/10.1038/s41467-021-27325-1
http://doi.org/10.1038/s41422-021-00496-8
http://www.ncbi.nlm.nih.gov/pubmed/33893398
http://doi.org/10.1111/tbed.13687
http://doi.org/10.1080/22221751.2021.2008775
http://www.ncbi.nlm.nih.gov/pubmed/34818119

	Introduction 
	Materials and Methods 
	Bacterial Strains, Construction, and Growth Conditions 
	Protein Expression and Purification 
	SDS-PAGE and Immunoblotting 
	Mouse Immunization 
	Enzyme-Linked Immunosorbent Assay (ELISA) 
	Statistical Analysis 

	Results 
	The Nine RBD Protein Mutants Were Obtained by Prokaryotic Expression andAffinity Chromatography 
	The RBD Protein Mutants Possessed Antigenicity In Vitro 
	The Mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y Displayed Excellent Immunogenicity in Mice 
	The Site E484 Has a Significant Impact on the Function of the RBD Protein 

	Discussion 
	Conclusions 
	References

