
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15622  | https://doi.org/10.1038/s41598-021-94875-1

www.nature.com/scientificreports

Optimal solution of the fractional 
order breast cancer competition 
model
H. Hassani1, J. A. Tenreiro Machado2, Z. Avazzadeh3*, E. Safari4 & S. Mehrabi5

In this article, a fractional order breast cancer competition model (F-BCCM) under the Caputo 
fractional derivative is analyzed. A new set of basis functions, namely the generalized shifted 
Legendre polynomials, is proposed to deal with the solutions of F-BCCM. The F-BCCM describes the 
dynamics involving a variety of cancer factors, such as the stem, tumor and healthy cells, as well 
as the effects of excess estrogen and the body’s natural immune response on the cell populations. 
After combining the operational matrices with the Lagrange multipliers technique we obtain an 
optimization method for solving the F-BCCM whose convergence is investigated. Several examples 
show that a few number of basis functions lead to the satisfactory results. In fact, numerical 
experiments not only confirm the accuracy but also the practicability and computational efficiency of 
the devised technique.

Cancer is one of the most ubiquitous genetic diseases1,2. It is known that the disease arises because of mutations 
in the cancer susceptibility genes3. In order to understand the mechanism of human breast cancer various meth-
ods have been advanced. Loeb et al.4 proposed the existance of a mutator phenotype that acts as a mechanism 
in tumor processes. Tomlinson and Bordmer5–7 investigated the mutator phenotype hypothesis and discovered 
that the selection for clonal expansion of intermediate cells.

Mathematical models describe the fundamental principles of the population genetics and evolutionary mecha-
nisms that govern tumor initiation and progression in cancer biology8,9. It was discovered that the dynamics of 
tumorgenesis is determined by a number of factors including mutation, selection, and tissue types10–13. It is also 
known that an increase in the postmenopausal and estrogen receptor-positive cases may increase the rate of 
breast cancer among women14. Several attempts have been made for the description of breast cancer in a variaty 
of perspectives. Enderling et al.15 presented a model of the growth and invasion of a solid tumour in a domain 
of breast tissue and proposed a scheme for the surgery and radiation treatment of the tumour. Enderling et al.16 
applied surgery, as well as adjuvant external beam and targeted intraoperative radiotherapies, and used a model 
to identify different sources of local recurrence to analyse their prevention. Simmons et al.17 presented a brief 
overview of breast cancer, focussing on its heterogeneity and the role of modelling and simulation in teasing 
apart the underlying biophysical processes. Nave et al.18 described the treatment of breast cancer by a model 
involving nonlinear ordinary differential equations with a hidden hierarchy. Interested readers can follow also 
some recent works in19–25.

Fractional calculus is one of the most intensively developing branches of mathematical analysis and deals 
with derivatives and integrals of arbitrary order26. Fractional differential equations have motivated considerable 
attention in several branches of science27–32. In applied sciences, memory properties have been widely found in 
many complex phenomena. The use of fractional derivatives, instead of integer ones, can potencially lead to better 
results since one has an extra degree of freedom. Indeed, due to their intrinsic nonlocal property, the fractional 
differential equations have been successfully used to describe phenomena or processes with memory and heredi-
tary properties in physics, chemistry, biology, and economy. Readers can refer to33,34. Fractional calculus is an 
excellent tool for modeling materials and processes with memory and hereditary properties and, in particular, 
electrochemical problems35. Fractional differentiation and integration operators are also used for generalizing 
the diffusion and wave equations36,37 or, more recently, of the temperature field problem in oil strata38. In what 
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concerns cancer we can mention Farayola et al.39, that simulated a radiotherapy cancer treatment process with 
radiobiological factors, and Valentim et al.40, that propose a multistep exponential model with a fractional 
variable-order representing the evolution history of a tumor.

The Legendre polynomials are useful mathematical tools in fractional calculus. Cao et al.41 proposed a numeri-
cal algorithm based on the shifted Legendre polynomials to solve the fractional governing equations of polym-
ethyl methacrylate in the time-domain. Zhijun et al.42 derived the operational matrix of fractional integration 
for Legendre polynomials to solve initial value problems of nonlinear fractional differential equations. Wang 
and Chen43 used the shifted Legendre polynomials for the dynamic analysis of viscoelastic pipes conveying fluid 
with variable order fractional model. Xiao et al.44 presented a finite-time empirical Gramians, constructed from 
impulse responses by solving block tridiagonal linear systems, to generate an approximate balanced model. 
Sun et al.45 designed an algorithm based on improved Legendre orthonormal basis for solving second-order 
boundary value problems. Hesameddini and Shahbazi46 approximated the unknown functions based on the 
two-dimensional shifted Legendre polynomials operational matrix method for the numerical solution of two-
dimensional fractional integral equations. Guorong et al.47 proposed the Legendre orthogonal polynomials to 
calculate the acoustic reflection and transmission coefficients at liquid/solid interfaces. Singh et al.48 obtained 
numerical algorithms by using the Legendre, Galerkin and Legendre wavelet collocation methods for solving one 
phase moving boundary problem with conduction and convection effects. Rakhshan and Effati49 developed the 
generalized Legendre polynomials and derived a general procedure for solving nonlinear autonomous fractional 
differential equations with time varying delay. Heydari et al.50 presented a numerical method based on the discrete 
Legendre polynomials and the collocation scheme for solving nonlinear space-time fractional KdV-Burgers-
Kuramoto equation. Kuznetsov51 used the Legendre polynomials and trigonometric functions for the numerical 
solution of the Ito stochastic differential equations when approximating multiple Ito and Stratonovich stochastic 
integrals based on generalized multiple Fourier series. Dehghan52 considered the shifted Legendre polynomials 
for class of variable order fractional functional boundary value problems.

In this work, an optimization method based on the generalized shifted Legendre polynomials (GSLP), opera-
tional matrix of derivatives and Lagrange multipliers is proposed for solving a fractional order breast cancer 
competition model (F-BCCM). The algorithm transforms the problem into a system of nonlinear algebraic 
equations with unknown coefficients, parameters and Lagrange multipliers. The optimal solution of the prob-
lem is obtained by solving an algebraic system of nonlinear equations. The results show that we can achieve the 
approximate solutions by employing only a few number of the basis functions. Moreover, the proposed approach 
can be adopted for solving other classes of fractional order problems.

The rest of the paper is structured as follows. Section 2 formulates the F-BCCM and the mathematical concept 
of fractional order Caputo derivative (F-CD). Section 3 discusses the shifted Legendre polynomials (SLP), as 
well as the GSLP and its operational matrix of derivatives and function approximation. Section 4 addresses the 
convergence analysis of the proposed method. Section 5 describes the method for finding the solution of the 
proposed problem. Section 6 discusses several illustrative examples. Section 7 analyses the epidemiologic and 
clinical relevance of the problem. Finally, Section 8 gives the main conclusions.

Fractional order breast cancer competition model
The mathematical theory and concepts adressing the evolution of diseases and epidemics have been advanced 
during the last decades. Usually, these formulations consider that all people in a community starts as healthy and 
that later some of them may be diagnosed with breast (cancer). Abernathy et al.19 described the dynamic behavior 
of giving up BCCM. The model was discussed analytically and considering cancer stem cells (C), tumor cells (T), 
healthy cells (H), immune cells (I), and excess strogen (E). The proposed model is given as

In Table 1, we list the description and baseline values of the parameters in the system (2.1).
This paper formulates an alternative representation of the BCCM considering the F-CD. The F-CD of order 

0 < η ≤ 1 , with respect to t is given by53,54:

where Ŵ(·) denotes the Gamma function Ŵ(z) =
∫∞

0 tz−1e−tdt, z > 0 . In expression (2.2), the convolution inte-
gral represents the memory effect embedded in the fractional derivative. Indeed, the fractional derivative uses 
the previous values of f(t), and captures the long memory effect of the dynamics. From (2.2), for any r ∈ N , we 
can write
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C0(t) = C(0), T0(t) = T(0), H0(t) = H(0), I0(t) = I(0), E0(t) = E(0).
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Rewriting the model (2.1) in terms of the F-CD, we obtain

where C0D
ηi
t  , i = 1, 2, 3, 4, 5 , represents the F-CD of order 0 < ηi ≤ 1.

We must note that the dimension of the left-side equations of model (2.4) is (time)−ηi , i = 1, 2, 3, 4, 5 . None-
theless, a close inspection of the right-hand sides shows that the quantities k1 , k2 , q, γ1 , γ2 , γ3 , p1 , p2 , p3 , n1 , n2 , δ , 
s, ρ , u, τ , µ , d1 , d2 and d3 have the dimension (time)−1 and, therefore, we need to modify the right-hand sides to 
match the dimensions. The most straightforward way of doing this gives the following model
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E(t),

C0(t) = C(0), T0(t) = T(0), H0(t) = H(0), I0(t) = I(0), E0(t) = E(0),

Table 1.   The parameters of the BCCM model.

Parameters Description Value

k1 Normal rate of division for C cells 0.75 day−1

k2 Normal rate of division for T cells 0.514 day−1

q Normal rate of division for H cells 0.70 day−1

M1 Carrying capacity of C cells 2.27× 106 cells

M2 Carrying capacity of T cells 2.27× 107 cells

M3 Carrying capacity of H cells 2.5× 107 cells

γ1 Cancer stem cell death rate due to immune cell response 3× 10−7 cell−1 day−1

γ2 Tumor cell death rate due to immune cell response 3× 10−6 cell−1 day−1

γ3 Immune cell death rate due to tumor cell response 1× 10−7 cell−1 day−1

p1 Rate at which estrogen helps to proliferate cancer stem cells 600 cell day−1 (pg/mL)−1

p2 Rate at which estrogen helps to proliferate tumor cells 0 cell day−1 (pg/mL)−1

p3 Rate at which healthy cells are lost to DNA mutation by estrogen presence 100 cell day−1 (pg/mL)−1

a1 Number of C cells at which the rate of absorption is at half its maximum 1
2M1 cells

a2 Number of T cells at which the rate of absorption is at half its maximum 1
2M2 cells

a3 Number of H cells at which the rate of absorption is at half its maximum 1
2M3 cells

n1 Normal death rate of tumor cells 0.01 day−1

n2 Normal death rate of immune cells 0.29 day−1

δ Healthy cell death rate due to competition with tumor cells 6× 10−8 day−1 cell−1

s Source rate of immune cells 1.3× 104 cell day−1

ρ Immune cell response rate 0.20 day−1

ω Immune cell threshold 3× 105 cells

u Rate of immune suppression by estrogen 0.20 day−1

v Estrogen threshold 400 pg mL−1

τ Continuous infusion of estrogen 2000 pg mL−1 day−1

µ Washout rate of estrogen by the body 0.97 day−1

d1 Absorption rate of estrogen by cancer stem cells 0.01 day−1

d2 Absorption rate of estrogen by tumor cells 0.01 day−1

d3 Absorption rate of estrogen by healthy cells 0.01 day−1
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This is the system that we will actually use for modeling our problem. Note that in the limit case ηi −→ 1 , 
i = 1, 2, 3, 4, 5 , the system (2.5) reduces to classical one (2.1)55,56.

Basis functions
Hereafter, we introduce two classes of the basis functions, namelly the SLP and GSLP, which will be used in 
approximating solutions of the F-BCCM (2.4).

Approximation by the shifted Legendre polynomials.  The Legendre polynomials, defined on the 
interval [−1, 1] , can be determined with the recurrence formula

where P0(t) = 1 and P1(t) = t . To use Legendre polynomials in the interval [0, 1] we have to define the SLP by 
means of the change of variable t → 2t − 1 . The SLP, Pj(2t − 1) , can be denoted by Lj(t) . Therefore, Lj(t) follows 
the relationship:

where L0(t) = 1 and L1(t) = 2t − 1 . The analytical form of the SLP of degree j, Lj(t) , is given by:

Note that Lj(0) = (−1)j and Lj(1) = 1.
A given function g(t) can be expressed using the SLP as follows

where Qn(t) is an (n+ 1)-order column vector including the basis functions. The following selections for R T 
and Qn(t) are considered as

and

Approximation by the generalized shifted Legendre polynomials.  Let us define a set of basis 
functions based on the GSLP to obtain an efficient solution of (2.4). For m ∈ N , the GSLP, Lm(t) , are constructed 
through a change of variable. Therefore, ti is transformed into ti+αi , i + αi > 0 , in the SLP and are defined by

where αi denotes the control parameters. If αi = 0 , then the GSLP coincide with the classical SLP.
By using the GSLP, the functions C(t), T(t), H(t), I(t) and E(t) can be expressed in the following form:

(2.5)
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where

and

with αi
j standing for the control parameters.

The ηi-th F-CD of � i(t), i = 1, 2, . . . , 5, is given by

where D(ηi)
t  (the operational matrix of F-CD of order ηi ) is as follows

Function approximation.  Let us consider X = L2[0, 1] . We introduce

Let u∗(t) ∈ Ym1 be the best approximation of u(t). Therefore, we have
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� 0 · · · 0

0 0
Ŵ
�

3+αi2

�

Ŵ
�

3−ηi+αi2

� · · · 0

...
...

...
. . .

...

0 0 0 · · ·
Ŵ

�

mi+1+αimi

�

Ŵ

�

mi+1−ηi+αimi

�

























.

Ym1 = span{1 L1(t) L2(t) . . . Lm1(t)}.
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Since u∗ ∈ Ym1 , there exist the unique coefficients A T = [a0 a1 . . . am1 ] , such that

where Q1 and �1(t) are defined in Eqs. (3.9) and (3.12).

Convergence analysis
The classical Weierstrass theorem (see57, Theorem 7.26) states that polynomials are dense in C(I), the space of 
all continuous complex functions on the closed interval I = [0, 1] with the supremum norm. In other words, the 
set of all finite linear combinations of the functions

is dense in C(I). This can be expressed by saying that the functions (4.1) span C(I). The following question arises 
naturally, namely, if 0 < �1 < �2 < · · · , under what conditions, then is it true that the functions

span C(I)? The neat answer is that the functions (4.2) span C(I) if and only if 
∑∞

n=1
1
�n

= ∞.

Theorem 1  (The Müntz-Szasz Theorem):58 Suppose that 0 < �1 < �2 < · · · and let X be the closure in C(I) of the 
set of all finite linear combinations of the functions

 

(a)	 If 
∑∞

n=1
1
�n

= ∞ , then X = C(I).

(b)	 If 
∑∞

n=1
1
�n

< ∞ and if � /∈ {�n}n∈N , �  = 0 , then X does not contain the function t�n.

Remark 1  Let C�(I) ⊂ C(I) be the set of all finite linear combinations of the functions defined in (4.2), where 
0 < �1 < �2 < · · · and let Cβ(I) be the set of the functions

where {βi}i∈N is a sequence of real numbers, with i + βi ≥ 0 for all i ∈ N . It is obvious that C�(I) ⊂ Cβ(I) and, 
hence, C�(I) ⊂ Cβ(I) , where C�(I) and Cβ(I) are the closures of the sets C�(I) and Cβ(I) in C(I), respectively. In 
view of Theorem 1, it is apparent that the set Cβ(I) is dense in C(I), i.e., C�(I) = C(I).

Similarly, if Cγ (I) is the set of set of all finite linear combinations of the functions

where {γi}i∈N is a sequence of real numbers, with i + γi ≥ 0 for all i ∈ N , then, in view of Theorem 1, the set 
Cγ (I) is dense in C(I), i.e., Cγ (I) = C(I).

The following two theorems are immediate consequences of Theorem 1 and, therefore, we omit the details.

Theorem 2  Suppose that 0 < 1+ β1 < 2+ β2 < · · · and let Cβ(I) be the set of all finite linear combinations of 
the functions defined in (4.4). 

(a)	 If 
∑∞

n=1
1

n+βn
= ∞ , then Y := Cβ(I) = C(I) , where Cβ(I) is the closure of the set Cβ(I) in C(I).

(b)	 If 
∑∞

n=1
1

n+βn
< ∞ , and if β /∈ {βn}n∈N , β  = 0 , then Y does not contain the function tβn.

Theorem 3  Suppose that 0 < 1+ γ1 < 2+ γ2 < · · · and let Cγ (I) be the set of all finite linear combinations of 
the functions defined in (4.5). 

(a)	 If 
∑∞

n=1
1

n+γn
= ∞ , then Z := Cγ (I) = C(I) , where Cγ (I) is the closure of the set Cγ (I) in C(I).

(b)	 If 
∑∞

n=1
1

n+γn
< ∞ , and if γ /∈ {γn}n∈N , γ  = 0 , then Z does not contain the function tγn.

We now investigate the convergence of the proposed method. We first discuss the convergence analysis of the GP 
expansion by means of the following theorem.

Theorem 4  Let f : [0, 1] → R be a continuous function. Then, for every ǫ > 0 there exists a generalized polynomi-
als59, Pm1(t) , such that

∀ v ∈ Ym1 , � u− u∗ �2≤� u− v �2 .

A(t) ≃ u∗(t) = A
T Q1 �1(t),

(4.1)1, t, t2, t3, . . . ,

(4.2)1, t�1 , t�2 , . . . ,

(4.3)1, t�1 , t�2 , . . . .

(4.4)1, t1+β1 , t2+β2 , t3+β3 , . . . , ti+βi , . . . ,

(4.5)
1,−

(n+ 1)!

(n− 1)(1!)2
t1+γ1 ,

(n+ 2)!

(n− 2)(2!)2
t2+γ2 ,

−
(n+ 3)!

(n− 3)(3!)2
t3+γ3 , . . . , (−1)n+i (n+ i)!

(n− i)(i!)2
ti+γi , . . . ,
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Proof  Let ǫ > 0 be a fixed real number. Chose a sequence {βi}i∈N of real numbers with i + βi ≥ 0 , 
0 < i + βi < i + 1+ βi+1 for all i ∈ N and 

∑∞
n=1

1
n+βn

= ∞ . Applying Theorem 1, we get the desired result. 
This completes the proof.

For discussing the convergence analysis of the GSLP expansion we consider the following theorem. 	�  �

Theorem 5  Let f : [0, 1] → R be a continuous function. Then, for every ǫ > 0 , there exists a GSLP, Lm1(t) , such 
that

Proof  Let ǫ > 0 be a fixed real number. Chose a sequence {γi}i∈N of real numbers with i + γi ≥ 0 , 
0 < i + γi < i + 1+ γi+1 for all i ∈ N and 

∑∞
n=1

1
n+γn

= ∞ . Applying Theorem 1, we get the desired result. 
This completes the proof. 	�  �

The proposed strategy
In this section, we design a matrix approach by using the GSLP to solve the problem generated in Eq. (2.5). To 
carry out this method, we approximate C(t), T(t), H(t), I(t) and E(t) by the GSLP basis as follows

where A T , B T , C T , D T , E T and �i =
[

αi
1 αi

2 . . . αi
mi

]

 , i = 1, 2, 3, 4, 5 , are undetermined vectors including 
the free coefficients and control parameters, and Qi and � i(t) , i = 1, 2, 3, 4, 5 , are defined in Eqs. (3.9–3.14). 
Regarding (3.16), one has

Moreover, we approximate the initial conditions given in Eq. (2.5) via the GSLP as follows

Now, we define the residual function by using Eq. (2.5) and Eqs. (5.1–5.2), so that

Meanwhile, from Eqs. (2.5) and (5.3), we have

We can generate the 2-norm of the residual functions as

�f −Pm1� = sup{|f (t)−Pm1(t)| : t ∈ [0, 1]} < ǫ.

�f −Lm1� = sup{|f (t)−Lm1(t)| : t ∈ [0, 1]} < ǫ.

(5.1)
C(t) =A

T Q1 �1(t), T(t) = B
T Q2 �2(t), H(t) = C

T Q3 �3(t),

I(t) =D
T Q4 �4(t), E(t) = E

T Q5 �5(t),

(5.2)

C
0D

η1
t C(t) =A

T Q1 D
(η1)
t �1(t),

C
0D

η2
t T(t) =B

T Q2 D
(η2)
t �2(t),

C
0D

η3
t H(t) =C

T Q3 D
(η3)
t �3(t),

C
0D

η4
t I(t) =D

T Q4 D
(η4)
t �4(t),

C
0D

η5
t E(t) =E

T Q5 D
(η5)
t �5(t).

(5.3)
C(0) ≃A

T Q1 �1(0), T(0) ≃ B
T Q2 �2(0), H(0) ≃ C

T Q3 �3(0),

I(0) ≃D
T Q4 �4(0), E(0) ≃ E

T Q5 �5(0).

(5.4)


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















































































R1(t) = A
T Q1 D

(η1)
t �1(t)− k

η1
1 A

T Q1 �1(t)
�

1−
A

T Q1 �1(t)
M1

�

+ γ
η1
1 D

T Q4 �4(t)A T Q1 �1(t)

−
p
η1
1 A

T Q1 �1(t)E T Q5 �5(t)

a1+AT Q1 �1(t)
,

R2(t) = B
T Q2 D

(η2)
t �2(t)− k

η2
2 A

T Q1 �1(t)
�

A
T Q1 �1(t)

M1

��

1−
B

T Q2 �2(t)
M2

�

+ n
η2
1 B

T Q2 �2(t)

+ γ
η2
2 D

T Q4 �4(t)A T Q1 �1(t)−
p
η2
2 B

T Q2 �2(t)E T Q5 �5(t)

a2+B T Q2 �2(t)
,

R3(t) = C
T Q3 D

(η3)
t �3(t)− qη3C T Q3 �3(t)

�

1−
C

T Q3 �3(t)
M3

�

+ δη3C T Q3 �3(t)B T Q2 �2(t)

+
p
η3
3 C

T Q3 �3(t)E T Q5 �5(t)

a3+C T Q3 �3(t)
,

R4(t) = D
T Q4 D

(η4)
t �4(t)− sη4 −

ρη4D T Q4 �4(t)B T Q2 �2(t)

ω+B T Q2 �2(t)
+ γ

η4
3 D

T Q4 �4(t)B T Q2 �2(t)

+ n
η4
2 D

T Q4 �4(t)+
uη4D T Q4 �4(t)E T Q5 �5(t)

v+E T Q5 �5(t)
,

R5(t) = E
T Q5 D

(η5)
t �5(t)− τη5 +

�

µη5 +
d
η5
1 A

T Q1 �1(t)

a1+AT Q1 �1(t)
+

d
η5
2 B

T Q2 �2(t)

a2+B T Q2 �2(t)
+

d
η5
3 C

T Q3 �3(t)

a3+C T Q3 �3(t)

�

E
T Q5 �5(t).

(5.5)

A
T Q1 �1(0)− C(0) � �1 ≃ 0, B

T Q2 �2(0)− T(0) � �2 ≃ 0, C
T Q3 �3(0)−H(0) � �3 ≃ 0,

D
T Q4 �4(0)− I(0) � �4 ≃ 0, E

T Q5 �5(0)− E(0) � �5 ≃ 0.

(5.6)M(Q1,Q2,Q3,Q4,Q5,�i) =

∫ k

0

(

R
2
1 +R

2
2 +R

2
3 +R

2
4 +R

2
5

)

(t)dt,
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where Qi and �i , i = 1, 2, . . . , 5 , are the free coefficients and control parameters, respectively.
To obtain the optimal values for the free coefficients and control parameters, we consider the following 

optimization problem

subject to Eq. (5.5), where M is the objective function.
To solve this minimization problem, we assume that

where � denotes unknown Lagrange multipliers.
In order to obtain the extremum, the necessary conditions are:

Finally, by solving Eq. (5.9) using a software package to calculate the components Q1 , Q2 , Q3 , Q4 , Q5 , �i and � , 
we obtain the approximate solutions C(t), T(t), H(t), I(t) and E(t) of Eq. (3.5). In this study we used Maple 18 
(with 20 digits precision) for the above extracted system and also for all numerical simulations. The step-by-step 
algorithm of the new technique is summarised as follows: 

Numerical simulations
In this section, two examples are considered to illustrate the applicability of the proposed technique when solving 
the F-BCCM (2.5). The numerical simulations are based on the packages Maple 18 (with accuracy 40 decimal 
digits) and Matlab.

Example 1  Consider the F-BCCM (2.5) and the parameters listed in Table 1. The algorithm is used to solve 
the F-BCCM (2.5) with C(0) = 7.3710× 105 , T(0) = 7.6167× 106 , H(0) = 2.5000× 107 , I(0) = 0 and 
E(0) = 0 , for different values of ηi and mi , i = 1, 2, 3, 4, 5 . The approximate solutions of the five state variables 
{C(t),T(t),H(t), I(t),E(t)} , with m1 = 2 , m2 = m3 = m4 = 3 , m5 = 4 , for η1 = 0.10 , η2 = 0.15 , η3 = 0.20 , 
η4 = 0.25 , η5 = 0.30 and also η1 = 0.98 , η2 = 0.99 , η3 = 0.97 , η4 = 0.98 , η5 = 0.99 are shown in Figs. 1 and 2, 
respectively. The plots of the approximate solutions with m1 = 3 , m2 = m3 = m4 = 4 , m5 = 5 for η1 = 0.10 , 
η2 = 0.15 , η3 = 0.20 , η4 = 0.25 , η5 = 0.30 and also η1 = 0.98 , η2 = 0.99 , η3 = 0.97 , η4 = 0.98 , η5 = 0.99 are illus-
trated in Figs. 3 and 4, respectively. The runtime of the proposed method and the optimal values of the residual 
function with different choices of mi , i = 1, 2, 3, 4, 5 are reported in Tables 2 and 3, respectively. According to 
Figs. 1, 2, 3, 4, the number of cancer stem and tumor cells and estrogen, C, T and E, decreases, while the healthy 
and immune cells, H and I, increase. This effect is associated with better prognosis and longer patient survival. 
The obtained results with the proposed method provide a meaningful solution by applying even a small number 
of basis functions. From Table 2 we verify that if we select large values of mi , i = 1, 2, 3, 4, 5 , then we pose an 
higher computational load.

Example 2  Let us consider the F-BCCM (2.5) and the parameters values given in Table  1. We consider 
C(0) = 7.3710× 105 , T(0) = 7.6167× 106 , H(0) = 2.5000× 107 , I(0) = 0 and E(0) = 0 for different values 
of ηi and mi , i = 1, 2, 3, 4, 5 . The new method is applied to obtain the numerical solution of the F-BCCM (2.5). 

(5.7)min M(Q1,Q2,Q3,Q4,Q5,�i),

(5.8)J [Q1,Q2,Q3,Q4,Q5,�i , �] = M(B1,B2,B3,B4,B5,�i)+ ��,

(5.9)











∂J

∂�
= 0,

∂J

∂Qi
= 0,

∂J

∂�i
= 0, i = 0, 1, . . . , 5.
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Figure 1.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = 2 , m2 = m3 = m4 = 3 , 
m5 = 4 , η1 = 0.10 , η2 = 0.15 , η3 = 0.20 , η4 = 0.25 and η5 = 0.30 for Example 1.

Figure 2.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = 2 , m2 = m3 = m4 = 3 , 
m5 = 4 , η1 = 0.98 , η2 = 0.99 , η3 = 0.97 , η4 = 0.98 and η5 = 0.99 for Example 1.

Figure 3.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = 3 , m2 = m3 = m4 = 4 
and m5 = 5 , η1 = 0.10 , η2 = 0.15 , η3 = 0.20 , η4 = 0.25 and η5 = 0.30 for Example 1.
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The approximate solutions of the five state variables {C(t),T(t),H(t), I(t),E(t)} with m1 = m2 = 4 , m3 = 5 
and m4 = m5 = 7 for η1 = 0.08 , η2 = 0.17 , η3 = 0.13 , η4 = 0.11 , η5 = 0.23 and also η1 = 0.96 , η2 = 0.98 , 
η3 = 0.99 , η4 = 0.96 , η5 = 0.95 are shown in Figs. 5 and 6, respectively. The plots of the approximate solu-
tions with m1 = m2 = m3 = 6 , m4 = m5 = 8 for η1 = 0.08 , η2 = 0.17 , η3 = 0.13 , η4 = 0.11 , η5 = 0.23 and also 
η1 = 0.96 , η2 = 0.98 , η3 = 0.99 , η4 = 0.96 , η5 = 0.95 are illustrated in Figs. 7 and 8, respectively. The runtime of 
the proposed method and the optimal values of the residual function with different choices of mi , i = 1, 2, 3, 4, 5 , 
are reported in Tables 4 and 5, respectively. According to Figs. 5, 6, 7, 8, the number of cancer stem and tumor 
cells and estrogen, C, T and E, decreases, while the healthy and immune cells, H and I, increase. This effect is 
associated with better prognosis and longer patient survival. Also, from Table 4 we conclude that if we choose 
large values of mi , i = 1, 2, 3, 4, 5 , then leads to an higher computational load.

Remark 2  Abernathy et al.19 presented a system of five ordinary differential equations which consider the popu-
lation dynamics among cancer stem, tumor, and healthy cells. They described (i) the effects of excess estrogen 
and the body’s natural immune response on the aforementioned cell populations and (ii) the global dynamics of 
the F-BCCM (2.5), with ηi = 1 , i = 1, 2, 3, 4, 5 , along with various submodels by employing a variety of analyti-
cal methods. In this paper we consider the integer order model (2.1) proposed initially in19 and generalize it to 
fractional order (2.5). Additionally, we introduced a new basis function (i.e., the GSLP) for solving the F-BCCM 
(2.5) and obtained optimally the unknoun coefficients and parameters. From the results we verify not only that 
the approximation by the new method provides good approximate solutions, but also that it is superior to the 
one proposed by Abernathy et al.19.

Figure 4.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = 3 , m2 = m3 = m4 = 4 
and m5 = 5 , η1 = 0.98 , η2 = 0.99 , η3 = 0.97 , η4 = 0.98 and η5 = 0.99 for Example 1.

Table 2.   The runtime (in seconds) of the proposed method with different choices of mi , i = 1, 2, 3, 4, 5 , for 
Example 1.

Case m1 m2 m3 m4 m5

CPU time CPU time

η1 = 0.10, η2 = 0.15, η3 = 0.20, η4 = 0.25, η5 = 0.30 η1 = 0.98, η2 = 0.99, η3 = 0.97, η4 = 0.98, η5 = 0.99

1 2 3 3 3 4 15.23 15.29

2 3 4 4 4 5 19.74 19.76

Table 3.   The optimal values of the residual function with different values of mi , i = 1, 2, 3, 4, 5 , for Example 1.

Case m1 m2 m3 m4 m5

Residual function Residual function

η1 = 0.10, η2 = 0.15, η3 = 0.20, η4 = 0.25, η5 = 0.30 η1 = 0.98, η2 = 0.99, η3 = 0.97, η4 = 0.98, η5 = 0.99

1 2 3 3 3 4 7.4167E − 07 2.9968E − 07

2 3 4 4 4 5 8.2858E − 08 7.4587E − 09
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Figure 5.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = m2 = 4 , m3 = 5 , 
m4 = m5 = 7 , η1 = 0.08 , η2 = 0.17 , η3 = 0.13 , η4 = 0.11 and η5 = 0.23 for Example 2.

Figure 6.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = m2 = 4 , m3 = 5 , 
m4 = m5 = 7 , η1 = 0.96 , η2 = 0.98 , η3 = 0.99 , η4 = 0.96 and η5 = 0.95 for Example 2.

Figure 7.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = m2 = m3 = 6 , 
m4 = m5 = 8 , η1 = 0.08 , η2 = 0.17 , η3 = 0.13 , η4 = 0.11 and η5 = 0.23 for Example 2.
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Epidemiologic and clinical relevance
Tumor cells proliferate abnormally and gradually undergo changes that induce the growth and development of 
cancer with an high mutation rate and spread, leading to tumor progression. A small number of cancer stem 
cells can be the source of cancer and cause recurrence, metastasis and resistance to treatment. Presently, stem 
cells are being targeted for cancer treatment, so that with a lower number of cancer cell we can expect better 
prognosis. On the other hand, healthy cells must exhibit a normal proliferation and function. In other words, 
they do not undergo aberrant proliferation and malignant changes. Immune cells play a key role in defending 
the body against foreign agents and deformed cells such as those of cancer. An high number of immune cells, in 
particular of T lymphocytes, correlates with a better prognosis for the patient. Epidemiological studies revealed 
the pivotal role of estrogen in the initiation and progression of breast cancer60. The hormone has also influence 
in the mechanism of some drugs for treatment, since they inhibit estrogen and the duration of exposure to the 
estrogen increases the risk of breast cancer61–63. During the progression of the breast cancer there are evidences 
that an increasing number of immune cell infiltrate in tumor parenchyma, including the cytotoxic CD8+ T, CD4+ 
T helper, B, macrophages and dendritic cells, the natural killer cells, and cytokines, such as interferons, interleu-
kins, chemokines and growth factors64,65. Immune cells contain estrogen receptors and are regulated by estrogens 
as well. Therefore, strogens could influence immune cells in breast cancer64. Parenchymal and stromal cells of 
breast may be accessible to several immune cells subtypes that lead to decreasing the tumor cells and reducing 
tumor growth64. Therefore, from the medical point of view, the numerical results show that the approximate 
solution is coherent with real-word experience.

From the numerical viewpoint, we must highlight that there is a basic difference between the proposed 
approach and other spectral methods. In fact, the main idea of spectral methods (based on the Legendre, Cheby-
shev, Lagrange and Jacobi polynomials) is to express the solution of a differential equation as a sum of the basis 
functions and then to choose the coefficients in order to minimize the error between the numerical and exact 

Figure 8.   Evolution of {C(t),T(t),H(t), I(t),E(t)} vs time for the F-BCCM with m1 = m2 = m3 = 6 , 
m4 = m5 = 8 , η1 = 0.96 , η2 = 0.98 , η3 = 0.99 , η4 = 0.96 and η5 = 0.95 for Example 2.

Table 4.   The runtime (in seconds) of the proposed method with different choices of mi , i = 1, 2, 3, 4, 5 , for 
Example 2.

Case m1 m2 m3 m4 m5

CPU time CPU time

η1 = 0.08, η2 = 0.17, η3 = 0.13, η4 = 0.11, η5 = 0.23 η1 = 0.96, η2 = 0.98, η3 = 0.99, η4 = 0.96, η5 = 0.95

1 4 4 5 7 7 26.41 26.43

2 6 6 6 8 8 35.08 35.18

Table 5.   The optimal values of the residual function with different choices of mi , i = 1, 2, 3, 4, 5 , for Example 2.

Case m1 m2 m3 m4 m5

Residual function Residual function

η1 = 0.08, η2 = 0.17, η3 = 0.13, η4 = 0.11, η5 = 0.23 η1 = 0.96, η2 = 0.98, η3 = 0.99, η4 = 0.96, η5 = 0.95

1 4 4 5 7 7 3.9316E − 11 4.8842E − 12

2 6 6 6 8 8 8.0023E − 14 1.1164E − 14
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solutions, in some suitable sense. To determine the coefficients, three main techniques, are commonly employed, 
namely the Galerkin, tau and collocation methods. In the present case, the residual function and its 2-norm 
are employed for converting the problem to an optimization one, so that the unknown parameters are obtained 
optimally. As a result, the necessary conditions of optimality are derived in the form of a system of nonlinear 
algebraic equations with unknown parameters. It is also worth mentioning that approximating any arbitrary 
smooth function by the eigenfunctions of singular Sturm-Liouville problems, such as the Legendre, Chebyshev, 
Hermite, Lagrange, Laguerre or Jacobi polynomials, has ′′spectral accuracy′′ . This means that the truncation error 
approaches zero faster than any negative power of the number of the basis functions used in the approximation, 
as that number tends to infinity. Consequently, these basis functions are not the most adequate for approximating 
non analytic functions, in contrast which occurs when using the GSLP which prove to be much more efficient.

Conclusion
This paper developed and analyzed the GSLP method for solving the F-BCCM. The proposed approach is 
based on the operational matrices of the GSLP and the Lagrange multipliers. By adopting the GSLP basis and 
operational matrices of F-CD, the problem was reduced to the solution of a system of algebraic equations. The 
convergence analysis for the new algorithm was also carried out. Two numerical examples illustrate the ability 
and reliability of the algorithm. This method shows that with fewer number of basis functions we can obtain the 
approximate the solutions. This model and algorithm can be further explored to develop in silico studies of the 
dynamics and cancer problems.
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