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A B S T R A C T

Taxol1 (generic name Paclitaxel) is a chemotherapeutic drug, effective against head, neck, breast, lung,
bladder, ovary, and cervix cancers. Rising demands in chemotherapy and limited supply of natural taxol
have ultimately increased the cost of the drug. Semi synthesis using taxol precursors is not able to meet
the global supply and has intensified the need to find alternative ways of taxol production. In the present
study, 34 different endophytes were isolated from Taxus sp. collected from Shimla, Himachal Pradesh
(India). Primary screening of taxol-producing fungi was carried out based on the presence of dbat gene,
essential for the taxol biosynthetic pathway. A fungal isolate TPF-06 was screened to be a taxol-producing
strain based on the PCR amplification results. It was characterized and identified as Aspergillus fumigatus
by 18S rRNA (Accession No. KU-837249). Multiple sequence alignment (MSA) of nuclear ribosomal
internal transcribed spacer (ITS) region and phylogenetic analysis confirmed that strain belonged to A.
fumigatus clade (Accession No. MF-374798) and is endophytic in nature. Presence of taxol was detected
and quantified by High-Performance Liquid Chromatography (HPLC) and characterized by using Thin
Layer Chromatography (TLC), Ultraviolet (UV) spectroscopy, Mass spectrometry (MS), Fourier-Transform
Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopy. Microbial
fermentation in the S7 medium yielded 1.60 g/L of taxol, which to the best of our knowledge is the
highest taxol production from an endophytic fungus. Findings of the present study suggest that the A.
fumigatus is an excellent alternate source for taxol supply, and it may become a highly potent strain on a
commercial scale. The involvement of dbat gene in A. fumigatus KU-837249 strain further suggested a way
of increasing taxol yield in fungi by medium engineering and recombinant DNA technology in the future.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Taxol1 (generic name Paclitaxel) is a poly-oxygenated cyclic di-
terpenoid with a characteristic taxane ring system [1]. It is the
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most effective and widely used chemotherapeutic drug for the
treatment of cancers and virus-related sarcoma [2–4]. Each year,
approximately 8.1 million new cancer cases are diagnosed
worldwide, including India. Around five hundred patients are
treated by 1 kg of taxol, which requires 10 tons of bark equivalent
to 300 trees [5]. First time, taxol was isolated from the Taxus
brevifolia (bark, roots, and branches) [1]. So far, the source of taxol
is either semi-synthetic precursors like baccatin III and 10-
deacetylbaccatin III or natural yew tree. Although the concentra-
tion of taxol is very low (0.01 %–0.05 %) from the natural sources,
still, the bark of yew (Taxus) is the principal source. The high cost of
the drug is attributed to the inadequate supply of natural taxol and
increasing application in chemotherapy.

Recently, microbial fermentation technology emerged as an
alternative approach for cheaper and higher yield of taxol.
Particularly, isolation and identification of taxol-producing endo-
phytic fungus is a very prospective and feasible approach for the
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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production of a large amount of taxol [6,7]. Endophytes are
designated as a promising source of novel natural metabolites
exhibiting a variety of biological activities, including anti-cancer
properties [8–11]. Recently, several endophytes from different
genera such as T. Anderanae, Alternaria alternate, Fusarium sp. are
reported to produce taxol [12]. Production of secondary metab-
olites is significantly affected by genetic, developmental, and
environmental factors. Recombination DNA technologies like gene
manipulation and metabolic pathway alterations may improve the
endophytic strains and enhance taxol production [13].

In the past decades, numerous taxol-producing endophytic
fungi have been isolated. However, none of them achieved an
industrial production platform because of the low amount of taxol
production. Therefore, researchers are looking for newer
approaches using recombinant technology to improve the yield
from isolated taxol-producing fungi, in addition to search novel
high taxol-producing stable microbial isolates from nature.
However, due to the rapidly growing market, low availability,
and the fact that Taxus spp. are rare, endangered [14,15] and grow
very slowly, an alternative source is needed to produce taxol at
large commercial scale. Considering these factors, the current
study was carried out on isolation, identification and extracellular
production of taxol from Aspergillus fumigatus isolated from Taxus
sp. collected from the Northern Himalayan region of India.

2. Materials and methods

2.1. Chemicals and molecular reagents

All the reagents and chemicals were of high purity and analytical
grade. Standard paclitaxel was procured from MP Biomedicals (USA).
Fig. 1. Location map of the pla
Media components used for the growth and maintenance of taxol-
producing endophytes were purchased from Hi-Media (Mumbai).
The electrophoresis reagents, molecular grade chemicals used for
DNA isolationwere purchased from SDFCL (India) and Sigma-Aldrich
(USA), respectively. Pre-coated Silica gel 60, F254TLC plates, and HPLC
solvents were of HPLC grade and procured from Merck (Germany).
Universal primers for ITS and dbat genes were procured from Sigma
(USA) and Bioservice, respectively.

2.2. Collection of plant samples and isolation of taxol-producing
endophytes

Taxol-producing endophytes were isolated from different plant
tissues (bark, stem, and needle) of Taxus sp. collected from Shimla,
Himachal Pradesh (India). The location map of the plant tissue
collection sites is shown in Fig. 1. The bark, stem, and needle
samples were surface sterilized under a laminar airflow chamber
with ethanol (70 %; v/v) for 30 s and sodium hypochlorite (3.5 %; v/
v) for 2 min, followed by washing with sterilized water.
Subsequently, the outer surface was peeled off using a sterilized
surgical blade. The bark, stem, and needles were chopped into
small pieces of � 0.5 � 0.5 � 0.5 cm and were aseptically placed on
the surface of modified mycological agar (MMA) medium [16],
composed of glucose 40 g/L, bacto-soytone 10 g/L, sodium acetate
1 g/L, sodium benzoate 50 mg/L, bacto-agar 15 g/L, pH 6.0–6.5 and
were incubated at 25 � 1 �C for 72 h. Morphologically different
colonies were picked up depending upon shape, size, and color.
Pure line cultures were established by repeatedly streaking single
colonies on the MMA medium, and pure cultures were maintained
on slants at 4 �C. It was decided to further restrict the studies to
endophytic fungi in a quest for taxol-producing microorganisms.
nt tissues collection sites.
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2.3. Molecular screening of taxol-producing endophytic Fungi

All the isolated fungal cultures were grown individually in
Erlenmeyer flasks containing 25 mL modified S7 liquid broth [16]
consisted of glucose 3 g/L, sodium acetate 1 g/L, sucrose 18 g/L,
beef-extract 5 g/L, fructose 9 g/L, soytone 1 g/L, thiamine 1 mg/L,
biotin 1 mg/L, pyridoxal 1 mg/L, calcium pantothenate 1 mg/L,
magnesium sulphate 3.6 mg/L, calcium nitrate 6.5 mg/L, copper
nitrate 1 mg/L, zinc sulphate 2.5 mg/L, manganese chloride 5 mg/L,
iron (III) chloride 2 mg/L, phenylalanine 5 mg/L, sodium benzoate
100 mg/L, pH 6.0–6.5 and 1 mL of 1 M sodium phosphate buffer, pH
6.8 and incubated at 25 � 1 �C for 5–7 days at 150 rpm in an
incubator shaker. Genomic DNA extraction was carried out from
the harvested mycelia.

2.3.1. Fungal DNA extraction
Genomic DNA was extracted using the CTAB method [17] with

necessary modifications. Briefly, the mycelia collected from the
cultures were ground using mortar-pestle in liquid nitrogen into a
fine powder. 200 mg of mycelium powder was suspended in
1000 mL of DNA extraction buffer. To the above suspension, 200 mL
of 5 M NaCl and 100 mL of 10 % cetyltrimethylammonium bromide
(CTAB) were added. The resulting mixture was incubated in a water
bath for 3 min at 45 �C with occasional inversion. An equal volume
of Chloroform: Isoamyl alcohol (24:1; v/v) was added to the lysed
mixture and centrifuged at 12,000�g for 15 min. The upper
aqueous layer was collected gently and incubated with an equal
amount of isopropanol overnight at �20 �C for precipitation. Post
incubation, tubes were centrifuged at 10,000�g for 10 min (4 �C),
followed by washing of upper aqueous phase with 70 % ethanol.
Finally, the pellet was dissolved in nuclease-free water (30 mL) and
stored at �20 �C till further use.

2.3.2. PCR based molecular screening using dbat and ITS genes
The internal transcribed spacer (ITS) fragments and 10-

deacetylbaccatin III-10-O-acetly transferase (dbat) gene were
amplified by using universal primers [18] ITS1 (5ʹ-TCCGTAGGT-
GAACCTGCGG-3ʹ); ITS4 (5ʹ-TCCTCCGCTTATTGATATGC-3ʹ); dbat F
(5ʹ-GGGAGGGTGCTCTGTTTG-3ʹ) and dbat R (5ʹ-GTTACCTGAAC-
CACCAGAGG-3ʹ) were purchased from Sigma Aldrich (USA) and
Bioservice respectively. The standard PCR reaction of 25 mL
consisted of 3 mL genomic DNA (�100 ng), 1.5 mL forward and
reverse primers each (10 mM), 0.4 mL DNA Taq polymerase (2 U),
2.5 mL 10X Taq buffer (Thermo), 2.5 mL MgCl2 (25 mM), 2.5 mL
dNTP mix (2 mM), and 11.1 mL nuclease-free water (Thermo). The
Fig. 2. PCR analysis for the presence of dbat gene in A. fumigatus; Lane 2: Molecular Mar
Empty.
PCR reaction was performed by initial denaturation at 94 �C
(3 min), followed by 30 cycles at 94 �C (30 s), 55 �C (30 s), 72 �C
(1 min) and final extension at 72 �C (5 min) using thermocycler
(Eppendorf MastercyclerTM, Germany). Besides this, taxadiene
synthase (ts) and C-13 phenylpropanoid side chain-CoA acyl-
transferase (bapt) genes involved in the taxol synthesis pathway
were also screened for PCR amplification using primer sets for ts
and bapt [19]. The reaction and temperature profile for ts and bapt
gene were similar for ITS gene, as mentioned above. Finally, the PCR
products of ITS and dbat genes were analyzed in 2 % agarose gel and
visualized using Gel Doc system (CI50 Azure Biosystem, USA).

2.3.3. Nucleotide sequencing and phylogenetic analysis
Specific bands of ITS and dbat genes were sliced from the

agarose gel and purified by QIAquick Gel Extraction Kit (Qiagen,
Germany). Sequencing PCR of the purified product was done by Big-
Dye Terminator v 3.1 Cycle Sequencing Kit (Applied Biosystems USA)
using appropriate sense and antisense primers for ITS and dbat
gene with standard reaction and temperature profile. Specific
amplified products were precipitated, and finally, the samples
were loaded into AB 3500 XL Dx Genetic Analyzer (Applied
Biosystem, USA). Sequence analysis and comparison using the Basic
Local Alignment Search Tool (BLAST) was done in ABI 3500
automated DNA sequencer platform. Multiple sequence alignment
and phylogenetic tree analysis were done using Clustal X 2.0.11 and
Molecular Evolutionary Genetics Analysis (MEGA) version 7.0
(www.megasoftware.net) software respectively, based on the
internal transcribed spacer sequences of similar fungal species.

2.4. Identification and characterization of taxol-producing endophytic
fungus

Fungal isolate TPF-06 found positive in molecular screening
based on dbat gene expression, was further characterized using
microscopic and molecular tools. The endophytic fungal strain TPF-
06 was grown on 90 mm Petri plates containing MMA medium and
characterized based on colony morphology, spores, reproductive
structures, and 18S rRNA sequences.

2.4.1. Morphological characterization using microscopy
Microscopic studies were carried out using fungal mycelia on a

glass slide stained with Lactophenol Cotton Blue (LPCB) dye. Fungal
mycelia were carefully teased using a needle, and a coverslip was
placed onto the thin preparation. Morphology was observed under
an upright biological microscope at 40X (Olympus, Japan).
ker (100 bp); Lane 4: dbat gene (�250 bp); Lane 5: ITS gene (�550 bp); Lane 1, 3, 6:

http://www.megasoftware.net


Fig. 3. Phylogenetic dendrogram of selected isolate 18S rRNA sequence based on
neighbor joining method.
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2.4.2. Molecular identification using 18S rRNA
A fresh plate of the fungal isolate TPF-06 was prepared on MMA

medium and outsourced to the Xcelris Genomics, Ahmedabad,
Gujarat (India) for 18S rRNA sequencing. Sequencing data was
analyzed and compared with similar sequences from NCBI (USA)
using BLAST [20]. Clustal W version 2.0 and MEGA version 7.0 [21]
were used to align the partial 18S rRNA sequences and to build a
phylogenetic tree for a selected fungal isolate.

2.5. Hyper-production and extraction of taxol from endophytic fungus

Erlenmeyer flask containing 100 mL modified S7 liquid medium
[16] was seeded with 4.79 � 104 spores per mL of the fungal isolate
TPF-06 and incubated at 25 � 1 �C for 21 days with agitation speed
at 150 rpm in an incubator shaker. Post 21 days of incubation,
microbial biomass was removed from fungal isolates by passing
the cultures through four layers of cheesecloth. The fatty acid
concentration was minimized by the addition of 0.25 g sodium
carbonate to culture filtrate and later extracted with two equal
volumes of ethyl acetate. Under reduced pressure at 40 �C (vacuum
evaporator), the solvent was removed, leaving behind dry solid
residues which were re-dissolved in methanol. The crude extract
containing taxol was subjected toTLC, HPLC, UV-spectroscopy, FTIR
spectroscopy, MS, and NMR analysis for the presence, quantity, and
purity of taxol by comparing with standard Paclitaxel procured
from M.P Biomedicals (USA).
Fig. 4. Morphological characterization of A. fumigatus (a) on Modified Myc
2.6. Characterization and analysis of extracted taxol

2.6.1. Thin Layer Chromatography (TLC)
For the detection of taxol, the crude sample was spotted on

0.25 mm (10 � 20 cm) aluminum pre-coated silica gel plates along
with standard paclitaxel as internal standard, and the plate was
developed in chloroform:methanol at 7:1 (v/v) successively. Taxol
was detected by spraying 1 % vanillin (w/v) in sulfuric acid after
gentle heating [22] or by using spray reagent consisting of 20 g of
antimony trichloride in a mixture of 20 mL glacial acetic acid and
60 mL chloroform [23]. The Retention factor (Rf) value of sample
was calculated according to the following equation from the
chromatogram and compared with standard taxol.

Rf valueð Þ ¼ Distance moved by the compound
Distance moved by the solvent

2.6.2. Ultra violet (UV) spectroscopic analysis
The UV spectroscopy analysis of the crude extracted sample was

performed by scraping off the area of silica TLC plate containing
putative taxol at the appropriate Rf. After dissolution in methanol,
the spectrum of crude taxol samples was plotted in Beckman DU-
40 spectrophotometer (USA) and quantified by comparing with
that of the standard taxol.

2.6.3. Fourier-Transform Infrared (FTIR) spectroscopic analysis
The extracted sample (crude taxol) was mixed and grounded

with potassium bromide (KBr, IR grade) in a 1:10 ratio and pressed
under vacuum to form pellet disc using spectra pelletizer. FTIR of
the crude taxol was recorded and compared to standard paclitaxel
with Nicolet 5700 in transmittance mode with a higher solution
(1 cm–1) and a wide scan range of 4000 cm–1 to 500 cm–1 at
Department of Chemistry, HP University, Shimla (India).

2.6.4. Mass spectrometry (MS) analysis
The crude taxol was dissolved in methanol: water: acetic acid

(50:50:1; v/v), and at 50 V, 2 mL sample was injected by the loop
injection method [1]. Mass spectroscopy (MS) analysis of extracted
taxol and standard taxol was performed using Waters Micromass
Q-Tof Micro with electrospray ionization (ESI) and atmospheric
pressure chemical ionization (APcI) sources having mass range of
4000 amu in quadruple and 20,000 amu in ToF at SAIF/CIL, Punjab
ological Agar Medium (b) under Upright Biological Microscope at 40X.



Fig. 5. Conservation of taxol producing ITS region in other selected Aspergillus spp.
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Table 1
Plant tissue culture/cell culture based production of taxolfrom Taxus species.

Plant species Culture type Taxol yeild References

Taxus cuspidata Callus culture in Shake flask 0.020 % DW [47]
Taxus cuspidata Callus culture in Shake flask 431 mg/L [48]
Taxus brevifolia Callus culture 0.01 % of the dry weight of the bark [49]
Taxus media Cell suspension 115.2 mg/L [50]
Taxus x media Hairy root culture 221.8 mg/L [51]
Taxus chinensis Cell culture in a bioreactor 612 mg/L [52]
Taxus chinensis Cell suspension culture in Fed batch conditions 900 mg/L [53]
Taxus baccata Cell culture with methyl jasmonate induction 295 mg/L [43]
Taxus baccata Cell suspension cultures immobilized within Ca2+ alginate beads in Stirred bioreactor 43.43 mg/L [54]

Table 2
Taxol producing endophytic fungi isolated from different plant hosts.

Endophytic fungi Plant Host Concentration (mg/L) References

Taxomyces andeanae Taxus brevifolia 0.024–0.05 [16]
Pestalotiopsis microspora Taxus walachiana 60–70 [57]
Pestalotiopsis guepinii Wollemia nobilis 0.49 [58]
Periconia sp. Torreyagra ndifolia 0.03–0.83 [59]
Pestalotiopsis microspora Maguireothamnusspeciosus 0.11 [60]
Tubercularia sp. Taxus mairei 185.40 [6]
Trichothecium sp. Taxus wallichiana 0.17 [61]
Phoma sp. Taxus yunnanensis 32.93 [62]
Aspergillus niger Taxus yunnanensis 1000.00 [63]
Nodulisporum sylviforme Taxus cuspidata 392 [64]
Ectosroma sp. T. chinensis varmairei 276.75 [65]
Bionectria sp. T. chinensis varmairei 33.90–430.46 [66]
Aspergillus fumigatus Podocarpus sp. 560.0 [7]
Metarhizlum anisopliae Taxus chinensis 846.1 [67]
Nodulisporum sylviforme Taxus cuspidata 468.6 [68]
Phomabetae Gingko biloba 795.00 [69]
Fusariumredolens Taxus baccata subsp. wallichiana 66 [30]
Penicillium aurantiogriseum Corylusa vellana 70–350 [70]
Cladosporium oxysporum Moringa oleifera 550 [71]
Phoma Medicaginis Taxus wallichianavar, mairei 1215 [72]
Aspergillus aculeatinus Taxus chinensis var. mairei 334.92–1137.56 [73]
Aspergillus fumigatus Taxus sp. 1590.00 Present Study
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University, Chandigarh (India) and NIPER, Mohali (India) to
confirm the presence of taxol.

2.6.5. Nuclear Magnetic Resonance (NMR) analysis
1H NMR of fungal taxol was recorded at 23 �C in CDCl3 using

Bruker Advance-II 400 NMR spectrometer (Germany) with a
cryomagnet of field strength 9.4 T, to confirm the structure. 1H
NMR spectra were obtained at 400 Mhz following standard pulse
sequences and phase programs supplied with NMR spectrometer
[24].

2.6.6. High-Performance Liquid Chromatography (HPLC) analysis
HPLC was performed to estimate taxol production in the sample

extracts. For HPLC analysis, the sample extracts were diluted in the
mobile phase and subjected to HPLC (Perkin Elmer, USA),
performed using 200 Ic pump (Perkin Elmer) equipped with
reverse phase C18 5 mm column (Merck, LiChrosolv) and 785A
Absorbance Detector (Applied Biosystem) [16]. Briefly, extracted
test samples (crude taxol) were filtered through a 0.2 mm filter. The
mobile phase consisted of methanol: water, 80:20 (v/v). 10 mL of
the crude sample was injected each time with 1 mL per min flow
rate and was detected at 227 nm [25]. NetWin Software (Netel
Chromatographs, India) was used to monitor absorbance at
227 nm. Taxol presence was verified by comparing the retention
time of the test samples with that of the standard taxol (Paclitaxel,
M.P Biomedicals).
2.7. Quantification of fungal taxol

The calibration curve was constructed using HPLC by injecting
the different known concentrations of standard taxol. The area
under the peak of known concentrations was used for quantifica-
tion. The average of four independent experiments was used to
estimate the concentration of taxol production per liter from the
extracted samples.

3. Results and discussion

3.1. Isolation of taxol-producing endophytes from Taxus sp

Endophytes are well recognized as a novel resource of bioactive
compounds. Isolation of endophytic microorganisms producing
paclitaxel is extensively studied worldwide, and more than 100
taxol-producing strains have been isolated till now [11,22].
However, yield in the reported isolates was extensively low to
be explored further for the commercial applications [26,27].

In the present study, an attempt has been made to isolate a
hyper taxol-producing endophyte having industrial applications.
In total, 34 different endophytes were isolated from the bark, stem,
and needle tissue samples of Taxus sp. collected from Shimla,
Himachal Pradesh (India) (Supplementary information Table 1S).
The isolated endophytes include bacterial, fungal, and actino-
mycetes, which were sub-cultured on MMA medium to eliminate
taxol or other taxane traces carried over from the plant tissue. Only



Fig. 6. Detection of taxol using TLC;ST: Standard Taxol; and TS: Test Samples.

Fig. 7. UV spectrum of standard and fungal taxol produced from A. fumigatus.
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the fungal cultures were further screened, identified, and
characterized for taxol production.

3.2. Molecular screening of Taxol-producing Fungi based on dbat and
ITS genes

Detection of taxol using biochemical and spectrometric
techniques is a time-intensive procedure. A couple of studies
have used dbat, ts, and bapt genes encoding for the taxol
biosynthetic pathway as molecular markers for screening taxol-
producing fungi [9,28–30]. ITS gene coding for the nuclear
ribosomal internal transcribed spacer region is a universal DNA
barcode marker for fungal identification.

Therefore, dbat and ITS genes were used as molecular markers
for screening and identification of taxol-producing endophytic
fungi in the present study. CTAB method used for genomic DNA
isolation was found to be efficient. The concentration and purity of
the DNA were confirmed by nanodrop. PCR amplification confirms
that the fungal isolate, TPF-06, was found positive for dbat and ITS
gene. Agarose gel electrophoresis showed a band at approximately
�250 bp and �530 bp, respectively (Fig. 2). The sequencing of the
amplicons was carried out (sequence file provided as Supplemen-
tary information in Table 2S). BLAST analysis of the ITS sequence of
fungal isolate TPF-06 revealed 93 % similarity with Aspergillus
fumigatus (query coverage 97 %). Results of phylogenetic analysis
clustered TPF-06 with A. fumigatus species based on the
evolutionary distance (Fig. 3). The ITS gene sequence is submitted
to NCBI with accession number MF-374798.

Similar results were found during the primary screening of
taxol-producing endophytic fungi by Zhou et al. [31] and Zhang
et al. [32], reinforced the utility of ITS, ts, dbat and bapt genes as
molecular markers [29]. Zhou et al. [33], used a gene coding for
taxadiene synthase (TS), which is a rate-limiting enzyme in the
taxol biosynthetic pathway as a molecular marker to screen for
taxol-producing fungi. Jennewein et al. [34], on the contrary,
suggested that dbat and bapt genes are more diagnostic than the ts
gene because more than ten enzymatic steps after TS, are required
to reach Baccatin III and taxol itself. Roopa et al. [29] showed the
presence of dbat and bapt gene implicated in taxol biosynthesis and
ITS gene (�540 bp) in Alternaria, Fusarium and A. niger isolated
from Salacia oblonga. Xiong et al. [35] isolated and identified
Guignardia, Nigrospora, Phomopsis, and Phoma from T. media based
on ITS rDNA sequences.

3.3. Morphological Identification and Phylogenetic Analysis based on
18 s RNA

The pure culture of fungal isolate TPF-06, found positive based
on dbat gene expression, was prepared and maintained at 4 �C. TPF-
06 was aerobic, spore former with septate mycelium. The colonies
were white-creamish in appearance from the front side and
yellowish-white from reverse side (Fig. 4; a) on the MMA plate.
Morphological observations of TPF-06 under microscope indicated
stipe and conidial head consisted of single series of phialides, and
rounded conidia were dispersed in long and parallel dry chains
upon staining with LPCB dye at 40X magnification (Fig. 4; b). Based
on the morphological features observed, the endophytic fungus
was further confirmed to belong to the genus Aspergillus.

Sequence analysis of 18S rRNA elucidated the taxonomic position
of taxol-producing fungus. A strong relationship was revealed
between selected isolate and members of genus Aspergillus using
the BLAST comparison of 767 bp sequence with other similar
sequences available in the GenBank database [20]. The maximum
similarity resulted in a cluster that included many different species
of Aspergillus was showing a close relationship with the fungus
isolated in the present study. Homology comparison conferred 94 %
homology with A. fumigatus strain-A (001) and A. fumigatus 15H4-
PO-P1-1strain (Fig. 5). Based on the morphological features, 18S
rRNA gene sequence homology, and phylogenetic tree analysis, the
isolate was identified and designated as A. fumigatus KU-837249.
Also, the close association of fungal isolate TPF-06 with the
endophytic A. flavus and A. neoellipticus proved the endophytic
nature of A. fumigatus KU-837249. To the best of author’s knowledge
and as per the information available in the literature, it is revealed
that A. fumigatus from Taxus sp. of the Northern Himalayan region
was not reported for taxol production.

Zhou et al. [33] identified the taxol-producing endophytic
fungus as Mucor sp. based on 18S rRNA sequence. Similarly, the
HD86-9 strain revealed morphological and molecular similarity
(98 %) to A. niger using 18S rRNA and internal transcribed spacer
(ITS) region analysis [33].



Fig. 8. IR spectrum of (a) standard taxol; and (b) sample taxol from A. fumigatus.
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3.4. Hyper-production and extraction of taxol from endophytic fungus
A. fumigatus

Current sources of Taxol production include extraction from
cultivated Taxus spp., chemical semi-synthesis, in vitro plant tissue
and cell culture, metabolic engineering in bacterial and fungal
endophytes. The strategy to extract taxol from natural bark source
is limited at the global scenario because of the slow growth of Taxus
spp. and low-yield [36]. Thus, chemical semi-synthesis [37–41]
and in vitro plant tissue culture [42–45] techniques prevail as the
primary source for taxol supply at clinical level. Chemical semi-
synthesis of paclitaxel from 10-deacetylbaccatin III (10-DAB) was
reported for the first time in 1988 [46]. Plant tissue culture/cell
culture-based strategies used for the production of taxol from
Taxus spp. has been summarized in Table 1. However, low and
unstable product yield, high production costs [55] and dependence
on the yew tree material are burning problems in these widely
used methods [56].

Since the discovery of first taxol-producing fungi in 1993 [16],
continuous interest from researchers all over the world to explore a
different approach to produce the drug from fungal endophytes.
More than 50 taxol-producing fungal endophytes have been
isolated over the past decades. A comprehensive list of fungal
endophytes isolated from different plant species with the taxol
yield has been highlighted in Table 2. Numerous issues had delayed
the fungal production of the drug at the commercial scale. One of
the most highlighted challenges is the low yield in fungal strains.
Besides this, the stains will loose their taxol-producing capabilities
after long-term culturing [74]. To overcome this issue, the
heterologous expression of genes from taxol biosynthetic pathway
has been attempted to produce the compound using genetic
engineering techniques [13,75]. An E. coli and yeast strain were
engineered to produce taxadiene in high titers of 1 g/L and
8.7 � 0.85 mg/L respectively [76,77]. However, the lack of avail-
ability of a complete set of genes involved in paclitaxel
biosynthesis is at present a limiting factor, especially in case of
endophytic microorganisms [26].

In the present study, taxol from A. fumigatus (TPF-06) was
produced by growing fungal isolate in modified S7 medium
incubated at 25 � 1 �C for 21 days with sucrose as carbon and beef
extract as a nitrogen source. S7 medium was chosen for fungal
fermentation because the sugar ratio in the S7 medium was
identical to the inner bark of Taxus sp. [16]. Since the benzoyl ring in
plant-derived taxol is from phenylalanine [78,79], modified S7
medium was supplemented with phenylalanine, and sodium
acetate to act as precursors during the metabolism of these
endophytic fungi.

Similarly, in earlier investigations [80,81], S7 medium have
been used for taxol production. Xu et al. [82], reported taxol yield of
20 mg/L with Fusarium maire in the basal medium consisted of
glucose (80 g); NH4NO3 (5 g); MgSO4 (0.5 g); KH2PO4 (0.5 g); ZnSO4

(1 mg); Cu(NO3)2 (1 mg); FeCl3 (2 mg); NaOAc (1 g), vitamin B1



Fig. 9. MS chromatogram of (a) standard taxol; and (b) sample taxol from A. fumigatus.

P. Kumar et al. / Biotechnology Reports 24 (2019) e00395 9
(50 mg) and L-tyrosine (5 mg). Chakravarthi et al. [83] used potato
dextrose liquid medium for Cladosporium cladosporioides MD2 (T.
media) and Fusarium solani (T. celebica) for better taxol yield.

After 21 days of fermentation, culture filtrates were extracted
with equal volumes of ethyl acetate, and the organic phase was
collected. The solvent was evaporated under vacuum to get dry
solid residues of fungal extracts. These extracts were dissolved in
methanol and examined for taxol production by TLC, UV-
Spectroscopy, FTIR, MS, and HPLC techniques. The results were
compared with the standard taxol from MP Biomedical (USA) to
confirm the presence of taxol.

3.5. Characterization and analysis of extracted taxol

3.5.1. Thin-layer Chromatography (TLC) analysis
TLC analysis detected crude taxol on 0.25 mm silica gel plates

developed in chloroform:methanol (7:1, v/v) with 1 % (w/v)
vanillin in sulphuric acid reagent after gentle heating. The spot
appeared blue and faded to dark grey after 24 h (Fig. 6), indicated
the presence of taxol in the sample mixture when compared with
standard. Rf value was found to be 0.90, which was similar to
standard taxol [84]. A similar chromatographic result was also
reported for taxol production from Pestalotiopsis malicola and P.
pauciseta VM1 [85,86]. Gangadevi and Muthumary [87], using TLC
confirmed taxol production by Colletotrichum gloeosporioides JGC-9
isolated from medicinal plant Justicia gendarussa.
3.5.2. Ultra violet (UV) spectroscopic analysis
UV spectroscopic analysis showed lmax for sample taxol at

227 nm ranges as comparable to lmax for standard paclitaxel is
observed at 227 nm range with minor variations in absorbance
[88]. This confirmed the existence of taxol molecule in the sample
mixture (Fig. 7). The lmax corresponds to the existence of the
benzoyl group. The fungal compound isolated from Tubercularia sp.
TF5 showed a similar UV absorption spectrum to that of standard
taxol at 228 nm [6,82]. The UV absorption spectrum of fungal taxol
isolated from Pestalotiopsis pauciseta VM1 was similar to that of
standard taxol with maximum absorption at 235 nm, and 232 nm
[86] whereas Gangadevi et al. [89], reported similar UV spectrum
with maximum absorption at 273 nm.

3.5.3. Fourier Transfer Infrared (FTIR) spectroscopic analysis
The IR spectra of taxol produced by A. fumigatus was almost

superimposed on the spectrum of standard taxol with small
variations in peaks (Fig. 8; a,b). A broad peak in the range of 3336 to
3436 cm–1 was observed due to hydroxyl (�OH) and amide (–NH)
groups stretch in addition to aliphatic CH stretch in the range of
2920 to 2939 cm–1. The registration peak was observed in the range
of 2356–2364 cm–1 and 1045 to 1068 cm–1, due to amine (NH)
group and aromatic C and H bands stretching frequency. The
aromatic ring (C¼C) stretching frequency and the esters and
ketone (C¼O) groups stretching was observed in the range of 1590
to 1735 cm–1. Based on the IR analysis, this fungus showed a



Fig. 10. 1H NMR spectrum of (a) standard paclitaxel; and (b) crude paclitaxel from A. fumigatus.
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positive sign for the production of taxol in the culture medium in
comparison to the standard taxol, which was also reported in the
earlier work of Kumaran et al. [90] and Gangadevi and Muthumary
[91]. A similar IR spectrum with identical group stretching was
obtained for taxol obtained from an endophytic fungus P. pauciseta
VM1 [86].

3.5.4. Mass spectrometry (MS) analysis
High-resolution MS revealed the complex structure of crude

taxol produced from A. fumigatus with empirical formula
C47H51NO14 and molecular weight of 853.9. Chromatogram
analysis of standard taxol yields both (M+H)+ and (M + Na)+ peak
at an 854 m/z and 876 m/z, respectively (Fig. 9; a). Crude taxol
sample also produced both peaks (M+H)+ and (M + Na)+ at
854.77 m/z and 878.52 m/z, respectively (Fig. 9; b), with small
variations and confirmed the presence of taxol in test samples.
These results showed that A. fumigatus produced taxol in the
appreciable amount [57]. Electrospray mass spectra of fungal taxol
isolated from A. niger from Taxus cuspidate and A. candidus MD3
showed (M+H)+ and (M + Na)+ peak at 855 m/z and 876 m/z
respectively and was similar to the standard taxol [33,92].

3.5.5. Nuclear magnetic resonance (NMR) analysis
1H NMR spectra of taxol showed good distribution and

resolution of all the signals in the 1.0 ppm–8.5 ppm range. The
strong three-proton signals caused by the methyl and acetate
groups contributed to the strong three-proton signals and lie in the
range of 1.0 ppm–2.5 ppm along with multiplets caused by few
methylene moieties. The taxane skeleton and the side chain are
distributed by majority of the protons and observed in the region
between 2.5 ppm and 7.0 ppm, whereas C-2 benzoate, C-30 phenyl,
and C-30 benzamide groups contributed the aromatic proton
signals between 7.0 ppm and 8.3 ppm. The characteristic chemical
shifts of taxol are shown in Fig. 10 (a, b). Similar, 1H NMR
characteristic chemical shifts of taxol were obtained from the
previous findings of Zhang et al. [92] and Gangadevi and
Muthumary [91] from the A. candidus MD3 (T. media) and fungus
Bartaliniaro billardoides (Aegle marmelos) respectively. Pandi et al.



Fig. 11. HPLC Chromatogram of (a) standard paclitaxel (retention time = 2.05); and (b) sample taxol (retention time = 2.05).
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[3] have also noticed an identical NMR spectrum of taxol produced
from an endophytic fungus of Lasiodiplodiatheo bromae isolated
from Morinda citrifolia medicinal plant.

3.5.6. High-Performance Liquid Chromatography (HPLC) analysis
First taxol-producing fungus Taxomyces andreanae with a very

low yield of 24�70 ng/L was reported by Sterile et al. [16]. Since
then, few reports on the isolation of taxol-producing endophytic
fungi [57,81,82,85,93] have been documented. However, the
unstable production and lower yield is the major problem for
taxol production using fungal fermentation. HPLC analysis
recorded a peak with a specific retention time of 2.05, which is
identical to standard paclitaxel and confirmed the presence of
taxol in test samples (Fig. 11; a, b).

Srinivasan and Kathiravan [84,94] also reported taxol yield of
92 mg/L and 0.064 mg/L from P. funereal and P. breviseta fungus and
quantified with HPLC with a similar retention time of 2.822 and
2.210, respectively as standard taxol. Even Metarhizium anisopliae
and Cladosporium cladosporioides MD2 fungal strains are very
promising taxol producers with up to 800 mg/L yield quantified by
HPLC [95].

3.6. Quantification of fungal taxol

The taxol content from the stain TPF-06 identified as A. fumigatus
after fungal fermentation in S7 media for 21 days was quantified
using HPLC. The area under the peak of different known
concentrations of standard taxol served as the standard curve for
taxol quantification (Supplementary information Fig. 1S). The total
amount of taxol produced was recorded after an average of multiple
measurements from samples of single cultivation and found to be
1.60 g/L, which proposed the utility of this fungus for the production
of taxol in the culture medium. Although taxol production from
Aspergillus sp. has been reported previously. However, this is the
first report for the isolation, identification, and characterization of
Aspergillus fumigatus from Taxus spp. from the Northern Himalayan
region, India which has ability to produce taxol at a high amount of
1.6 g/L. To boost the supply and to bring down the price of cancer
treatment, different research strategies including plant cell culture,
strain improvement in endophytes using metabolic engineering
should be employed in future to satisfy the demand.
4. Conclusion

Endophytes associated with the tissues of higher plants are
emerging as a promising alternative and a novel source for
microbial taxol production. However, botanical resources and
chemical semi-synthesis are not able to satisfy the huge demand
for the anti-cancerous drug taxol. In the present work, a new
source for microbial taxol production has been explored from the
Northern Himalayan region, India, based on the genes involved in
taxol biosynthesis and nuclear ribosomal internal transcribed
spacer (ITS) region. From the study, it was revealed that identical
results exist between the fungal taxol and standard taxol in all the
respective spectroscopic and chromatographic techniques. Taxol
produced by fungal endophyte Aspergillus fumigatus was found
1.60 g/L, which is so far the highest yield of microbial taxol
production recorded till date according to the literature cited. Thus,
fermentation processes using taxol-producing endophytes may be
an alternative yet promising way to boost the supply of this
multibillion-dollar drug (taxol), thereby reduce the increasing cost
of drug therapy.
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