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data. This may affect the reproducibility of mouse micro-
biota studies and their conclusions. Hence, future studies 
should take these into account to truly show the effect of 
diet, genotype or environmental factors on the microbial 
composition.
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Introduction

In adult life, a healthy human may harbor several hundreds 
of different microbial species in their intestine, which col-
lectively encode more than 100-fold more non-redundant 
genes than there are in the human genome [1–3]. The com-
position of the intestinal microbiota is driven by factors such 
as diet, antibiotic therapy, maternal microbiota and genotype 
[4–9]. Since the intestinal tract is the main point of contact 
of the host immune system and microorganisms, the role 
of microbiota in both local and systemic immune function 
plays an important role in immunity and health [10]. Early 
comparative analyses of the intestinal microbiota of human 
and other animals have shown that each mammalian species 
harbors a distinct microbial composition and can be grouped 
based on their microbial community and diet [11]. Carni-
vores, omnivores and herbivores could be distinguished by 
increasing microbiota diversity, which probably reflects the 
large variety of plant-derived carbohydrates in the diet of 
herbivores. The differences in composition and diversity of 
intestinal tract microbiota in these animal groups indicate 
that both diet and host collectively affect the microbial com-
position [11–13].

Studies of the local microbiota at different locations along 
the human intestinal tract require rather invasive sampling 
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methods. Pioneering studies have used these and provided 
the first molecular biogeography of the human intestinal 
microbiota by addressing colonic and ileal sites [14, 15]. 
However, these approaches cannot be scaled for practical 
and ethical reasons. While ethical considerations nowadays 
also apply to rodent models, these provide an easy way to 
collect many samples from different sites, allow multiple 
comparisons at large scale, and have the great advantage 
to offer a wide range of different genotypic backgrounds. 
Moreover, rodents and specifically mice have become the 
most studied disease models for pharmaceutical research 
[16]. Mice models have also been used to study the interac-
tion of intestinal microbes and its host since the early days 
when large scale studies became feasible due the develop-
ment of molecular and high throughput approaches [17]. Ini-
tially, most attention has focused on germ-free mice models 
and provided basic insights in initial host–microbe interac-
tion [18]. However, increasingly mice are used as models to 
study dietary effects, disease development, and the impact of 
microbial therapies. However, in order to translate such gen-
erated knowledge from mouse to man, the similarities and 
differences between their intestinal microbiota need to be 
considered and these are reviewed here with specific atten-
tion to the historic development of inbred mouse models, the 
impact of genomics and the difference in intestinal anatomy.

History of mouse models

The majority of presently employed murine strains, i.e., 
strains belonging to the species Mus musculus, have a com-
mon origin that goes back over 100 years ago and derive 
from Asian or European fancy mice, usually yellow, white 
or with another appealing color, that had been developed as 
pets as early as 1200 BC in China (Fig. 1). The best recorded 

example of an anecdotal development is that of Miss Abbie 
E.C. Lathrop who started breeding mice in the early 1900s 
in Granby MA, USA [19]. In a couple of years, her busi-
ness had grown into an operation with over ten thousand 
mice that were used to be sold as pets but also provided 
laboratories in the area for scientific studies. Subsequently, 
she also started inbreeding mice, avoiding mixing her mice 
with wild mice [20, 21]. These inbred mice are the ances-
tors of the most commonly used strain C57BL/6 created in 
William Castle’s lab (Fig. 1). Since around 1910, these mice 
were inbred, with over two generations per year; thus, many 
of the presently available mice have been inbred for over 
150 generations on average [22]. Also the 129, C3H and 
BALB/c have a similar origin, where the latter two were a 
cross between progenitors of the C57 line and Bagg albino’s 
from H. Bagg (Fig. 1). Some strains were developed much 
later, like the NOD inbred strain, which was derived from an 
outbred colony of Swiss Webster mice. Ohtori developed the 
inbred CTS strain from this colony [18]. And in 1980, the 
F6 of the CTS strain selected for diabetes was taken sepa-
rate and the F20 developed spontaneous insulin-dependent 
diabetes, and named NOD [23]. The advantages of using 
mice models appealed to many scientists, from that time 
till now, since they are relatively small, easy to maintain in 
large numbers, and can be inbred or genetically modified 
to be used as models to study human diseases. It has been 
estimated that presently over 90% of the rodents used for 
pharmaceutical research are mice [16].

The mouse versus the human genome

Lineages of men and mouse are separated by more than 
90 million years of evolution, yet more than 85% of the 
genomic sequences between mouse and human are still 

Fig. 1   A simplified family 
tree of the main mouse strains 
used in intestinal microbiota 
research. Solid lines indicate 
inbreeding and dotted lines indi-
cated outbreeding of a mouse 
line. When lines are connected a 
cross or a new line was created 
by selection. Data adapted from 
[20, 21]
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conserved [24, 25]. One of the major divergences that 
occurred in the genomes in the course of this evolutionary 
time span is found in the primary sequence of regulatory ele-
ments. Recent detailed genomic and transcriptomic analysis 
revealed that half of the transcription factor binding sites 
of the murine genome does not appear to have orthologous 
sequences present in the human genome [26]. However, the 
regulatory networks among transcription factors are highly 
conserved between mice and humans [27]. In contrast, the 
overall gene expression and its regulation were found to be 
considerably different between the two species. However, it 
should be emphasized that most human functional studies 
have been performed with cell lines and it is known that 
their expression patterns may differ from the large variety of 
tissue-specific expression in the human body. Comparative 
genomic studies do not suffer from that bias and have shown 
that the immune system and its regulation has dramatically 
changed during evolution, indicating a rapid but species-
specific adaption of this system in the different species [28]. 
As the intestinal tract is the site of the majority of innate and 
adaptive immune interactions, these large immune differ-
ences between mice and man may provide a perspective on 
failing extrapolations of many mouse studies on inflamma-
tory and immune diseases [29].

Comparative physiology of the intestinal tract 
in mouse and man

Nowadays, mice belonging to the species M. musculus are 
often used to systematically study the roles of the diet, path-
ogens and/or the influence of the host genotype on microbial 

diversity in GI tract and to relate this back to the human 
situation [22].

Mice are exclusive herbivores, while humans can be her-
bivores, carnivores and everything in between, depending on 
culture, food supply and many other factors. It appears that 
there are considerable anatomical, histological and physi-
ological features of the intestinal tract that are shared. The 
main difference is the size of the intestinal tract in relation 
to the total size of the species but there are many distinct 
differences throughout the intestinal tract, which should be 
considered during experimental design and interpretation 
(Fig. 2).

One of the most remarkable differences to be noted at the 
beginning of the tract, is the presence of a non-glandular 
forestomach in mice that is absent in humans. This fores-
tomach is lined with keratinizing squamous mucosa and 
covers two-thirds of the entire stomach. The forestomach 
has no secretory activity and is used for food storage [30] 
and is covered with a biofilm comprised of strains of various 
Lactobacillus spp. [31, 32]. Although Lactobacillus reuteri 
and Lactobacillus johnsonii are found throughout the mouse 
intestinal tract, there is a strong indication that the forestom-
ach is their main habitat and that the cecal populations are 
composed of cells that have descended from the forestomach 
populations [33]. Comparative genomic analysis has shown 
that the murine L. reuteri strains are very different from 
those found in humans and have urease genes to cope with 
low pH and a variety of rodent-specific genes which, when 
inactivated, affects their persistence in mice [34].

The remaining third of the mouse stomach is the glan-
dular stomach, which is similar to that of man. However, 
there are major differences in the fate of food in the stomach. 
Gastric emptying in humans proceeds linearly, with a half 

Fig. 2   Comparison of the intes-
tinal tract features of human and 
mouse. The main similarities 
and differences are listed in a 
Venn diagram [37–39]
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time of 30 min (empting rate of 1.64% per min), whereas 
gastric emptying of the mouse has an exponential decay 
with a decay constant of 77 ± 17 min and a half time of 
34 min. Differences in eating behavior, feeding patterns 
and biorhythms between mouse and human can explain this 
difference since mice forage and feed almost continuously 
at night while humans consume most of their foods during 
daytime when their stomach is empty. Hence, in the mouse 
stomach, freshly eaten food particles are constantly mixed 
with gastric fluids diluting the present bolus [35]. This might 
be the reason why the range of pH is smaller in the mouse 
stomach, from pH 2.7–4.1, while in humans it can go down 
to pH 1. This relatively high pH in the mouse stomach prob-
ably also enables the formation of biofilms of Lactobacillus 
spp., while in humans the stomach is colonized by mainly 
Streptococci, Prevotella spp. and Helicobacter pylori, that 
are likely to be acid adapted [36].

The small intestine is the longest part of the GI tract, 
approximately 33 cm in mice and 700 cm in humans and is 
divided in three regions. There are various ways to compare 
the impact of these size differences and while these can be 
related to length, body surface or blood volume, in most 
cases the simplest comparison is that with the weight. A 
mouse weighs around 0.02 kg while the weight of an average 
human being is ~70 kg; so the length of the small intestine 
per kg is in mice 1500 cm per kg and humans 10 cm per kg 
(Fig. 2). The duodenum is the most proximal region, where 
bile and secretory products of the pancreas enter the intes-
tinal lumen. The next part of the small intestinal tract is 
the jejunum followed by the ileum. The outer mucosa layer 
of the small intestine differs the most between human and 
mouse. The overall appearance of the mouse mucosal sur-
face is smooth, while the human mucosal contains circular 
folds, known as plicae circularis, to increase the surface area 
[37]. This specific anatomy of the human small intestine 
provides a niche for mucus-associated bacteria, which is not 
present in mice and hence could, therefore, be an important 
difference, influencing microbial composition. Similarly, the 
architecture of the villi varies through the small intestine 
with distinct differences in mice and man. In both the duo-
denal villi have a leaf-like structure but in mice these change 
to a more cylindrical shape in the jejunum and ileum. In 
contrast, in the human jejunum the villi become taller with 
a more frond-like structure and they become thinner and 
sparser in the ileum.

The large intestine is up to 14 cm long in mice and 105 cm 
in humans and can be divided into the cecum and colon. The 
cecum of mice is relatively large, being 3–4 cm in length, 
and functions as a microbial fermentation vessel, while in 
humans it is 6 cm and of minor importance. Expressed per 
kg of body weight the length of the large intestine is in mice 
700 cm per kg and humans 1.5 cm per kg, while the cecum 
is in mice 175 cm per kg and in humans 0.086 cm per kg 

(Fig. 2). This illustrates that, relative to body weight, the 
large intestine is a much larger organ in mice than in man. 
Both humans and mice have a cecal appendix, although 
it is not a pronounced separate section in mice as it is in 
humans [38]. Moreover, the human colon is segmented, with 
pouches called haustra, while the mouse colon has a smooth 
serosal appearance. The proximal colon of the mouse has a 
mucosa with transverse folds. Halfway, the colonic mucosa 
is flat and in the distal colonic mucosa there are longitudinal 
folds, while the human colonic mucosa has transverse folds 
throughout the colon [39].

The overall intestinal transit time is known to affect the 
intestinal microbiota. After human consumption of a meal, 
the transit takes 14–76 h, a wide range due to dietary and 
population differences. The type of diet has a major impact 
on the transit time, and resistant starch increases transit time 
by almost 20 h compared to fully digestible starch [40]. In 
mice the total transit time is only between 6 and 7 h, up to 
ten times as fast as humans. This is compatible with the total 
metabolic rate that is approximately seven times higher in 
mice as compared to man when corrected for body weight 
(see below).

The mucus layer is important for the protection of the 
intestinal tract. It forms a physical network, providing a bar-
rier between bacteria and host, minimizing contact between 
bacteria and epithelial cells [41]. Defects in the mucus layer 
have been linked to various human diseases, such as inflam-
matory bowel disease (IBD), and the mucosa of IBD patients 
harbors a higher number and different species of bacteria 
than that of healthy subjects [42–44]. Notably in this respect 
is the increase of potential pathogenic Ruminococcus tor-
ques and Ruminococcus gnavus at the cost of Akkermansia 
muciniphila in IBD mucosa [45]. It has been shown that 
mucus layer thickness is compromised in IBD and that this 
may impact on its functional organization. A recent com-
parative study addressed mucus thickness, penetrability, 
and proliferation rate using live tissue explants of human 
and mouse colon in a perfusion chamber [46]. The mucus 
growth rate was shown to be higher in the human colon 
(240 ± 60 µm per h) as compared to that in the murine colon 
(100 ± 60 µm per h). Furthermore, the final mucus layer was 
demonstrated to be thicker in the human (480 ± 70 µm) as 
compared to the mouse colon (190 ± 40 µm). Mucus pen-
etrability was similar in mice and humans, since fluorescent 
beads with a diameter of 1 µm in both species penetrated the 
outer 40% of the colonic mucus layer, while the inner 60% 
was impenetrable for the beads [46]. However, it is possible 
that specific intestinal microbes adapted to the mucus behave 
differently than on these model beads and it has been found 
that A. muciniphila, a well-established mucus utilizer, may 
have a size as small as approximately 0.5 µm depending on 
the growth medium [47].
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The major structural Muc proteins in the inner and outer 
mucus layers are the same in mouse and man, represented 
by Muc2 in the small and large intestine and Muc5AC in 
the stomach. The outer mucus layer is looser than the inner 
layer, because of proteolytic cleavages due to host proteases 
and microbiota in mice and men [41]. However, there are 
some noticeable differences between mice and humans in 
mucin composition at the molecular level. Specifically, the 
monomeric Muc2 protein has a different size in human and 
mice (5179 versus 2680 residues, respectively). It possesses 
a large and a small domain, both of which are rich in proline, 
threonine and serine (and are therefore called PTS domains), 
but while the human large PTS domain consists of an almost 
perfectly tandem repeat of 23 amino acids, that of the mouse 
is not repetitive [48]. Disulphide bonds amplify the size 
of the mucin monomers while O-glycosylation results in 
O-glycan molecules extending in all directions of the PTS 
domain, making the molecules look like a bottle brush and 
giving mucin its gel-forming properties through high capac-
ity of binding water. Obviously, this post-translational gly-
cosylation and hence biophysical properties differ between 
the Muc2 molecules from mice and man but their details 
have not been addressed as there are hundreds of different 
glycan structures. What is known is that the primary glyco-
syltransferases involved in the extending and branching of 
the O-glycan molecules differ and involve the core 1 β1,3-
galactosyltransferase (C1galt1) in mice and the core 3 β1,3-
N-acetylglucosaminyltransferase (C3GnT) in humans [49]. 
Apart from these core enzymes that differ between mouse 
and man, it is likely that other glycosyltransferases may also 
vary as do the sialidation and sulfonization processes that 
are particularly prominent in the colon where they protect 
the mucus from rapid microbial degradation. These modi-
fications mask the glycan profile which is reflected by the 
blood group status, which is evident in the stomach and 
small intestine. The reason for this could be that the glycan 
composition is important for the selection of commensal 
microbiota [50]. Fucosylation, however, is a glycan modifi-
cation which is known to occur in mice and man in a similar 
manner [51]. In humans fucosylation is determined by the 
FUT2 gene, the expression of which is affected by the gut 
microbiota, especially during colonization [52]. Genetic 
polymorphisms that affect fucosylation have an impact on 
the microbiota in human, particular on the bifidobacterial 
composition as well as on the abundance of Bifidobacterium, 
Bacteroides and Akkermansia spp., all potentially mucus-
degrading bacteria [53, 54]. Bacteria often carry adhesins 
that can bind mucins, which serve as an adhesion substrate 
and nutrient source [49]. This could be an explanation of 
the difference of mucus-associated bacteria between humans 
and mice. However, A. muciniphila, a specialized mucus-
utilizing bacterium is almost identical in mice and humans 
[55], indicating that even though there are differences in the 

mucus, this species, and probably others, do not need to be 
very different to proliferate on varying mucus compositions.

Overall mice show lower intestinal pH values, oxygen 
tension levels and a different glycan profile in the mucus 
than humans, aspects that are likely to be, at least partially, 
responsible on the observed differences in microbial com-
position [56–58] (see also below).

Energy saving strategies

Small animals, with a high metabolic turnover rate, need 
to digest more food per body mass than larger animals and 
it has been calculated that an average adult mouse has an 
approximately sevenfold higher metabolic turnover rate 
as compared to the average adult human [59]. Mice eat, 
therefore, around the clock, but mostly during the night, 
which is their active time, exposing intestinal tissue to dif-
ferent microbes and metabolites as the day goes by and 
hence affecting the circadian rhythm of the host [60]. With 
obviously different synchronicity this may also occur in 
human where links between circadian rhythm and intesti-
nal microbes have been suggested in a longitudinal study 
[61]. Because of their higher energy demands, small ani-
mals need to have a short retention time of foods, especially 
when the digestibility of the food is low. The generation 
interval of gut microbiota (human or murine) needs to be 
0.69 times the retention time to maintain a population of 
the same numerical size and to prevent washout [59]. Some 
rodent species depend on separation mechanisms to main-
tain microbiota in their cecum, but allow food particles to 
pass on quickly [62]. In mice, a slight delay of flow of fluid 
digesta is observed compared to particle digesta. A sepa-
ration mechanism depending on mucus, called “the mucus 
trap”, is present in the mouse. The mucus trap is folds in the 
proximate colon, that creates a furrow, where a mixture of 
bacteria and mucus can be transported back to the cecum 
[63]. So it appears that mice partly recycle their microbiota 
as a sort of colonic transplantation. An ultimate form of this 
recycling is found in coprophagy, the behavior by which 
feces is re-ingested. This is practiced by mice and contrib-
utes to the nutritional value of their diet by ensuring that 
vitamin K, some B vitamins, and short chain and other fatty 
acids that are produced by microbiota in the cecum, are not 
lost by defecation, but re-enter the murine intestine to be 
absorbed [63]. Coprophagy is known to affect the intesti-
nal microbiota within litters and can be avoided by cages 
equipped with grids, but coprophagy is still considered as an 
important difference between human and mice [64].
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Murine versus human microbiota

The phylogenetic makeup of the bacterial communities in 
both human and mouse seems to be similar at phylum level, 
where the two main bacterial phyla of the murine intestinal 
tract are the Bacteroidetes and the Firmicutes [65, 66]. How-
ever, this also applies to many other mammals, herbivores 
and carnivores alike [65, 66]. Several obvious differences 
between the intestinal tract of mouse and man received 
considerable attention. The murine intestinal tract was 
found to harbor large amounts of members of the phylum 
Deferribacteres, which in human are only found in minute 
amounts in the stomach [36], and the main species of this 
phylum is Mucispirillum schaedleri [67], which colonizes 
the mucus layer in mice. Moreover, mice harbor a specific 
member of the Firmicutes with an unusual morphology, the 
segmented filamentous bacteria (SFB), also termed ‘Candi-
datus arthromitus’ [68], which have a pronounced effect on 
the maturation of the innate immune system [69–71]. SFB 
have been thought to be lacking in humans but a recent very 
deep analysis provided support for their presence in some 
human infants during the first 3 years of life, although no 
functional studies have yet been performed that would sup-
port a similar role in immune maturation as for their murine 
counterparts [72].

A recent comparative survey of the phylogenetic compo-
sition of 16 human subjects and 3 often used mouse lines 
indicated that their microbiota looks alike but is quantita-
tively very different [73]. Around 80 microbial gut genera 
were reportedly shared between mouse and man, and this 
number was recently confirmed in a comparison of murine 
and human 16S rDNA datasets [74]. However, there are 

considerable variations in the genera that were observed in 
the mouse data sets and for instance Faecalibacterium, Suc-
cinivibrio and Dialister were not found in some laboratory 
mice [73, 75], while they were detected in other more com-
prehensive study [74]. A trivial but important explanation 
for this is the use of different mouse strains and providers 
(see below), but other reasons for the observed discrepan-
cies are differences in analysis and specifically its depth 
since different approaches were used to address the micro-
bial composition, including different 16S rRNA gene-based 
primers, targeted variable regions and sequencing platforms 
[74]. Hence there is a need to assess these and other differ-
ences between the human and mouse microbiota with large 
datasets that are generated using exactly the same protocols.

Recently, an extensive mouse microbiome catalog was 
made available through deep metagenome sequencing, 
which obviates some issues associated with phylogenetic 
approaches [76]. Moreover, these mouse metagenomic data-
sets can be easily compared with the human metagenome 
baseline that has been collected in recent years [76]. This 
comparison confirmed that the human and mouse intestinal 
microbiota show considerable similarity at the genus level 
but reveal large quantitative differences (Fig. 3). Moreover, 
a total of 60 genera were detected in the mouse gut microbi-
ome core, of which 25 were shared with the core genera in 
the human gut microbiome, where the core was here defined 
as genera being present in all samples. When the mouse 
microbial genes were compared with that found in human, 
only 4% were found to share 95% identity and a coverage of 
90%. Remarkably, almost 80% of the annotated functions 
were common between the two datasets, indicating signifi-
cant functional overlap. However, while over 1500 species 

Fig. 3   Major different human and murine intestinal genera. Only genera are shown that showed consistent differences in relative abundance 
between humans and mice [73, 74, 76]



155Mouse models for human intestinal microbiota research: a critical evaluation﻿	

1 3

have been isolated from the human gut, from which over 
half have been deposited [77, 78], only around 100 species 
have been cultured from mice strains and deposited, most 
only very recently [79]. Hence, the majority of mouse gut 
bacteria remain to be cultured and characterized. It should 
be noted, however, that strain analysis is the next level that 
needs to be addressed as mouse and human strains of the 
same species may differ considerably, as is exemplified by 
the strains of L. reuteri that appear very different between 
mice and man as indicated above.

Currently used mouse strains

A large number of different strains of mice are available, 
especially when considering the number of genetically mod-
ified mice. Over 400 inbred strains have been described and 
their genealogies categorized (reviewed in [22]). Most of 
the widely used model strains can be traced back to the last 
century (Fig. 1). The advantage of the inbred strains is their 
genetic similarity that contributes to the reproducibility of 
the experimental approaches. Most inbred strains originate 
from either the Mus musculus domesticus or M. musculus 
musculus and show considerable genetic and phenotypic 
similarity [20, 80]. However, the inbred strains are very dif-
ferent from wild-derived mice and the microbiota from the 
wild wood mice Apodemus sylvaticus has been shown to be 
subject to strong seasonal shifts in gut microbial community 
structure, potentially related to the transition from an insect- 
to a seed-based diet [81]. Such fluctuating environmental 
factors do not affect captive mice that receive a similar diet 
over time.

Microbiota in mouse strains—impact of diet

In most studies with disease models, germ-free systems or 
dietary interventions, use is made of inbred strains. Some 
have specific properties, such as the C57BL/6 mice that 
develop an obese phenotype, together with obesity-related 
diseases, after several weeks of a high-fat diet. Hence 
C57BL/6 mice are often used in studies related to diet-
induced obesity, type 2 diabetes and atherosclerosis [82, 83]. 
It was the C57BL/6 mice that were used in the pioneering 
study where the intestinal microbiota of obese mice together 
with the corresponding phenotype could be transferred to 
germ-free C57BL/6 mice, providing the first evidence for a 
causal contribution of the intestinal microbiota on obesity 
[84]. Humanizing these mice with human microbiota seemed 
quite successful: 88% of the genus-level taxa were found in 
the mice and in the donor samples [85]. Humanized mice 
obtained using this technique have been applied not only 
to study obesity but also for instance metabolic disorders, 

alcoholic liver disease and infectious diseases [85–87]. To 
the best of our knowledge, this experimental approach has 
not been reproduced in other mouse strains and consider-
ing the large variety in mouse strains and their microbiota, 
it should be kept in mind that extrapolation to the human 
system is a considerably larger step than reproducing this 
in other mouse lines. A highly relevant study revealed that 
the intestines of BALB/c and NIH Swiss mice, which differ 
markedly in behavior, show different microbial composition, 
which could be transferred by microbiota transplantation to 
germ-free derivatives. Remarkably, these mice adopted not 
only the microbiota but also the behavior from the donor 
strain as was evident from stress tests [88].

An important confounder has shown to be the housing 
of mice. In some cases, complete phenotypes disappeared 
after a mouse house was renovated or renewed. In some 
cases, this could be tracked down to the microbiota that had 
changed and apparently was involved in the phenotype as 
reported recently [89]. The housing effect seems even to be 
larger than the effect of the genetic background [76, 90, 91]. 
However, what the effect the birth mother has on microbiota 
composition is at the moment under debate since in some 
studies the genotype (mouse strain) of the mouse had a more 
pronounced effect on the microbiota development than the 
genotype of the birth mother [90, 92].

So far only a few studies have shown difference in micro-
bial abundances between different mouse strains. Two 
independent studies showed the abundance of the genera 
Akkermansia, Alistipes and Lactobacillus to be significantly 
different in C57BL/6, BALB/c and NOD mice, although to 
a different extent [74, 76]. However, the number of stud-
ies comparing the microbiota between mouse strains is still 
limited and would benefit from more comparative studies. 
Efforts to diminish the genotype effect on gut microbiota in 
mice by intercrossing inbred strains resulted in high inter-
individual variation of the microbiome after 4 generations 
but the inter-individual variation became less after ten gen-
erations [93].

There is not a specifically recommended mouse model 
for dietary interventions and often use is made of strains 
for which there is in-house experience or that are easily 
commercially sourced. This may not be a desirable situ-
ation since recent studies have shown that environmental 
factors and the genetic background of mice have a signifi-
cant impact on the microbial composition [75]. To illus-
trate the effect of genotype, cohort, provider and housing 
facilities on the gut microbiota of mice we have carefully 
analyzed eight different mouse studies with dietary inter-
ventions [44, 94–100]. The microbiota was analyzed using 
an identical microbiota analysis pipeline based on a phylo-
genetic microarray developed and benchmarked previously 
[101]. This closed system enabled us to compare multiple 
studies over time in exactly the same way and provide a 
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read out at the species level. The mice in this analysis 
came from nine different studies (cohorts) where feces was 
collected and included three inbred strains—C57BL/6J, 

BALB/c and 129Sv—both genders, young and old mice 
and were housed in four different facilities. This analysis 
showed a larger effect of the cohort than the genotype of 
the mice, the provider, gender or the housing facility (Sup-
plementary Fig. S1). To address whether the same effect 
occurs at genus level, the same samples were analyzed in 
redundancy analysis [102]. This revealed a clear effect of 
the facility and provider (Fig. 4; details in Supplementary 
Fig. S2A and S2B). In conclusion, this study provides an 
unbiased indication that cohort and facility have a larger 
effect on the microbiota than the mouse genotype, con-
firming recent murine metagenome analyses by Xiao et al. 
[76]. It also indicates that all used mouse strains are good 
candidates for dietary interventions.

Conclusions

Mice are often used to systematically study the impact of 
the diet and other environmental factors as well as the host 
genotype on microbial diversity in intestinal tract and to 
relate this back to the human situation. While mice and 
humans have many similar anatomical, histological and 
physiological features in their intestine, there are very 
large differences in size, metabolic rate and dietary habits. 
Hence, it is no surprise that there are large differences in 
the intestinal microbiota not only in the qualitative repre-
sentation of taxa but notably in their quantitative contribu-
tion. Altogether, only a few percent of the bacterial genes 
are shared between mice and man, and a notable example 
is the presence of the biofilm of Lactobacillus spp. in the 
forestomach of mice. In view of these results, one may 
wonder why mouse models are used so often for transla-
tion to human and the simple answer could be that there is 
no better alternative.

It also has been shown that there are considerable dif-
ferences in microbial composition between mouse strains. 
Hence, it is striking to note that many dietary interventions 
or pioneering studies have not been reproduced in other 
mouse strains. Our analysis and other recent studies clearly 
indicate that the provider and housing conditions are also 
important factors to take into account, especially when 
results of other studies are compared [76, 103]. Hence, 
extreme care should be taken when comparing results of 
mouse studies from mice of different providers and han-
dled in different facilities. Future studies should focus on 
reproducing microbial differences at different locations 
with different mouse strains to truly show a robust effect of 
the diet, genotype or environmental factors on the micro-
bial composition. Since the human intestinal microbiota 
is so different from that of mice, such robustness checks 
should precede any extrapolation to human.

Fig. 4   Redundancy analysis of the large intestine samples of seven 
studies, containing a total of 244 samples [44, 94–100]. Genotype, 
facility and provider are taken along as variables for the analysis and 
explain 43.5% of the data. Colors 1–7 are per cohort, black triangles 
indicate the centers of the different mouse genotype variables and 
pink triangles indicate the centers of providers and facilities varia-
bles. Here the level of clustering per cohort is less than on probe level 
(Supplementary Fig. S1) and the facility Wageningen University and 
different providers (Supplementary Fig. S2A) explain a significant 
proportion of the data over the effect of the strain C57BL/6J (Sup-
plementary Fig. S2B), which comes fourth in percentage that it can 
explain as a variable in the data. In Table 1 are the significant vari-
ables shown

Table 1   Significant variables of the redundancy analysis

P values are calculated by Monte Carlo permutation, variables are 
ordered by importance of percentages of variation they can explain

Variable name: Percentage of variation 
explained

P value

Facility WUR 13.1 0.002
Provider Harlan 7 0.002
Provider Maastricht 6.9 0.002
Strain B6 4.5 0.002
Provider Charles River 3.5 0.002
Facility UMCG 2.7 0.002
Strain Ercc1KO 2.2 0.002
Strain Ercc1WT 1.4 0.002
Strain BalbC 1.3 0.002
Strain 129SV 0.7 0.01
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