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Supplemental feeding of wildlife populations can locally increase the density
of individuals, which may in turn impact disease dynamics. Flower strips are
a widely used intervention in intensive agricultural systems to nutritionally
support pollinators such as bees. Using a controlled experimental semi-field
design, we asked how density impacts transmission of a virus and a trypano-
some parasite in bumblebees. We manipulated bumblebee density by using
different numbers of colonies within the same area of floral resource. In
high-density compartments, slow bee paralysis virus was transmitted more
quickly, resulting in higher prevalence and level of infection in bumblebee
hosts. By contrast, there was no impact of density on the transmission of
the trypanosome Crithidia bombi, which may reflect the ease with which this
parasite is transmitted. These results suggest that agri-environment schemes
such as flower strips, which are known to enhance the nutrition and survival
of bumblebees, may also have negative impacts on pollinators through
enhanced disease transmission. Future studies should assess how changing
the design of these schemes could minimize disease transmission and thus
maximise their health benefits to wild pollinators.
1. Background
Understanding the spread of disease is of fundamental importance in wildlife
ecology [1,2]. As species that are the focus of conservation efforts usually have
small and declining populations, they are particularly vulnerable to disease
outbreaks, which can cause high levels of mortality. Emerging infectious diseases,
where ‘spillover’ from large managed populations to small endangered popu-
lations can occur repeatedly, pose a particularly significant threat [2–5].
Consequently, an understanding of transmission dynamics within and between
populations is key to enabling management of such disease outbreaks and thus
preventing host population extinction [6–8]. For example, modelling of rabies
transmission between packs of Ethiopian wolves enabled a successful vaccination
programme, resulting in the survival of these critically endangered canids [9].

A key aspect of epidemiology for horizontally transmitted parasites is host
density. Host density has long been used as a key component of theoretical
models because of its role in influencing contact rates [10–12]. Such theoretical
work has received support from empirical epidemiological studies. For example,
in small-scale laboratory-based studies using Daphnia, host density influenced
the likelihood of infection by protozoan parasites [13,14]. Large-scale studies
of humans also suggest that population size and density determine the baseline
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transmission potential of influenza in the USA and seasonal
transmission dynamics of measles in West Africa [15,16]. In
populations of field voles, where the transmission of cowpox
has been extensively studied, recent work suggests that den-
sity-dependent transmission is at least partially responsible
for patterns of disease transmission [17].

One area where the understanding of mechanisms
behind disease transmission is particularly important is sup-
plemental feeding of wildlife, which is a frequently used
management intervention to help support declining popu-
lations [18]. However, such feeding can alter host behaviour
and physiology in ways that could influence disease trans-
mission. In particular, increased provisioning is often
associated with host aggregation and increased contact rates
[10,19]. Consequently, it is important to understand how
indirectly manipulating host density affects parasite trans-
mission, so that conservation strategies can be implemented
without further detrimental effects on target or interacting
species. In the case of supplemental feeding of birds, several
studies indicate that supplemental feeding is associated with
higher prevalence of disease [20,21], although the results
of field studies are not always conclusive [22]. Overall, a
meta-analysis of supplemental feeding of wildlife suggested
that intentional supplemental feeding increases infection
outcomes, especially in the case of recreational feeding (bird
feeding or feeding to enhance the tourist experience) [19].
This result varied across parasite taxa, with infection outcomes
of bacteria, helminths and viruses, but not protozoa, positively
associated with increased recreational feeding [19]. Interest-
ingly, while supplemental feeding either had no effect on or
increased either host density or abundance, these differences
did not relate directly to infection outcomes. Consequently,
the mechanisms underlying this variation in whether host
density alters disease transmission remain unclear.

One important case of supplemental feeding is the use of
wildflower strips as a source of forage for flower visiting taxa
in agricultural areas, which has been widely advocated as a
strategy to mitigate habitat loss and improve pollinator popu-
lations [23–25]. Such schemes are incorporated as funded
strategies under agri-environment schemes in the European
Union (e.g. [26]), and elsewhere (e.g. [27]). These interven-
tions have been shown to have a positive effect on insect
abundance and diversity [23,24,28]. However, as in other
cases of supplemental feeding, these resources can also
cause local increases in pollinator density [29]. Flowers are
an important site for the transmission of parasites within
and between pollinator species [30–35]. However, we still
know very little about how wildflower strips alter disease
transmission between pollinators [36]. Given the important
role of disease in pollinator declines [37], whether these
schemes alter disease epidemiology remains a key question.

Here, we use a controlled experimental approach to ask
how bumblebee nest density impacts disease transmission
in bumblebees, as a first step towards understanding how
supplemental feeding and the density increases it produces
might alter disease dynamics in pollinators. More specifically,
we tested whether the transmission of two common para-
sites, a virus (slow bee paralysis virus; SBPV) and a
trypanosome (Crithidia bombi), differed under semi-field
conditions between low and high densities of bumblebee
colonies. Our results have important implications for future
management strategies to improve wild bee populations on
agricultural land.
2. Methods
(a) Experimental organisms
(i) Bumblebees
Colonies of Bombus terrestris audax with 10–12 workers were
obtained from Biobest (Belgium). Upon arrival, all colonies were
determined to be free of common cellular parasites by phase-con-
trast microscopy following Rutrecht & Brown [38] and of SBPV
by reverse transcription–polymerase chain reaction (RT–PCR)
([39]; see the electronic supplementary material). All workers
were marked with numbered opalith tags (Graze, Germany and
Thornes, UK) upon arrival, and new callows (newly emerged
adults)were subsequently taggedwithin 1 day of emergence. Colo-
nies were randomly allocated to the six polytunnel compartments
(figure 1). Within each compartment, different coloured tags
were used, so that colonies could be discriminated from each other.

(ii) Parasites and inoculation protocol
Crithidia bombi (hereafter referred to as Crithidia) is a common and
abundant parasite of bumblebees [40,41] that is known to be trans-
mitted via flowers [31,35]. Crithidia significantly reduces colony
founding and queen fitness [42], and thus is likely to have signifi-
cant impacts on bumblebee populations in the wild. Crithidiawas
isolated from the faeces of 12 naturally infected B. terrestris queens
collected from Windsor Great Park, UK, and purified following
the method of Martin et al. [43], following Cole [44]. Following
3 h of starvation, each donor colony was inoculated per os with
10 000 viable cells per worker in 10 µl of 44% w/w sugar water.

SBPV is an RNA virus that is found in both honeybees (Apis
mellifera) and bumblebees in thewild, but is particularly prevalent
in bumblebees [45]. The infection dynamics of SBPV in individual
bumblebees have been well described, and the virus is known to
exhibit context-dependent virulence in bumblebee workers [39],
comparable to the effects of Crithidia [42]. SBPV donor colonies
were created by inoculating each worker individually with
SBPV per os with approximately 108 virus particles (see the
electronic supplementary material for details of inoculum) in
10 µl of 44% w/w sugar 0.5 M PBS, following 3 h of starvation.

(b) Experimental design
To determine the transmission dynamics of SBPV and Crithidia
under field realistic settings, we grew wild flowers (see the
electronic supplementary material) in two large (8 × 24 m) poly-
tunnels, located at NIAB EMR, Kent, UK, in 2017. The same set
of flower species were present in all compartments. Polytunnels
were covered with polythene while all plants were still in a vege-
tative state to prevent contamination of flowers with parasites
fromwild insects. Each polytunnel contained three 8 × 6.6 m com-
partments made of fine mesh (0.6 × 0.66 mm). Colonies were
assigned randomly to the six compartments. To create different
bee densities, half the compartments contained three colonies
and half the compartments contained six colonies (figure 1).
Within each compartment, one colony was assigned to be the
SBPV donor colony and another as the Crithidia donor colony.
All other colonies within a compartment were free of SBPV and
Crithidia (recipient colonies). At the start of the experiment, recipi-
ent colonies were placed in their respective compartments and
allowed to forage (schematic in the electronic supplementary
material, figure S3). In parallel, donor colonies were inoculated
as outlined below. Five days following the placement of the reci-
pient colonies into their respective compartments, donor colonies
were added and allowed to forage for 2 days while the recipient
colonies were closed (and thus inaccessible to bees from the donor
colonies). This 2-day period allowed the donor colonies to learn
where their nest was located and to minimize the amount of
drifting of bees between colonies. Following this, workers were
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Figure 1. The layout of the colonies within the two polytunnels, each split into three compartments. Thick lines represent where bee excluding mesh (0.6 ×
0.66 mm) was used, both around individual compartments (shaded in grey) and the entire polytunnel. SBPV donor colonies are shaded black, Crithidia donor
colonies are striped and recipient colonies are shown in white. Compartments were 8 × 6.6 m.
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destructively sampled from colonies and colony size equalized to
approximately 16 workers (minimum= 10, maximum= 16; see
the electronic supplementary material). The following morning,
all colonies were opened to allow foraging. Both the donor and
recipient colonies were open at the same time for a continuous
period of 28 days, starting on 12 June 2017.

(c) Sampling colonies for infection
(i) Crithidia
Faecal samples were taken from individual workers representing
20% of each colony (minimum= three workers) every other day
(electronic supplementary material, figure S3), including the
night prior to opening all colonies. Crithidia infections can be
identified in the faeces from 2 days after infection [46]. Owing
to time constraints on faecal sampling, workers of a colony
were screened for Crithidia until first detection within a colony,
then removed from the sampling scheme. Crithidia-inoculated
bees become infective within 2–5 days after exposure [46,47]
and rapid spread of Crithidia has been observed within groups
of workers in the laboratory [48]. Time to first detection can
therefore be used as a proxy for transmission dynamics in this
parasite. The faeces of individual workers were stored overnight
at 4°C and then screened on a Nikon phase-contrast microscope
at ×400 magnification. Samples were recorded for the absence or
presence of transmission stages of Crithidia [47].

(ii) Slow bee paralysis virus
To sample for SBPV, every fourth night, including the night prior
to the introduction of donor colonies to the field, approximately
20% of the workers (minimum: two workers) were frozen in
liquid nitrogen (electronic supplementary material, figure S3).
SBPV viraemia peaks between 4 and 14 days post-inoculation
[39]. For the first 12 days, bees were not sampled destructively
if their colony had fewer than nine workers.

Colony size was estimated based on the number of workers in
their natal colony on the night of sampling.Workers that had been
directly inoculated in the donor colonies and workers less than
2 days old were excluded from the sampling scheme (but were
included in the calculation of colony size). At the start (day 0)
and the end of the experiment (day 28), in the donor colonies,
a mixture of SBPV-inoculated and non-inoculated workers
were sampled.

To screen individual workers for SBPV, they were bisected lat-
erally and then RNA was extracted using the Tri-reagent based
Direct-zol™ RNA MiniPrep kit (Zymo Research, CA, USA),
which includes an on-column DNA digestion. Total complemen-
tary DNA (cDNA) was synthesized from 800 ng of RNA with
random hexamers (Invitrogen) and oligodT (Primer Design)
using M-MLV reverse transcriptase (Promega). RT–PCR was
used to screen samples for the presence of viral RNA.

To reduce the likelihood of false positives and to derive a
qualitative estimate of how much virus each sample contained,
all experimental samples that tested positive for SBPV were
tested twice. The band intensity in the second replicate reaction
was then categorized as a strength from level 0 to 4, where 0,
no virus, and 4, high virus. Over the entire duration of the exper-
iment, the average percentage of SBPV-positive samples from the
virus-inoculated colony in categories 1–4 was 34%, 25%, 27% and
14%, respectively. The methods for detecting SBPV in samples
are described in full in the electronic supplementary material.
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(e) Assessments of drifting between colonies
To quantify the level of drifting between colonies, the location of
workers in non-natal colonies was recorded every other night.
Drifting was not a significant predictor of any measure of parasite
transmission (see the electronic supplementary material).

( f ) Transect walks
To determine the density of foraging bumblebees within compart-
ments, transect walks were undertaken. A path of approximately
25 m length was walked four times over a 20 min period, during
which all workers identified feeding from flowers within approxi-
mately 1 m of the path were recorded, including their colony and
unique identification (ID) number where possible. Transects were
carried out every 4 days in a random order between compart-
ments in immediate succession.

(g) Flower density
Flower densitywas calculated every 4 days by recording the number
of accessible floral units (those with open flowers) within five
0.5 m× 0.5 mquadrats haphazardly spaced across the compartment.

(h) Statistical methods
(i) Differences in bumblebee density
To test if we had successfully manipulated bumblebee density
between compartments, a linear mixed model was fitted includ-
ing time (continuous) and density (high or low) as fixed
explanatory variables and compartment ID as a random factor.
Bumblebee density (flowers per bee) was log transformed to
meet the assumptions of normality and homoscedastic residuals.
Differences in flower visitation rates were examined using a
linear mixed model as above, flower visitation rate was also
log transformed to meet the model assumptions.

(ii) Time to first detection of Crithidia in a colony
To test if therewas an effect of bumblebee density on the time taken
for a bumblebee colony to become infected with Crithidia, a Cox
proportional hazard model was fitted, with the response variable
‘number of days until Crithidia detected within a colony’. Bee
density (high or low) and colony treatment (SBPV-inoculated or
recipient) were included as fixed factors and compartment ID
was included as a random factor. All models met the assumption
of proportional hazards.

(iii) Slow bee paralysis virus transmission to recipient colonies
To test if bumblebee density had an effect on the likelihood of a
worker testing positive for SBPV within a colony, a logistic
regression model was fitted using a logit link function. Bumble-
bees from SBPV-inoculated colonies were excluded from the
dataset. In one high-density and one low-density compartment,
SBPV was not maintained in the SBPV-inoculated colony over
the duration of the experiment (electronic supplementarymaterial,
figure S6), meaning that the treatment had failed in these compart-
ments. Therefore, data points from these compartments were
excluded from all subsequent models. Colony ID, nested within
compartment ID, was included as a random factor in all models.

Level of slow bee paralysis virus detected in samples. To test if
there was an effect of bumblebee density on the level of virus
detected within a worker, the model was fitted using the same
variables as in the binomial model above, but using a cumulative
link mixed model with a flexible threshold. As there were very
few data points in categories 3 and 4 (see the electronic sup-
plementary material), the dataset was split into three
categories: no virus detected; low levels of virus detected (level =
1); higher levels of virus detected (levels = 2–4). All models met
the assumption of proportional odds.
All statistical analyses were carried out in R v. 3.4.1 [49]. The
packages used are described in the electronic supplementary
material and code can be accessed at https://gitlab.com/Jake-
Coltman/bees-density-and-parasite-transmission. Models were
selected by stepwise removal of predictors (initial and final
models are given in the electronic supplementary material, tables
S5–S12). p-values were calculated using log-likelihood ratio tests.
All models were examined for their degree of multi-collinearity.

Bayesian model of slow bee paralysis virus level. To account for
the multilevel nature of the data and potential autocorrelation
of virus level, we also modelled the transmission of SBPV infec-
tions and their intensity at a colony level using a Bayesian
random walk (code can be accessed at https://gitlab.com/Jake-
Coltman/bees-density-and-parasite-transmission). The mean of
the latent SBPV-level update step was modelled as a function
of the level of infection in the donor colony and the density of
the compartment. We first tested whether the additive impact
of being in a high-density compartment on transmission rate,
β, was greater than 0. The magnitude of the effect was evaluated
by comparing posterior predictive samples generated using high-
density and low-density time dynamics. This enabled us to
assess how mean infection level within a given colony changed
with respect to density and time.

The model was written in the probabilistic programming
language Stan, via the pyStan library in PYTHON 3.6 [50]. We
took 5000 samples from five chains, with the first 2500 samples
of each chain being used as a burn in. Samples were thinned
such that only every fifth sample was kept.
3. Results
(a) Bumblebee density was significantly higher in

compartments with six versus three colonies
(i) Bumblebee density
Over the duration of the experiment, there were 61 ± 5 bees
(mean ± s.e.) in the low-density compartments compared to
111 ± 10 bees in the high-density compartments. The estimated
number of flowers per compartmentwas not significantly differ-
ent between treatments (x21 ¼ 1:88, p= 0.17), at 24 000 ± 2300
and 20 000 ± 2300 in the low- and high-density compartments,
respectively. This resulted in 410 (95% confidence interval:
260–660) and 180 (120–290) flowers available per bee in the
low- and high-density compartments, respectively; just over
twice the numbers of flowers were available per bee in the
high-density compartments (x21 ¼ 8:19, p = 0.004). This did not
significantly change over the duration of the experiment
(x21 ¼ 2:74, p = 0.098).

(ii) Bumblebee visitation rates
The number of bees recorded foraging during the 20 minute
observation periods was 14 (95% confidence interval: 10–19)
in the low-density compartments and 16 (11–21) in the
high-density compartments. There was no significant differ-
ence in the number of bees recorded foraging between the
low- and high-density compartments during our seven obser-
vation periods (x21 ¼ 0:82, p = 0.36), but the number of bees
observed did increase over time (x21 ¼ 15:9, p < 0.001).

(b) The time until Crithidia infection was not
significantly affected by bumblebee density

Crithidiawas first detected in the faeces of worker bumblebees
from uninfected recipient colonies between 6 and 14 days from
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Table 1. Fixed effect model estimates for the likelihood of detecting virus
in a bee. (Predictor time, the time (4 day interval) at which the bee was
sampled; treatment, whether the bee was from a ‘non-inoculated’ or
‘Crithidia-inoculated’ colony; and density, whether the bee was from a ‘low’
or ‘high’ density compartment. Estimates for treatment are for ‘Crithidia-
inoculated’ colonies, and density for ‘high’ compartments, which are
compared to the reference level of a non-inoculated recipient colony in a
low-density compartment. p-values are not reported for time or treatment
alone as their interaction is statistically significant.)

predictor estimate s.e. odds ratio p-value

intercept −3.814 0.664 0.022 —

time : treatment −0.404 0.144 0.67 0.005
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Figure 2. The predicted probability of detecting SBPV in a worker over the duration of the experiment for bees from recipient (a) and Crithidia-inoculated colonies
(b), in high or low density treatments (colours given in right-hand legend), over the duration of the experiment; 95% confidence intervals are given by shaded areas.
In the model; virus_detection = time × colony_treatment + density + (1|colony) + (1|compartment). Model estimates are given in table 1. (Online version in colour.)
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the start of the experiment, with the prevalence at this point
ranging from 0.2 to 1 (electronic supplementary material,
figures S4 and S5). One colony was missed from sampling
on day 10 but was infected at day 12; hence, we conducted
analyses twice, with this colony coded as infected on either
day 10 or day 12. As the analyses were similar, we report the
analyses where the colony became infected on day 12 in the
main text. Alternative analyses are presented in the electronic
supplementary material.

In the Cox proportional hazard model, colony treatment
(hazard ratio = 0.4 when treatment = SBPV-inoculated;
x21 ¼ 0:03, p = 0.9) and bumblebee density (hazard ratio = 1.1
when density = high; x21 ¼ 2:5, p = 0.12) were both non-
significant predictors of the time taken for a colony to
become infected with Crithidia.
time 0.641 0.094 1.90 —

treatment 0.868 0.595 2.38 —

density 1.792 0.693 6.00 0.045
(c) The detection of workers with slow bee paralysis
virus is positively associated with bumblebee
density

We identified replicative intermediates in a selection of
SBPV-positive bees, including some from recipient colonies
(see the electronic supplementary material, results ii). In
accordance with previous infection assays in bumblebees,
this suggests that SBPV detection in our samples is an indi-
cation of SBPV infection [39], although we cannot
categorically exclude that some individuals tested positive
without being actively infected. In the binomial logistic
regression model, both treatment : time (x21 ¼ 7:8, p = 0.0053)
and bee density (x21 ¼ 4:0, p = 0.045) were significant predic-
tors of the likelihood of detecting virus in a bee (table 1 and
figure 2). Bees in a high-density compartment were approxi-
mately six times more likely to become infected by SBPV
than those in a low-density compartment. In addition, Crithi-
dia-inoculated colonies (which were exposed to the SBPV-
inoculated colonies 2 days before the control colonies) had a
correspondingly higher initial probability of detecting SBPV,
but with a lower probability of SBPV being detected at the
end of the experiment.
(d) The level of slow bee paralysis virus in workers is
positively associated with bumblebee density

SBPV-positive workers from colonies which were not exper-
imentally infected had SBPV levels ranging from 1 to 4.
While the majority of detections were level 1, there was over-
lap in the intensity level of SBPV in inoculated and non-
inoculated compartments, especially towards the end of the
experiment (electronic supplementary material, figure S7).
Both treatment : time (x21 ¼ 8:7, p = 0.0031) and bee density
(x21 ¼ 4:4, p = 0.037) were significant predictors of the level
of virus in a bee (table 2). This suggests that in high-density
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Table 2. Fixed effect model estimates for virus level detected in a sample.
(Predictor time, the time (4 day interval) at which the bee was sampled;
treatment, whether the bee was from a ‘non-inoculated’ or ‘Crithidia-
inoculated’ colony; density, whether the bee was from a ‘low’ or ‘high’
density compartment. Estimates for treatment are for ‘Crithidia-inoculated’
colonies, and density for ‘high’ compartments, which are compared to the
reference level of a non-inoculated recipient colony in a low-density
compartment. p-values are not reported are time or treatment alone as
their interaction is statistically significant.)

predictor estimate s.e. odds ratio p-value

time : treatment −0.404 0.144 0.668 0.003

time 0.641 0.094 1.899 —

treatment 0.868 0.595 2.382 —

density 1.792 0.693 6.002 0.037
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compartments, individuals are significantly more likely to
have higher levels of detectable SBPV (figure 3). These results
are consistent with our Bayesian model. In 98.8% of samples,
β, the additive impact of high density on transmission rate,
was greater than 0 (electronic supplementary material,
figure S8). This suggests that the transmission rate of SBPV
was significantly higher in high-density compartments. In
addition, based on the magnitude of β, we observed a sub-
stantial increase in latent SBPV-level using the high-density
dynamics rather than the low-density dynamics. The
median sample showed a 48% (inter-quartile range = 32–
71%) increase in latent SBPV-level (electronic supplementary
material, figure S9), suggesting that high nesting densities led
to increases in the mean colony-level SBPV infection. This
increase in latent SBPV-level corresponds to an increase in
observed SBPV-level (i.e. a change from level 1 to level 2,
etc.) in 47% of samples.
threshold: 1|2 1.999 0.518 — —

threshold: 2|3 4.529 0.593 — —
4. Discussion
Providing wildflower strips in agricultural areas has been
widely advocated to conserve and promote pollinator popu-
lations [23,24]. However, very little is known about how the
local increases in pollinator density that these strips produce
[28,29] might influence disease transmission between indi-
viduals. Here, we show that bumblebee nest density can
impact the transmission of disease between colonies using a
controlled experimental approach. Interestingly, pathogen
identity had a strong influence on disease transmission
dynamics, with increased viral transmission being driven
by higher density, in contrast with no impact of density on
the transmission of a trypanosome parasite. In addition to
impacts of density on transmission, our results suggest that
increased nest density is positively associated with mean
colony-level viral infection level.

Previous studies on the impacts of supplemental feeding on
parasite transmission and prevalence have largely focused on
vertebrates, and have identified a range of responses to how
density changes, driven by such feeding, impact host–parasite
dynamics (reviewed by Becker et al. [19]). Given fundamental
differences in how host–parasite dynamics respond to nutri-
tional supplementation in vertebrate versus invertebrate hosts
[51], it was unclear how parasite transmission would respond
to host density in our experimental system. Interestingly, host
density enhanced viral transmission or vectoring, matching
the results from an earlier meta-analysis [19]. This study is, to
our knowledge, the first formal demonstration of SBPV trans-
mission under semi-field conditions, and thus suggests that
transmission of this virus, and perhaps others [45] (but see
[36]), could be enhanced in agri-environment flower strips.
An increase in SBPV prevalence could hypothetically also be
seen if stressful conditions during the experiment were to
activate undetected latent infections. While we cannot
categorically refute this alternative hypothesis, the stringent
molecular diagnostic test used means that such potential
latent infections are likely to be very rare. Additionally, the
prevalence data (electronic supplementary material, figure
S6) show that two out of six inoculated donor colonies
appear to be clearing the infection, with the recipient colonies
in these departments not increasing in prevalence. This
shows that, even if rare latent infections were present, they
are highly unlikely to be the primary driver of the density-
dependent prevalence patterns found in this experiment.
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In contrast with SBPV transmission, we found no relation-
ship between transmission of the trypanosome parasite and
host density. Identifying a relationship between host density
and parasite transmission requires an experimental design
that brackets relevant changes in density. Consequently, it is
possible that the lack of such an effect may be either because
transmission had already peaked at the lowest density in our
experiment, or our high-density compartments were not
sufficiently populated. As our low-density treatment had a
substantially higher density of nests than would be expected
under natural conditions [52] this lends credence to the
former explanation. Additional evidence in support of this
view is that the average visitation rate in our experiment
(approx. 0.0075 bees per metre of transect per minute of
observation) was an order of magnitude higher than that
seen for bumblebees in semi-natural and arable environments
across the UK (average: approx. 0.00026 bees m−1min−1, max:
approx. 0.00068 bees m−1 min−1; [53]). However, when consid-
ering the number of flowers in our compartments, the average
density of bees (approx. 0.0036 bees per metre of transect per
1000 flowers) is comparable to that seen on non-crop arable
land (0.0068–0.008 bees m−1 1000 flowers−1) and much lower
than that seen at nectar-rich flower strips planted within
arable land (0.025–0.077 bees m−1 1000 flowers−1) reported
by Carvell et al. [29]. If these are more relevant metrics for
transmission, this would suggest that Crithidia transmission
may already be at a plateau under agri-environment schemes.
Clearly, further experiments, across a range of bumblebee nest
densities, would be needed to investigate these possibilities.
The manipulation of both nest density and the population
size within those colonies would also help to disentangle
whether the density of individuals or colonies within an area
is a more important driver of disease transmission.

From a parasite perspective, whether or not increasing host
density will have important effects on transmission rates will
depend on the life history and interaction of the parasite
with its host. Parasites with a low basic reproductive
number R0, showing low transmission rates, may benefit
from increased host density, while those with very high trans-
mission rates may show little increase in prevalence with a
further increase in host density. For example, models by
Bartlett et al. [54] have shown that for managed honeybees,
increasing apiary size has marginal effects on the prevalence
and transmission of established honeybee parasites with a
very high R0. By contrast, the increase in transmission rate
and prevalence can be considerable for pathogens with
lower base R0 [54]. Mechanistically, the difference between
our results for the two parasites may be a consequence of the
inoculum required to produce a successful infection. Bumble-
bees shed sufficient Crithidia cells in a single defecation event
to infect subsequent visiting workers [35,46,55], and this is
reflected in a high prevalence in the wild of this parasite (e.g.
[40]), corresponding to a high R0. By contrast, bees will need
to visit many flowers to achieve an infective dose of SBPV, as
the infective dose is estimated to be approximately 108 virus
particles for the infection of B. terrestris with SBPV (E.J.,
J. Bagi, M.J.F. Brown 2019, unpublished data), whereas the
viral load on a single flower has been quantified in the range
of 102–106 viral particles ([56]; E.J., J. Bagi, M.J.F. Brown
2019, unpublished data). Consequently, viral transmission
probablyoccurs at amuch lower rate, reflecting a lowR0, poten-
tially explaining why only viral transmission responded to
density in our experiment. As R0 might vary within parasites
for different hosts [55], it would be interesting to see if the
results of this study are constant across bumblebee species.

In a recent field study, Piot et al. [36] found that the preva-
lence of microparasites, including C. bombi, was higher in a
focal bumblebee species (Bombus pascuorum) when wild-
flower strips were present in an otherwise florally
depauperate landscape, but that there was no effect on viral
prevalence; however, SBPV was not screened for in this
study. At first sight, these results contrast with the patterns
found in our controlled experimental trials, as they suggest
that wildflower strips may lead to higher transmission of
microparasites, but not viruses, under field conditions. This
conclusion assumes that prevalence is a good proxy for
inter-colony transmission, but this assumption is not necess-
arily valid—transmission of Crithidia occurs both within and
between colonies, and as Piot et al. [36] did not determine the
relatedness of the bees they sampled, it is impossible to tell
how much of their prevalence derived from each of these
transmission routes. In addition, wild bumblebees live in
complex multi-species pollinator assemblages, which gener-
ate asymmetric patterns of flower sharing that are likely to
drive both transmission [55] and vectoring [57] of micropar-
asites. Two studies from Ireland [55] and Germany [58]
suggest that host species differ in their importance as drivers
of parasite prevalence in this system. Furthermore, there is
growing evidence that secondary metabolites within pollen
and nectar can mediate resistance to parasitic infection [59],
and that pollen itself is necessary for the growth of some
parasites [46,60]. Irrespective of these caveats, the contrast
between our results for Crithidia transmission and those of
Piot et al. [36] suggest that further controlled experiments at
lower host density could be insightful for understanding
the transmission dynamics of Crithidia under field conditions.

In addition to increasing the rate of viral transmission, our
high-density treatment also increased the mean level of SBPV
infections within colonies. While the relationship between
infection level and virulence in SBPVhas yet to be investigated,
it is generally true that higher intensity infections in bee viruses
have a higher impact on their hosts (e.g. [61,62]). Consequently,
this result suggests that not only could changes in density
increase transmission rates in flower strip agri-environment
interventions but also that the impact of parasites and
pathogens could be higher on individual bees and colonies.

Our experiment examinedwithin-species transmission, but,
as noted above, in the wild bumblebees live in complex multi-
species assemblages of floral visitors. An increasing number of
studies suggest that between-species transmission, in particular
frommanaged honeybees,may be driving emergent diseases in
wild pollinators [30,33,34,45,56,57,63–65]. As such, the next
obvious step would be to conduct controlled semi-field trials
to understand transmission dynamics of viruses between
honeybees and bumblebees [34]. Ultimately, an understanding
of the mechanism behind transmission dynamics should both
help inform interpretation of well-designed field studies, and
potentially enable the design of agri-environment interventions
that nutritionally enhance bee health [28] while minimizing the
potential for disease transmission.

5. Conclusion
Controlled semi-field experiments demonstrate the importance
of density-dependent transmission for viruses in bumblebees.
However, current agri-environment schemes designed to
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support pollinator assemblages ignore their potential role for
disease transmission among flower visitors. We suggest that
future development of such schemes should take a more
holistic, integrated approach that considers both nutrition
and disease risk, to design conservation interventions that
maximize pollinator health.
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