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Abstract. For several thousand years, Ganoderma lucidum 
(Ling‑Zhi in Chinese and Reishi in Japanese) has been widely 
used as a traditional medication for the prevention and treat-
ment of various diseases in Asia. Its major biologically active 
components, ganoderic acids (GAs), exhibit significant medic-
inal value due to their anti‑inflammatory effects. Dysregulation 
of microglial function may cause seizures or promote epilep-
togenesis through release of proinflammatory cytokines, 
including interleukin (IL)‑1β, IL‑6 and tumor necrosis factor 
(TNF)‑α. At present, only little information is available on 
the effects of GAs on microglia‑mediated inflammation 
in vitro and/or in vivo. The present study aimed to investi-
gate the role of GA‑A on microglia‑mediated inflammation 
in vitro. In addition, the effect of GA‑A on lipopolysaccharide 
(LPS)‑evoked alterations in mitochondrial metabolic activity 
of microglia was evaluated. The results of the present study 
demonstrated that GA‑A significantly decreased LPS‑induced 
IL‑1β, IL‑6 and TNF‑α release from mouse‑derived primary 
cortical microglial cells in a concentration‑dependent manner. 
GA‑A treatment reduced LPS‑induced expression of nuclear 
factor (NF)‑κB (p65) and its inhibitor, demonstrating that 
non‑toxic suppression of IL‑1β, IL‑6 and TNF‑α production 
by GA‑A is, at least in part, due to suppression of the NF‑κB 
signaling pathway. In addition, the LPS‑induced stimulation 
of mitochondrial activity of microglial cells was abolished 
by co‑treatment with GA‑A. Thus, GA‑A treatment may be 
a potential therapeutic strategy for epilepsy prevention by 
suppressing microglia‑derived proinflammatory mediators.

Introduction

For several thousand years, Ganoderma (G.) lucidum (Ling‑Zhi 
in Chinese and Reishi in Japanese) has been widely used as 
a traditional medication for the prevention and treatment of 
various human diseases in Asia (1). The major biologically 
active components of G.  lucidum are polysaccharides and 
the secondary metabolites ganoderic acids (GAs), including 
GA‑A, ‑B, ‑C, ‑D, ‑E and ‑F. Most GAs have a significant 
pharmacological potential; they were demonstrated to exhibit 
significant medicinal value with activities including inhibi-
tion of histamine release and cholesterol synthesis as well as 
antitumor and anti‑inflammatory effects (2).

It was demonstrated that inflammation participates in 
the mediation of acute and chronic neurological disorders, 
including epilepsy and seizure  (3). In human epilepsy 
patients and in experimental models of epilepsy, inflamma-
tory processes, including activation of microglia and release 
of proinflammatory cytokines, have been described  (4‑6). 
Emerging evidence thus supports the hypothesis that inflam-
mation may contribute to epileptogenesis. Microglia are 
intimately associated with diverse neuronal functions, such as 
modulation of synaptic function and plasticity, regulation of 
the delivery of energy substrates and enforcement of cellular 
immunity in the brain to restore function and promote healing, 
which helps to maintain tissue homeostasis  (7). However, 
dysregulation of microglial functions may cause seizures or 
promote epileptogenesis. Activation of microglia through 
increases of excitability and inflammation is a prominent 
feature of epileptic foci in the human brain and in experimental 
epilepsy models  (8‑10). Uncontrolled microglia‑mediated 
immunity may cause sustained release of inflammatory cyto-
kines, including interleukin (IL)‑1β, IL‑6 and tumor necrosis 
factor (TNF)‑α, to facilitate epileptogenesis (11).

GAs, the triterpenoid components of G. lucidum mushroom 
extracts, are attractive sources of anti‑inflammation products. 
Although numerous studies have reported that GAs exhibit 
anti‑inflammatory and antitumor properties in animal models 
mainly through the induction of cytokines such as IL‑1, IL‑6, 
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interferon‑γ and TNF‑α in monocytes/macrophages and 
T lymphocytes (12‑14), encouraging the potential use of GAs 
in combination therapy against inflammation and cancer, 
little information is available on their in vitro and in vivo 
effect on microglia‑mediated inflammation. The present study 
aimed to investigate the role of GA‑A on microglia‑mediated 
inflammation in vitro. In addition, the effect of GA‑A on 
lipopolysaccharide (LPS)‑evoked alterations in mitochondrial 
metabolic activity of microglia was evaluated.

Materials and methods

Reagents and chemicals. GA‑A, poly‑L‑ornithine hydro-
bromide, dimethyl sulphoxide (DMSO), deoxyribonuclease 
I from bovine pancreas (DNaseI), penicillin‑streptomycin, 
MTT and LPS were purchased from Sigma‑Aldrich (Merck 
KGaA, Darmstadt, Germany). Mouse monoclonal anti‑CD68 
antibody conjugated to phycoerythrin (PE) was purchased 
from eBioscience (San Diego, CA, USA; cat. no. 12‑0681‑82). 
Mouse monoclonal anti‑CD11b antibody conjugated to fluo-
rescein isothiocyanate was purchased from ProSpec‑Tany 
Technogene Ltd. (East Brunswick, NJ, USA; cat. no. ANT‑136). 
High‑glucose Dulbecco's modified Eagle's medium (DMEM), 
PBS, 0.05% (w/v) trypsin‑EDTA and fetal bovine serum (FBS) 
were obtained from Thermo Fisher Scientific, Inc. (Waltham, 
MA, USA).

Isolation and culture of primary microglia. The primary 
microglia cultures were established as follows: Mixed glial 
cultures from male C57BL/6 mice, purchased from the Animal 
Centre of the Xiangya Third Hospital (Changsha, China) were 
established from neonatal cortices (postnatal day 0‑1; n=5; 
mean weight, 1.4 g) (15). Cells were cultured in high‑glucose 
DMEM supplemented with 10% FBS, penicillin and strepto-
mycin in a humidified atmosphere of 95% air and 5% CO2 at 
37˚C. The culture medium was replaced with fresh medium 
24 h after the initial preparation and every 3 days thereafter. 
Following 1 week of culture, microglia were obtained by 
mechanical shaking of the mixed glial cell cultures for 1 h. 
Cells were routinely monitored for purity by fluorescence‑acti-
vated cell sorting and the population of CD11b+ CD68+ 
cells was >80% (Fig. 1). All experimental procedures were 
approved by the Xiangya Third Hospital Ethics Committee 
for Experimentation on Animals (Changsha, China), where the 
cultures were established.

Cell treatment. To induce the release of proinflammatory 
cytokines, microglia were treated with DMEM containing 
0.1 µg/ml LPS or vehicle for 24 h. To investigate the role of 
GA‑A in LPS‑induced release of cytokines, microglial cells 
were treated with a range of concentrations of GA‑A (10, 20, 
50 or 100 µg/ml), or co‑treated with LPS. Cells treated with 
vehicle were used as a control.

RNA extraction and SYBR green quantitative polymerase 
chain reaction (qPCR) analysis. Total RNA was extracted 
from cells using TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.). RevertAid™ First Strand cDNA Synthesis kit 
(Thermo Fisher Scientific, Inc.) was used to reverse transcribe 
the mRNA to cDNA according to the manufacturer's protocol. 

Briefly, 0.5 ng of the template RNA, 1 µl Oligo(dT)18 Primer 
and 12 µl RNase free water were mixed, and incubated at 65˚C 
for 5 min, then cooled down on ice. The mixture was added 
to Reaction Buffer (4 µl), RiboLock RNase inhibitor (1 µl), 
10 mM dNTP mix (2 µl) and RevertAid Reverse Transcriptase 
(1 µl), and incubated at 42˚C for 1 h. Finally, the mixture was 
heated to 70˚C for 5 min to obtain the cDNA. The expression 
of IL‑1β, IL‑6 and TNF‑α in cells was detected using a SYBR 
Fast qPCR mix (cat. no. RR430A; Takara, Dalian, China) at 
following condition: 95˚C for 30 sec, followed by 40 cycles of 
95˚C for 5 sec and 60˚C for 10 sec. Expression of β‑actin was 
assessed as an endogenous control. The mRNA levels were 
quantified using the 2‑ΔΔCq method (16).

Measurement of the release of IL‑1β, IL‑6 and TNF‑α. Levels 
of IL‑1β, IL‑6 and TNF‑α were measured in supernatants 
of the primary mouse microglia cell culture with commer-
cially available ELISA kits (Sigma‑Aldrich; Merck KGaA) 
according to the manufacturer's instructions. Measurements 
were performed in three independent experiments.

Western blot analysis. Immunoblotting was performed to 
detect the expression of IL‑1β, IL‑6 and TNF‑α in the cell 
lysate, as well as the levels of nuclear factor (NF)‑κB and 
phosphorylated inhibitor of NF‑κB (p‑IκBα) in microglial 
cells. Cultured or transfected cells were lysed in radioimmu-
noprecipitation assay buffer with 1% phenylmethane sulfonyl 
fluoride. The concentration of protein was determined using 
the BCA Protein Assay kit (cat. no. P0011; Beyotime Institute 
of Biotechnology, Haimen, China) according to the manufac-
turer's protocol. A total of 60 µg/lane of protein was loaded into 
a 12% SDS‑PAGE minigel, electrophoresed and transferred 
onto a polyvinylidene difluoride membrane (Wuhan Boster 
Biological Technology, Ltd., Wuhan, China). The membranes 
were probed with antibodies directed against IL‑1β (cat. 
no. I3767; 1:1,000), IL‑6 (cat. no. SAB4301665; 1:1,000) and 
TNF‑α (cat. no. SAB4502982; 1:2,000) from Sigma‑Aldrich 

Figure 1. Primary microglial cells were isolated from mice cerebral cortex 
and identified by fluorescence‑activated cell sorting following staining with 
anti‑CD11b‑FITC and CD68‑PE antibodies. CD11b‑ and CD68‑positive cells 
were indicated as microglial cells (~80%). FITC, fluorescein isothiocyanate; 
PE, phycoerythrin.
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(Merck KGaA); p‑IκBα (cat. no. 9246S; 1:1,000) and NF‑κB 
(cat. no. 8242; 1:3,000) from Cell Signaling Technology, Inc. 
(Danvers, MA, USA); GAPDH (cat. no. ab9485; 1:3,000) from 
Abcam (Cambridge, UK) at 4˚C overnight. The blots were 
subsequently incubated with horseradish peroxidase‑conju-
gated secondary antibodies (cat. no. ab7090 and ab97040; 
1:5,000; Abcam) for 1 h at 37˚C. Signals were visualized using 
enhanced chemiluminescence substrate (EMD Millipore, 
Billerica, MA, USA). GAPDH was used as an endogenous 
protein for normalization.

Measurement of the mitochondrial metabolic activity. The 
mitochondrial activity of microglial cells was determined by 
measurement of MTT reduction to MTT formazan by cellular 
mitochondrial dehydrogenases. After incubation with GA‑A 
for 24 h, MTT (0.5 mg/ml) was added to the medium, followed 
by incubation for 4 h at 37˚C. Subsequently, dimethyl sulfoxide 
(150 µl) was added to dissolve the formazan crystals and the 
absorbance was measured at 570 nm using a microplate reader 
(Paradigm Detection Platform; Beckman Coulter, Brea, CA, 
USA); this value was proportional to the number of viable cells 
with intact mitochondria. Measurements were performed in 
three independent experiments.

Statistical analysis. Values are expressed as the mean ± standard 
error. Statistical analysis was performed using SPSS software 

(version 20; IBM Corp., Armonk, NY, USA). Student's t‑test 
was performed for two‑group comparisons, while one‑way 
analysis of variance with Tukey's post‑hoc test was performed 
for multiple‑group comparisons. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Effects of GA‑A on LPS‑induced release of IL‑1β, IL‑6 and 
TNF‑α from cortical microglial cells in culture. To investigate 
the role of GA‑A on LPS‑induced release of IL‑1β, IL‑6 and 
TNF‑α from mouse cortical microglial cells, the cells were 
treated with 0.1 µg/ml LPS for 24 h. Treatment with LPS 
resulted in a potent, 80‑, 42‑ and 110‑fold increase in IL‑1β, 
IL‑6 and TNF‑α release, respectively (Fig. 2A). In addition, 
the microglial cells were treated with a range of concentrations 
of GA‑A (10, 20, 50 and 100 µg/ml) for 24 h. The results indi-
cated that GA‑A treatment slightly but not significantly altered 
the release of IL‑1β, IL‑6 and TNF‑α (Fig. 2B‑D). GA‑A 
increased IL‑1β at 20 µg/ml, and IL‑6 at 10 and 20 µg/ml; 
GA‑A at 100 µg/ml decreased the release of IL‑1β, IL‑6 and 
TNF‑α to ~75% of that in the control group, but this effect was 
not statistically significant (Fig. 2B‑D).

Furthermore, it was determined whether GA‑A treatment 
was able to abolish the LPS‑induced release of IL‑1β, IL‑6 and 
TNF‑α from mouse cortical microglial cells. First, RT‑qPCR 

Figure 2. Effects of LPS on the release of IL‑1β, IL‑6 and TNF‑α from mouse cortical microglial cells in culture. (A) The cells were treated with LPS (0.1 µg/ml) 
for 24 h, and ELISA were used to determine the release of IL‑1β, IL‑6 and TNF‑α. (B‑D) The cells were treated with GA (10, 20, 50 or 100 µg/ml) for 24 h and 
ELISA was used to determine the release of (B) IL‑1β, (C) IL‑6 and (D) TNF‑α. Values are expressed as the mean ± standard error of the mean and relative 
to the control. Three independent experiments were performed. ***P<0.001 vs. control. IL, interleukin; TNF, tumor necrosis factor; LPS, lipopolysaccharide; 
GA, ganoderic acid A.
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was performed to detect whether the levels of IL‑1β, IL‑6 and 
TNF‑α were affected at the transcriptional level, revealing 
that GA‑A treatment (50 µg/ml) did not significantly alter 
the cellular mRNA expression of IL‑1β, IL‑6 and TNF‑α 
(Fig. 3A). However, ELISAs indicated that GA‑A treatment 
(10, 20, 50 or 100  µg/ml) for 24  h caused a statistically 
significant reduction of LPS‑stimulated release of IL‑1β from 
primary mouse microglial cells in a concentration‑dependent 
manner (Fig. 3B). At lower concentrations (10 µg/ml), the drug 
did not cause any significant decrease of IL‑6 and TNF‑α 
release (Fig. 3C and D). However, IL‑6 and TNF‑α release 
were markedly reduced at higher concentrations of the drug 

(50 and 100 µg/ml; Fig. 3C and D). The most prominent effect 
was observed at a dose of 100 µg/ml (a decrease by 30, 32 and 
22% for IL‑1β, IL‑6 and TNF‑α, respectively). These results 
were confirmed by western blot analysis for IL‑1β, IL‑6 and 
TNF‑α expression in cell lysate (Fig. 3E).

GA‑A inhibits LPS‑induced NF‑κB pathway activation. 
Microglial cells were then treated with GA‑A (0, 10 or 
50 µg/ml) and stimulated with LPS (0.1 µg/ml). Western blot 
analysis of the total protein extract indicated that treatment 
with GA‑A at 10 and 50 µg/ml reduced LPS‑induced p‑IκBα 
and NF‑κB (p65) expression, with 50  µg/ml being more 

Figure 3. Effects of GA on LPS‑induced release of IL‑1β, IL‑6 and TNF‑α from mouse cortical microglial cells in culture. (A) The cells were treated with 
GA (50 µg/ml) for 24 h, and total RNA was then extracted. Quantitative polymerase chain reaction was used for analysis of the mRNA levels of IL‑1β, 
IL‑6 and TNF‑α. (B‑D) The cells were treated with LPS alone or co‑treated with LPS and GA (10, 20, 50 and 100 µg/ml) for 24 h, and ELISA was used to 
determine the release of (B) IL‑1β, (C) IL‑6 and (D) TNF‑α. (E) Western blot was performed to analyze the expression of IL‑1β, IL‑6 and TNF‑α in cell 
lysate after the indicated treatments (left) and quantification (right). Values are expressed as the mean ± standard error of the mean and relative to the control 
that was treated with LPS alone. Three independent experiments were performed. *P<0.05, **P<0.01 vs. control. IL, interleukin; TNF, tumor necrosis factor; 
LPS, lipopolysaccharide; GA, ganoderic acid A.
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effective (Fig. 4A). These results revealed that GA‑A inhibited 
LPS‑induced NF‑κB pathway activation, which may suggest 
that that non‑toxic suppression of IL‑1β, IL‑6 and TNF‑α 
production by GA‑A is, at least in part, due to suppression of 
the NF‑κB signaling pathway.

GA‑A reduces LPS‑induced increases in mitochondrial 
activity of mouse cortical microglia cells. GA‑A treatment 
(10, 20, 50 or 100 µg/ml for 24 h) did not significantly alter the 
mitochondrial activity of microglial cells (Fig. 4B), while cells 
stimulated with LPS (0.1 µg/ml) for 24 h exhibited a significant 
increase in their mitochondrial activity by 50% (Fig. 4C). The 
increase of mitochondrial activity induced by LPS was mark-
edly attenuated by treatment of the cells with GA‑A used at 10 
and 20 µg/ml, and was abolished by higher concentrations of 
the drug (50 and 100 µg/ml; Fig. 4C).

Discussion

The present study demonstrated, for the first time, to the best of 
our knowledge, the effects of GA‑A on LPS‑stimulated release 
of proinflammatory cytokines from primary mouse microglia 
cultures. To date, only a few studies have examined the effects 
of GA‑A on microglia‑mediated inflammation (17). Microglial 
cells are brain‑resident macrophage‑like cells that contribute 

to innate immune mechanisms  (18). Microglia‑mediated 
inflammation was reported to have an important role in 
the pathogenesis of epilepsy (19). In response to stressors, 
microglia are activated, leading to the release of proinflamma-
tory mediators that may promote seizures and epileptogenesis, 
particularly when uncontrolled inflammation occurs (5). Of 
note, the extent of microglia activation correlates with the 
frequency and duration of seizures (20).

Activated microglial cells release cytokines that induce 
transcriptional and post‑transcriptional signaling. For instance, 
microglia release a variety of pro‑inflammatory and cytotoxic 
soluble factors, including IL‑1β and IL‑6, and subsequent acti-
vation of the proinflammatory IL‑1 receptor/Toll‑like receptor 
(IL1R/TLR) system (21). In epilepsy models, this IL1R/TLR 
signaling is activated, which promotes the onset and recurrence 
of seizures (22). Of note, pharmacological blockade or genetic 
inactivation of the IL1R/TLR system drastically reduces 
seizure activity (23). IL‑1β increases glutamate release via 
TNF‑α production, resulting in elevated extracellular gluta-
mate levels and hyperexcitability (24). Furthermore, IL‑1β 
also stimulates IL‑6 release (25). After a febrile seizure, chil-
dren had significantly higher serum IL‑6 levels than a healthy 
control group (26), and IL‑6 levels had a descending trend 
during the time of recovery from the seizure in the intractable 
epilepsy group and the non‑intractable epilepsy group (27), 

Figure 4. Effect of GA on LPS (0.1 µg/ml)‑induced changes in the NF‑κB signaling pathway and mitochondrial activity of mouse cortical microglial cells in 
culture. (A) Western blot was performed to analyze the expression of p‑IκB and p‑p65 in microglial cells after the indicated treatments (left), and quantification 
(right). (B) The cells were treated with GA (10, 20, 50, 100 µg/ml), or vehicle (control) for 24 h, and MTT were used to determine the mitochondrial activity 
of microglia cells. (C) The cells were treated with LPS alone, or co‑treated with LPS and GA (10, 20, 50 or 100 µg/ml), or vehicle (control) for 24 h, and the 
MTT assay was used to determine the mitochondrial activity of microglial cells. Values are expressed as the mean ± standard error of the mean and relative to 
the control treated with vehicle. Three independent experiments were performed. #P<0.05 vs. control, *P<0.05, **P<0.01 vs. LPS alone. GA, ganoderic acid A; 
LPS, lipopolysaccharide; NF‑κB, nuclear factor κB; p‑IκBα, phosphorylated inhibitor of NF‑κB.
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indicating that high IL‑6 levels may be a pathogenetic factor 
in epilepsy.

LPS is a component of the wall of Gram‑negative bacteria, 
which may induce immediate focal epileptic‑type discharges 
in the mouse neocortex mediated by IL‑1β release (28). LPS 
activates microglia via TLR4. Endogenous ligands of TLR4, 
including IL‑1β, may be generated by microglia following 
brain injury, mimicking the effect of LPS (29). An animal 
study indicated that activated microglia release proinflam-
matory molecules to decrease the seizure threshold  (30). 
Consequently, microglia may help generate seizures by 
releasing, and responding to, endogenous inflammatory 
mediators, including IL‑1β and TNF‑α  (31). For instance, 
chemokine‑activated microglia cooperated with astrocytes to 
release TNF‑α and other cytokines, thereby contributing to 
cell loss and seizures (32).

Anti‑inflammatory molecules then help to resolve the 
inflammatory tissue response. Clinical anti‑inflammatory 
or immunosuppressive treatments may control seizures 
in certain epileptic syndromes. For instance, intravenous 
immunoglobulin (IVIG) increases circulating levels of IL‑1 
receptor antagonist and blocks IL‑1β signaling (33,34). IVIG 
suppresses seizures, which may be partially mediated by the 
reduction of proinflammatory cytokines and suppression of 
microglia activation (35).

Numerous studies have indicated that GAs enhance 
the immune system. Akihisa  et  al  (36) identified four 
GAs isolated from the fruiting bodies of the fungus 
G.  lucidum and identif ied that these GAs inhibit 
12‑O‑tetradecanoylphorbol‑13‑acetate‑induced inflammation 
in mice. The triterpene extract from G. lucidum markedly 
suppressed the secretion of the inflammatory cytokines TNF‑α 
and IL‑6, as well as the inflammatory mediator nitric oxide 
from LPS‑stimulated murine RAW264.7 cells (37). In addi-
tion, natural killer cell activity was significantly enhanced by 
intraperitoneal administration of GA‑Me (38). The anti‑inflam-
matory properties of purified GAs encourage the potential use 
of GAs in combination therapy against inflammation.

The present study demonstrated that GA‑A significantly 
decreased LPS‑induced IL‑1β, IL‑6 and TNF‑α release 
from primary mouse cortical microglial cells in a concentra-
tion‑dependent manner. Furthermore, GA treatment did not 
alter the mRNA expression of IL‑1β, IL‑6 and TNF‑α, but 
decreased the release of IL‑1β, IL‑6 and TNF‑α in the cell 
culture medium, indicating that GA may target the release of 
cytokines. LPS induces proinflammatory cytokines, including 
IL‑1β, IL‑6 and TNF‑α, through the activation of several intra-
cellular signaling pathways such as NF‑κB (39). A previous 
study demonstrated that G.  lucidum extracts significantly 
and non‑toxically suppressed TNF‑α production by murine 
macrophages induced by peripheral blood mononuclear cells 
from asthma patients (12). Furthermore, the inhibitory effect 
of G. lucidum extracts on LPS‑induced TNF‑α production by 
macrophages was associated with the suppression of NF‑κB 
signaling. In line with these previous studies, the results 
of the present study indicated that GA treatment reduced 
LPS‑induced p‑IκBα and NF‑κB (p65) expression, suggesting 
that non‑toxic suppression of IL‑1β, IL‑6 and TNF‑α produc-
tion by GA is, at least in part, due to suppression of NF‑κB 
signaling. Although the results of the present study indicate 

GA regulates the IL‑1β, IL‑6 and TNF‑α production through 
NF‑κB at transcriptional level, other mechanism by which GA 
control the cytokines protein production cannot be excluded, 
such as the ubiquitin pathway (40).

Since the alterations of microglial function have an impact 
on neuronal excitability and epileptic activity, the present 
study also examined the effect of GA‑A on the metabolic 
activity in mitochondria. In line with other studies (41,42), 
the results of the present study indicated that LPS stimulation 
resulted in significant increase in mitochondrial activity of 
microglial cells, and this effect was abolished by co‑treatment 
with GA‑A. A previous study identified that GA‑T treatment 
resulted in a reduction of mitochondrial membrane potential 
and release of cytochrome C, as well as subsequent apoptosis 
in lung cancer cells, suggesting that the apoptosis induction 
of GA‑T may be mediated by mitochondrial dysfunction (43). 
However, incubation in GAC2‑conditioned media attenuated 
mitochondrial defects in a 3‑nitropropionic acid (3‑NP) cell 
model, and G.  lucidum treatment therapeutically restored 
neuronal loss in mice with 3‑NP‑induced behavioral impair-
ment and striatal degeneration (44). Whether the effects of 
GA‑A on LPS‑induced changes in mitochondrial activity of 
microglial cells are involved in the drug's action on the release 
of proinflammatory cytokines remains to be elucidated.

In conclusion, the results of the present study demonstrated 
that GA‑A reduced the LPS‑induced release of proinflamma-
tory cytokines, IL‑1β, IL‑6 and TNF‑α from mouse cortical 
microglial cells in culture at least in part via suppression of the 
NF‑κB signaling pathway, and suppressed the LPS‑stimulated 
increase in mitochondrial metabolic activity of the cells. Thus, 
treatment with GA‑A may be potential therapeutic strategy for 
epilepsy via suppression of microglia‑derived proinflammatory 
mediators.
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