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Organic–inorganic covalent–ionic network
enabled all–in–one multifunctional coating
for flexible displays

Xiong Lin1, Chen–Yu Li1, Lu–Xuan Liang1, Qing–Yun Guo2, Yongzheng Zhang1,
Si–Rui Fu1, Qin Zhang1, Feng Chen1, Di Han 1 & Qiang Fu 1

Touch displays are ubiquitous in modern technologies. However, current
protective methods for emerging flexible displays against static, scratches,
bending, and smudge rely on multilayer materials that impede progress
towards flexible, lightweight, andmultifunctional designs. Developing a single
coating layer integrating all these functions remains challenging yet highly
anticipated. Herein, we introduce an organic–inorganic covalent–ionic hybrid
network that leverages the reorganizing interaction between siloxanes (i.e.,
trifluoropropyl–funtionalized polyhedral oligomeric silsesquioxane and
cyclotrisiloxane) and fluoride ions. This nanoscale organic–inorganic
covalent–ionic hybridized crosslinked network, combined with a low surface
energy trifluoropropyl group, offers a monolithic layer coating with excellent
optical, antistatic, anti–smudge properties, flexibility, scratch resistance, and
recyclability. Compared with existing protective materials, this all–in–one
coating demonstrates comprehensive multifunctionality and closed–loop
recyclability, making it ideal for future flexible displays and contributing to
ecological sustainability in consumer electronics.

Touch display, serving as a direct interface for human–machine
interaction, has been widely adopted in consumer electronics (e.g.,
smartphone and tablets), medical devices, military equipment, and
holds great potential in emerging fields such as virtual reality and the
internet of things1–5. To ensure clear image display and accurate touch
recognition, the protective cover window for touch displays must
possess high transmittance, and suitable surface resistivity
(106 ~ 1012 ohm sq−1), to prevent static electricity accumulation on the
surface and resulting electrostatic discharge and electrical malfunc-
tion when the surface resistance exceeds 1012 ohm sq−1, as well as dis-
abled capacitive touch recognition when the surface resistance falls
below 106 ohm sq−16–8.Meanwhile, protective coverwindowswith extra
excellent scratch resistance (i.e. high hardness), high flexibility, and
anti-smudge properties are highly preferred for emerging flexible
displays9–11. Currently, the prevailing approach employed by

electronics companies or academic organizations involves individually
depositing multiple layers (e.g., flexible substrate, flexible yet hard,
antistatic, and anti-smudge layer) as cover windows to achieve the
desired multiple functions (Fig. 1a). However, this results in complex
fabrication procedures and intricate electronics structures, which
significantly impede the trend toward lighter, thinner, and multi-
functional designs for flexible touch displays. To overcome such lim-
itations, integrating all these functions into a single coating layer is
highly anticipated.

To achieve a coating layer that possesses all the required func-
tions, several challengesmustbe overcome.Oneprominent obstacle is
endowing a material with high transparency and antistatic properties,
while the other challenge is imbuing it with ceramic-like scratch
resistance and polymer–like compliance, which are typically mutually
exclusive. Currently, the incorporation of conductive additives such as
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carbon nanotubes12,13, metal nanowires14, metal grids15, and ionic
salts16,17 to polymers has been proved to be effective in achieving sui-
table surface resistivity. However, their incorporation often results in a
loss of transparencydue to factors such as the inherent color and poor
dispersion of a large amount of conductive fillers18,19. More impor-
tantly, this leads to an inadequate balance between hardness and
flexibility caused bymodulusmismatching and the distinction of crack
tips between the hard and soft components in the resulting
hybrids10,20. Recently, there have been successful endeavors to
demonstrate the promising potential of molecular-level hybridization
betweenorganics and inorganics for the fabricationof a singlematerial
possessing high transparency, hardness, and flexibility. Specifically,
polysiloxanes with hyperbranched21–23, ladder-like10,24, and cage-
like11,25–27 architectures have emerged as the preferred choice for pre-
paring flexible yet hard transparent coatings. The ingenious incor-
poration of functional groups could endow such coatings with extra
anti-smudge11,21,22,25,28, antibacterial21,25, or self–healing27,29 abilities.
Nevertheless, achieving molecular-level hybridization with conductive
components remains largely unexplored, it is still an urgent task to
develop an all–in–one methodology that integrates multi-
functionalities based on a simple and scalable strategy.

In this study, we develop a nanoscale organic–inorganic
covalent–ionic hybrid network comprising
trifluoropropyl–functionalized polyhedral oligomeric silsesquioxane
(FPOSS, T units donor), 1,3,5–tris[(3,3,3–trifluoropropyl) methyl]
cyclotrisiloxane (FD3, D units donor), and tetrabutylammonium
fluoride (TBAF) by exploiting the reorganizing interaction
between fluoride ions (derived from TBAF) and siloxanes (Fig. 1b,c).
This approach allows us to achieve what we term as
trifluoropropyl–functionalized T and D units–based (FTD) coating
materials. Adequate free ions (fluoride and tetrabutylammonium ions)
allow the adjustment of the surface resistivity, while the crosslinked
nanoscale organic–inorganic covalent–ionic hybrid networks and low

surface energy groups (i.e., –(CH2)2CF3) ensure their excellent optical,
antistatic, mechanical, and anti-smudge properties without compro-
mising each other. By depositing this all–in–one coating on flexible
substrates such as colorless polyimide (CPI) films, the bilayered cover
windows (Fig. 1d) exhibit an effective combination of excellent optical
transparency, polymer–like flexibility, ceramic-like scratch resistance,
anti-reflection, antistatic, anti-smudge properties in practical applica-
tions. More importantly, taking advantage of the reorganization
between fluoride ions and siloxanes, this coating can be easily che-
mically recycled and reused on CPI films without scarificing their
integral properties. This methodology not only promotes the devel-
opment of lightweight, thin, andmultifunctional consumer electronics
but also enhances ecological sustainability.

Results
Materials design and fabrication
The interaction between fluoride ions and polyhedral oligomeric sil-
sesquioxanes (POSSs) has proven to be a useful method for con-
structing ionic hybrid molecules through reorganization30–33. Thus, we
envision that the incorporation of free fluoride and tetra-
butylammonium ions will not only allow us to introduce adequate free
ions at the molecular level for tuning surface resistivity34 but will also
facilitate the design of recyclable siloxane–basedmaterials. Alongwith
the presence of low surface energy groups35–38 (e.g. trifluoropropyl),
remarkable anti-smudge properties could be also achieved. In general,
POSS salts encapsulated with fluoride ions are fabricated (Supple-
mentary Fig. 1a,b)30,31 due to the host–guest interaction between POSS
cages containing electron-withdrawing substituents and fluoride ions.
We propose that if certain components hinder the host–guest inter-
action between POSS cages with electron-withdrawing substituents
andfluoride ions, crosslinkedorganic–inorganic covalent–ionic hybrid
networks will be obtained. In our design, we selected cyclic siloxanes
(i.e., D units), which possess distinct symmetry compared to POSS
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(i.e., T units) and can be reorganized by fluoride ions39,40, to hinder
the host–guest interaction between POSS cages and fluoride ions
(Supplementary Fig. 1a,c). By combining this with FPOSS matrix and
TBAF, a highly crosslinked organic–inorganic covalent–ionic hybrid
networks–based material is developed (Fig. 1b,c). Typically, the
incorporation of FD3 leads to the formation of a transparent coating
rather than an opaque one (Supplementary Fig. 2).

After obtaining the material, we started to evaluate the influence
of ions content on the morphology and surface resistivity of
organic–inorganic covalent–ionic hybrid networks. As seen from the
scanning electron microscopy (SEM) images of samples with insuffi-
cient ions (molar ratio of TBAF to Si = 0.03), they are brittle and there
are obvious cracks on the surface after fully curing procedure (Sup-
plementary Fig. 3a).With higher content of ions (molar ratioofTBAF to
Si > 0.03), smooth morphology could be obtained (Supplementary
Fig. 3b, c), but for samples with excessive ions (molar ratio of TBAF to

Si = 0.15), fluoride and tetrabutylammonium ions tend to aggregate in
the form of ionic salts and destroy the smoothness of the surface
(Supplementary Fig. 3d,e). Therefore, suitable content of ions (molar
ratio of TBAF to Si > 0.03 and <0.15) were identified to be important to
achieve a smooth surface morphology and amorphous networks.
Furthermore, surface resistivity results (Fig. 2a) show that surface
resistivities are decreased with increasing ions content, reaching the
common antistatic range (106 ~ 1012 ohm sq−1). Consequently, to ensure
both a smooth surface and low surface resistivity (~ 4 × 108 ohm sq−1), a
molar ratio of TBAF to Si of 0.12 was selected for materials fabrication.
Following the determination of ions content, the optimal curing time
was evaluated based on mechanical properties. As shown in
load–displacement curves (Supplementary Fig. 4), the smaller hyster-
esis arises at samples with longer curing time, and their corresponding
effective modulus (E *) and hardness (H) increase to a stable value,
suggesting an optimal curing time of 6 h (Fig. 2b). And the rheological
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properties of the FTD coating (Supplementary Fig. 5) are recorded to
illustrate the network formation. Firstly, siloxanes with T and D
structures reorganize in a solventwith the catalysis offluoride ions due
to the dynamic nature of the Si–O–Si bond under this condition. Then
the fragmentized siloxanes reorganize and form abundant Si–O–Si
bond to gradually construct crosslinked networks during the solution
volatilization. Asmostof the solutions volatilized, the storagemodulus
(G’) and loss modulus (G”) reach a plateau, reflecting the thermo-
dynamic equilibrium of solution volatilization. At higher temperature
and lower pressure (50 °C under vacuum), further volatilization of the
residual solution results in a highly crosslinked Si–O–Si crosslinked
network, providing a robust framework for achieving high hardness.
After 6 h at 50 °Cunder vacuum, theG’ andG”of FTDcoating approach
constant values like modulus and hardness, indicating that optimized
FTD coating has been achieved.

The interactions between hybrid siloxanes and ions in the FTD
coating were analyzed by Fourier transform infrared (FTIR), 19F, and
29Si cross–polarization/magic–angle spinning (CP–MAS) NMR spec-
troscopy. The FTIR spectrum of FTD coating exhibit the combination
of Si–O–Si vibration of FPOSS at 1130 cm−1 and N+–C vibration of TBAF
at 1484 cm−1, as well as the disappearance of Si–O–Si vibration of
strained cyclic FD3 at 1011 cm

−1, indicating the successful preparation
of the FTD coating (Fig. 2c and Supplementary Fig. 6). Meanwhile, the
vibration of Si–O–Si in FPOSS is redshifted to 1104 cm−1 in the FTD
coating. These shifts in the FT–IR spectra suggest the formation of
ionic interactions between hybrid siloxanes and fluoride and tetra-
butylammonium ions. The 19F CP–MAS NMR spectra further confirm
these interactions, according to the shift of the –(CH2)2CF3 peak from
–69.4 ppm in both FPOSS and FD3 to –70.6 (F1, for –CF3 on FPOSS) and
–68.2 (F2, for–CF3 onFD3) ppm in the FTDcoating, and shift of fluoride
ions peak from –113.8 ppm to –110.4 (F3, for free fluoride ions) and
–108.0 (F4, for a small amount of F–Si bond) ppm in the FTD coating
(Fig. 2d and Supplementary Fig. 7a). Furthermore, the 29Si CP–MAS
NMR spectra confirm the presence of two Si types, SiT and SiD41,42, and
reveal a shift of the SiT peak from –69.8 ppm in FPOSS to –71.1 ppm in
the FTD coating (Fig. 2e and Supplementary Fig. 7b). This shift is lower
than the shift of approximately 3.7 ppm observed for the formation of
FPOSS salts encapsulated with fluoride ions31, indicating the con-
struction of organic–inorganic covalent–ionic interactions in the
hybrid networks of the FTD coating.

Moreover, the scale of interactions between hybrid siloxanes and
ions in FTD coating was evaluated using transmission electron
microscopy (TEM). The TEM image (Fig. 2f) of FTD coating shows the
presence of amorphous hybrid networks at the nanometer scale. The
energy–dispersive X-ray spectroscopy (EDS) results (Supplementary
Fig. 8) indicate uniform dispersion of elements C, O, N, F, and Si in the
FTD coating, with experimental relative elements contents close to
theoretical values (Supplementary Table 1). Such uniformity on the
nanoscale scale indicates the effective hybridization of
organic–inorganic covalent–ionic networks, contributing to the high
transmittance and the integration of flexibility and hardness of FTD
coating.

Furthermore, beyond the significant role of FD3 in fabricating
transparent coating, we investigated the influence of FD3 content on
mechanical properties. Parameters including H3/E *2, and elastic
recovery (We) were used to evaluate scratch resistance and resilience,
respectively43. Firstly, the FD3 content shows negligible influence on
surface resistivities (Supplementary Fig. 9). However, coatings with
higher FD3 content exhibit larger hysteresis in load–displacement
curves (Fig. 2g), with corresponding decreases in E* and H of the
coatings (Fig. 2h) from 2.25 and 0.29GPa to 1.98 and 0.14 GPa,
respectively, as themolar ratio of SiD to SiT increases from0.05 to0.25.
Consequently, the FTD coating with the molar ratio SiD to SiT of 0.05
demonstrates the highest value of H3/E*2 and elastic recovery (Sup-
plementary Fig. 10), which are 5.01MPa and 83.2%, respectively. SEM

images (Supplementary Fig. 11) reveal a rough surface, indicating that
further reduction in FD3 content is not feasible as sufficient FD3 is
necessary to hinder the formation of POSS salts encapsulated with
fluoride ions. Therefore, FTD coating with the molar ratio of SiD to SiT
as 0.05 was chosen as the representative coating for practical appli-
cations. To evaluate the accuracy of nanoindentationmeasurement for
FTD coating, different loads (10, 100, and 500mN) are applied (Sup-
plementary Fig. 12). The E* and H of FTD coating remain more or less
constant under different test loads. Comparedwith commonmaterials
(Supplementary Fig. 13), such as aluminum (Al), polycarbonate (PC),
CPI, polyethylene terephthalate (PET) films, and ultrathin glass (UTG),
as well as typical engineering materials like ceramics, metals, elasto-
mer, and polymers44, FTD coating exhibit excellent polymer–like
flexibility (low E*, 2.25 GPa), ceramic-like scratch resistance (H3/
E*2 > 5MPa), and resilience (We > 80%), highlighting its potential as a
protective coating for flexible displays (Fig. 2i, j).

Electrostatic protection properties
To characterize the antistatic properties of the FTD coating, we
designed two experiments to evaluate external and internal electro-
static protectionproperties, respectively. For the external electrostatic
protection property, electroneutral samples are initially charged with
positive or negative charges and ions by shots from an ion gun as seen
in the illustration (Fig. 3a). Subsequently, the charged samples are
transferred into a Faraday cup connected to an electrometer to record
the decay of external electrostatic charges. Specifically, we compared
the external electrostatic protection property of the FTD coating with
UTG, PET and CPI. In comparison, the accumulated charges dissipate
below 50% within a few minutes for the FTD coating, regardless of the
type of charges, whereas the charges remain higher than 50% for UTG,
PET, and CPI even after 30min, indicating the excellent antistatic
properties of FTD coating (Fig. 3b).

We further examined the internal electrostatic protection prop-
erty by evaluating changes in surface potential before and after tri-
boelectric charging with a copper rod. Contact potential differences
(VCPD) recorded via Kelvin probe forcemicroscopy (KPFM) are used to
derive the surface potential of samples, and the change in VCPD (i.e.,
ΔVCPD) reflects triboelectric properties such as charge transfer direc-
tion and charging ability. We compared the triboelectric properties of
the FTD coating with common flexible materials, including UTG, PET,
CPI, and commercial touch display cover windows (AF–UTG, com-
mercial anti–fingerprint molecules treated UTG) (Fig. 3c, d). The VCPD

images show that after only five abrasions with a copper rod, the
corresponding VCPD values for UTG, PET, CPI, and AF–UTG change
significantly, with ΔVCPD values following the triboelectric series
(Fig. 3e, f). In contrast, the values of VCPD for the FTD coating remain
unchanged even after 200 times continuous abrasions, and the ΔVCPD

value for the FTD coating is 25 ~ 80 orders of magnitude smaller than
that of the common substrates, indicating excellent antistatic prop-
erties of the FTD coating. This is attributed to fast charge dissipation
during the triboelectric charging process, resulted from effective
nanoscale hybridization of organic–inorganic covalent–ionic
networks.

Multifunctionality
We selected CPI films as flexible substrates to further investigate the
properties of the FTD coating as flexible cover windows in practical
applications. Due to the uniform organic–inorganic covalent–ionic
hybrid networks on the nanometer scale, the FTD coatings possesses
high transmittance (Fig. 4a) in the visible spectrum (99.6% at 550nm),
leading to highly transparent flexible cover windows (FTD–coated CPI
films, Fig. 4b). Atomic force microscope (AFM) images indicate a
smooth surface for the FTD coating with a roughness Ra of 0.99 nm,
showing no obvious phase separation or aggregation (Supplementary
Fig. 14). Additionally, due to the lower reflectance (Supplementary
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Fig. 15a) and refractive index compared toCPIfilms (FTDcoating, ~1.45;
CPI, ~1.59, at 550nm, Supplementary Fig. 15b), the FTD coating exhibit
excellent anti–reflection properties for CPI films, resulting in higher
transmittance of bilayered cover windows than original CPI films
(Fig. 4a, b) in the visible spectrum (400–800nm). Subsequently, water
and oil (diiodomethane) are used to evaluate the anti-smudge prop-
erties of the FTD coating compared to UTG, PET, and CPI (Fig. 4c).
Among them, the FTD coating exhibit the highestwater and oil contact
angle (107.3° and 76.2°, respectively) and low surface energy (19.5 mN
m−1) due to its abundant trifluoropropyl groups (–(CH2)2CF3, low sur-
face energy group), contributing to excellent anti-smudge ability
(Fig. 4d and SupplementaryMovie 1) and low adhesion during scratch.

As a robust and flexible protective coating, FTD–coated CPI films
could withstand scratches from standard pencil exceeding 7H (Sup-
plementary Fig. 16), much higher than CPI (2B) and PET (6B) films, and

close to the pencil hardness of UTG (9H). We further examined the
scratch resistance of the FTD coating using the steel wool wear test. A
pressure of ~ 50kPa (500 g on an area of 1 cm2) is applied using fresh
steel wool wrapped on a tester on the practical touch display carrying
the FTD–coating (Fig. 4e). SEM images (Fig. 4f) showobvious scratches
on the CPI films after only 30 abrasions, while no obvious scratches are
observed on the FTD–coated CPI films even after 2500 abrasions.
Meanwhile, the water and oil contact angles and surface resistivity for
areas with different abrasion times remain similar to the original ones
(Fig. 4g), indicating the excellent scratch resistance of the FTD coating.
Additionally, the friction coefficient of the FTD coating (~0.09), mea-
sured by the nano-scratch test (Fig. 4h), is much lower than that of CPI
and PET, even UTG and AF–UTG. This is also an important factor
contributing to the excellent scratch resistance of the FTD coating.We
believed that the excellent scratch resistance and low coefficient of
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friction were attributed to tight crosslinked Si–O–Si networks, low
surface energy (low adhesion during scratch), and low surface
roughness. Furthermore, FTD–coated CPI films exhibit good flexibility
attributed to the low E* of the FTD coating (2.25GPa). Such composite
films could be freely bended into U–shape with a bending curvature
radius (rc) of 1.5mm without generating cracks over 10,000 bending

cycles (Fig. 4i, Supplementary Fig. 17, and Supplementary Movie 2).
When the bending curvature radius is set to 1.0mm, cracks are gen-
erated after 300 bending cycles. The adhesion performance of FTD
coatings was tested by using the pull–off adhesion test. The adhesion
strength of the FTD coating (0.81 ± 0.01MPa) on the CPI films is
attributed to the formation of chemical bonds between the Si–OH
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groups, generated during the siloxane reorganization, and the –OH
groups on the polar CPI substrates, which are generated during the
treatment with oxygen plasma. This strength is comparable to that of
some previously reported coating materials on flexible substrates
(Supplementary Table 2). Moreover, after alternant high temperature
(80 °C) and ultraviolet light (27mWcm−2) for 14 days, the surface
morphology, transmittance, surface resistivity, and pencil hardness of
FTD–coated CPI films remain compared to the original ones (Supple-
mentary Fig. 18), indicating its high photothermal stability for
long–term photothermal environments.

More importantly, antistatic properties are crucial for protective
cover windows for touch displays. As illustrated in the touch control
diagram (Fig. 4j), touch signals rely on variations in surface charge
density, which have significant influence on touch control precision.
However, residual charges often remain after finger touches or con-
tacts with pockets or packets. If these charges do not dissipate
promptly, they can affect touch recognition accuracy, user experience,
and even damage vital electronic components beneath the screen. To
assess the practical applicability of the FTD coating in touch displays,
we install a flexible cover window with half of its surface coated with
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the FTD coating onto a touch panel eliminated an electrostaticmodule
(Fig. 4k and Supplementary Movie 3). After some shots from the ion
gun, we wrote the characters “SCU” on both cover windows, one with
the FTD coating and the other without. Touch test results were eval-
uated based on the legibility of the written characters “SCU”. Specifi-
cally, noticeable defects are observed on the side of the original CPI
films, while the characters on the side of FTD–coated CPI films are
intact, demonstrating excellent antistatic properties in practical touch
displays.

Closed-loop recycling
The complexity of electronics significantly amplifies the challenge and
expense associated with separating and recycling electronic waste (e-
waste), resulting in amajority being directlydisposedof in landfills and
incinerators. This leads to ecological and environmental pollution, as
well as a substantial wastage of resources45–50. Therefore, endowing
such all–in–one coating with additional chemical recyclability holds
immense value for fostering a sustainable future.

As depicted in the illustration (Fig. 5a and Supplementary Fig. 19),
the closed-loop recycling of the FTD coating can be easily achieved
due to its reversible organic–inorganic covalent–ionic hybrid net-
works. Using TBAF as the catalyst for the depolymerization and reor-
ganization of organic–inorganic covalent–ionic hybrid networks, the
FTD coating could be removed from the CPI films surface within 3 h.
After removing theCPIfilms, the resulting solution is to be treatedwith
calcium chloride (CaCl2) to remove the fluoride ions. Subsequently,
white powders obtained through rotary evaporating, washing, and
vacuumdrying are added to TBAF/tetrahydrofuran (THF) solution and
used to fabricate FTD coating according to the original procedures.
Evaluated by FT–IR (Fig. 5b and Supplementary Fig. 20), 29Si CP–MAS
NMR, 19F CP–MAS NMR, and EDS spectra (Supplementary
Figs. 21 and 22), the recycled FTD coatings exhibit consistent chemical
structures and relative elements content compared to the original FTD
coating even after five recycling cycles, indicating the preservation of
the organic–inorganic covalent–ionic hybrid networks during
recycling.

Beyond the composition and structures, we further characterized
the electric, optical,mechanical, and surface properties of the recycled
FTDcoatings. Among them, the surface resistivity results (Fig. 5c) show
that the recycled FTD coatings possess close surface resistivity
(~ 4 × 108 ohm sq−1) to the original FTD coating. This suggests that the
excellent antistatic properties of the original FTD coating are main-
tained in recycled FTD coatings. Additionally, the recycled FTD coat-
ings exhibit fully recovered high transmittance and anti-reflective
properties for CPI films (Fig. 5d and Supplementary Fig. 23). Mean-
while, recycled FTD coatings exhibit similar load–displacement curves
(Fig. 5e), indicating that they fully recover mechanical properties such
as E*,H,H3/E*2, and elastic recovery (Supplementary Fig. 24). Combined
with consistent friction coefficients (Fig. 5f andSupplementary Fig. 25),
the scratch resistance andflexibility of the recycled FTDcoatings could
be fully recovered. Moreover, they also exhibit fully recovered high
water/oil contact angles and low surface energy (Fig. 5g), ensuring
their anti-smudge properties.

The construction of organic–inorganic covalent–ionic hybrid
networks combine high transmittance, excellent anti-smudge ability,
scratch resistance, flexibility and, more importantly, antistatic prop-
erties for touch control, as well as degradable/recyclable properties,
leading to the generation of an all–in–one coating for present flexible
displays and future flexible electronics. The properties of such coating
surpass those of current flexible cover windows (Fig. 5h). This work
establishes the indispensable role of reorganization in the rational
design of all–in–one multifunctional material, which may not only
advance the development of consumer electronics towards light-
weight and thin designs, but also promote ecological and environ-
mental sustainability.

Discussion
In summary, we develop an organic–inorganic covalent–ionic hybrid
network, which enables integration of the necessarymultifunctionality
into flexible display cover windows in a monolithic manner. The
simultaneous integration of FTD coating with excellent optic, anti-
static, anti-smudge properties, polymer–like flexibility, ceramic-like
scratch resistance, and chemical recyclability, resulting from the
nanoscale organic–inorganic covalent–ionic hybrid network holds
tremendous potential for expanding the scope of flexible displays in
next-generation flexible electronics. Specifically, we provide a reliable
method to fabricate all–in–one solution for flexible display cover
windows, while being comprehensive in comparison to existing flex-
ible cover windows; such coating can be effectively chemical recycled
and reused multiple times. As such, we anticipate that this methodol-
ogy could present substantial opportunities for researchers seeking an
extension of the functionality of protective coating, offering a facile
tool to integrate multifunctionality into a monolithic layer.

Methods
Materials
FPOSS (cage mixture, Hybrid Plastics, FL0578), FD3 (Adamas, 98 +%),
THF (Greagent, 99.5 +%), CaCl2 (Greagent, 97.0 +%), kieselguhr (200
mesh, Greagent, 89.0 +%), TBAF (1M in THF, Adamas), CPI films (50
and 30 μm, Liaoning Oxiran Huahui New Material Co., LTD, China).
THF utilized for reactions was dried through a solvent purification
system (SPS − 5, Etelux, Beijing, China), and the other chemicals were
used as received without further purification.

Preparation of the FTD materials
The title materials were fabricated as follows. Taking FTD as an
example, FPOSS (1.0 g, 0.84mmol) and FD3 (0.05 g, 0.11mmol) were
dissolved in THF (5mL) in a 10mL vial with a magnetic stirring bar.
Then, TBAF (0.84mL, 1M in THF) was added to the solution mixture
and stirred at room temperature for 3 h. The resulting solution was
bar-coated on substrate such as glass and CPI films, etc. after oxygen
plasma treatment (400W for 5min) to increase the hydroxyl groups
(–OH) on the surface of substrate. Each coating sample was first dried
at room temperature under argon flow for 1 h and then cured at 50 °C
under vacuum for 6 h. Other Samples with different contents of TBAF
and FD3 were prepared using the same procedures. The thickness of
coating was adjusted by tuning the gap between the substrate and the
bar. Unless otherwise specified, the thickness of the coating is 50μm.

Recycling of the FTD materials
The FTD–coated films (FTD mass is ~1.0 g) were soaked in a THF
solution with TBAF (0.1M, 20mL) for 3 h. After taking the films out,
CaCl2 (1.0 g) and a magnetic stirring bar were added to the resulting
solution, and the solution mixture was stirred for 12 h to remove the
fluoride ions and then filtered through kieselguhr. White solid (yield
~86%) was obtained by rotary evaporating the solvent, methanol
washing (three times), and vacuum drying (80 °C for 12 h). To re-
fabricate FTD coating, the resulting product (1.0 g) and TBAF (0.8mL,
1M in THF) were added to THF (4.8mL) in a 10mL vial with amagnetic
stirring bar and stirred at room temperature for 3 h. The coating and
curing procedures were identical to those used in the production of
original FTD coating. Recycling of FTD coating with more recycling
times was obtained from repeating the abovementioned procedures.

Size exclusion chromatography
Size exclusion chromatography (SEC) analyzes for samples were
recorded using a Waters 1515 instrument (Waters, America) equipped
with a gel column, a differential refractive index detector, and a light
scattering detector. The eluent solvent, sample concentration, and
flow rate were THF, 2mgmL−1, and 0.5mLmin−1, respectively, with
polystyrene utilized as the standard for molecular weight calculation.
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Morphology and elements analysis
SEM images and EDS two–dimensional mappings of C, N, O, F, Si ele-
ments were acquired on a Nova NanoSEM450 SEM (FEI, America) with
an X−MaxN EDS instrument (Oxford Instruments, England) at an
operating voltage of 10 kV. Before SEMand/or EDS analysis, all samples
were sputtered with a thin layer of gold to reduce the charging effect.
TEM images and the corresponding EDS mapping of C, N, O, F, and Si
elements were captured on a Talos F200i microscope (Thermo Fisher
Scientific, America) operating at 200 kV.

Surface resistivity
Surface resistivity results were obtained using a two–probe method
under ambient conditions (room temperature, ~25 °C; relative
humidity, ~40%) on a 6514B electrometer (Keithley, America).

Wide angle X-ray diffraction
Wide angle X-ray diffraction (WAXD) patterns were recorded on an
X’pert pro MPD X−ray diffractometer (PANalytical B.V., Netherlands)
withCuKα radiation (λ = 1.5406Å) at anoperating voltageof 40kV and
current of 40mA. The diffraction angle (2θ) range was 2–90° with a
scan speed of 10° min−1.

Nanoindentation
Nanoindentation analysis was performed under ambient conditions
(room temperature, ~25 °C; relative humidity, ~40%) on a TI 980
nanoindenter (Bruker, USA) equipped with a diamond Berkovich tip
(half angle, 65.27°; included angle, 142.30°). The calibration of
nanoindentation was performed using a standard sapphire before
each test. Each test consisted of a 5 s loading to 10mN, followed by a
2 s holding and a 5 s unloading. The corresponding loading force and
presseddepth of each samplewere recorded to calculate hardness and
modulus using Oliver–Pharr method51. Elastic recovery was calculated
to evaluate material resilience43. It should be noted that the coating
samples for nanoindentation measurement were coated quartz glass
with a coating thickness of 200 μmto eliminate the effect of substrate.

Rheological test
Rheological test was performed on a rheometer (MCR–302,
Anton–Paar, Austria) utilizing a 25mm diameter parallel steel plate
with the frequency of 1 Hz.

Fourier transform infrared spectroscopy
FTIR spectra were acquiredwith a Nicolet 6700 spectrometer (Nicolet,
America) in transmission mode with 32 scans ranging from 4000 to
650 cm−1 at a resolution of 4 cm−1. Samples were mixed with dry KBr
and pressed into plates for measurement.

Solid NMR spectra
19F and 29Si CP–MASNMR spectrawere obtainedwith anAgilent 600M
NMR spectrometer.

External electrostatic charges decay
Each sample was left on a grounded substrate to discharge for at least
24 h under an argon atmosphere. Electroneutrality was confirmed by
measuring net charge density (< ± 0.005 nC cm−2). After these treat-
ments, samples were charged by five shots (~1.5 nC cm−2) from an ion
gun (Zerostat, Sigma Aldrich). Positive and negative ions and/or
charges were generated by pulling and releasing the trigger of ion
guns, respectively. Surface charge densities of samples versus time
were measured under ambient conditions (room temperature, ~25 °C;
relative humidity, ~40%) using a Model 284 Faraday cup & cage
(Monroe Electronics, America) connected to the 6514B electrometer.
Precautions were taken to minimize external disturbances, including
washing gloves and tweezers with ethanol before the experiments and
wearing an electrostatic bracelet.

Kelvin probe force microscopy
Surface potential images of different samples before and after abra-
sion with a copper rod were recorded at room temperature under dry
nitrogen atmosphere on a Dimension Icon (Bruker, America) in KPFM
mode. The utilized probe was MESP–V2 with a spring constant of
3.0 Nm−1 and conductive coating of CoCr. Each sample was left on a
grounded substrate to discharge for at least 24 h under argon atmo-
sphere, and their electroneutrality was further confirmed by measur-
ing net chargedensity (< ± 0.005 nC cm−2). All imageswere analyzedby
NanoScope Analysis version 2.0.

Atomic force microscope
AFM height and phase images were recorded under ambient condi-
tions (room temperature, ~25 °C; relative humidity, ~40%) on a
Dimension Icon (Bruker, America) in tappingmode. The utilized probe
was TESPA–V2with a spring constant of 42Nm−1 and back side coating
of reflective Al. All images were analyzed by NanoScope Analysis
version 2.0.

Refractive index
Refractive index spectra of samples were obtained on a IR–VASE Mark
II M–2000UI instrument (J.A.Woollam, America) with a wavelength
range of 250–1600nm. To acquire accurate results, coating and CPI
films were with a thickness of 30 μm.

Ultraviolet–visible Spectroscopy
Ultraviolet–visible (UV−Vis) spectra of samples were measured on a
UV − 3600 UV–Vis spectrophotometer (Shimadzu, Japan) with a
wavelength range of 200–800nm. Samples used for transmittance
tests were CPI films with a thickness of 50 μm and FTD–coated CPI
films (both theCPI films and coating had a thickness of 50μm),with air
as the baseline. Samples used for transmittance tests of the FTD
coating were FTD–coated quartz glass (with a coating thickness of 50
μm and quartz glass thickness of 2mm) after removing the glass
substrate baseline. Reflectance from 200 to 800nm for CPI films and
FTD–coated CPI films were recorded on a Lambda 750 s UV–Vis
spectrophotometer (Perkin Elmer, America).

Contact angle
The contact angle was obtained under ambient conditions (room
temperature, ~25 °C; relative humidity, ~40%) on a DSA25 instrument
(KRUSS, Germany). Contact angles of water and diiodomethane were
used to calculate the surface energies of samples by using
Owens–Wendt–Rabel–Kaelble (OWRK) method52. Droplets of 2 µL
were utilized for tests, and each test was repeated at least 3 times in
different areas on a sample. It should be noted that UTG used for
contact angles measurement was rinsed three times with dichlor-
omethane and ethanol, then dried with nitrogen before testing for
eliminating the transfer of a small quantity of release agents (silicone
oils) from the plastic protective films onto the UTG surface.

Pencil hardness
Pencil hardness results were obtained under ambient conditions
(room temperature, ~25 °C; relative humidity, ~40%) on an Elecometer
501 pencil hardness instrument following ASTM D3363 protocol.
Standard pencils (Mitsubishi, Japan) with hardness ranging from 6B
(the softest), 5 ~ 1B, HB, F, 1 ~ 8H, to 9H (the hardest) were held against
the surface of samples with an angle of 45° and then pushed away. The
pencil hardness results of samples were evaluated by the hardest
pencil that could not damage the surface of samples in at least five
different areas. The load weight was 0.75 kg.

Scratch resistance
Scratch resistance tests were conducted under ambient conditions
(room temperature, ~25 °C; relative humidity, ~40%) on a ZOT–6014
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339 abrasion testmachine (GuangdongZhongtian Instrument Co., Ltd,
China). Fresh steelwool (grade #0000, fiber width is 25μm) was
wrapped and firmly fixed on the tester for each scratch resistance
characterization. The vertical contact pressure was ~ 50kPa (the con-
tact area was ~ 1 cm2, and the load was ~ 500 g), and the abrasion
frequency was 1 Hz.

Friction coefficient
The friction coefficients were determined from nano-scratch results
under ambient conditions (room temperature, ~25 °C; relative
humidity, ~40%) using a TI 980 nanoindenter (Bruker, USA). The load
and nano–scratching distance were 500μN and 15;μm, respectively.

Flexibility
Flexibility was evaluated by testing the sample’s rc in cyclic bending
tests. The FTD–coated CPI films (the thickness of both CPI films and
coating was 50μm) were repeatedly bent into a U–shape and recov-
ered to flat about 10,000 times under ambient conditions (room
temperature, ~25 °C; relative humidity, ~40%) using a homemade
continuous bending apparatus. There were no cracks in the bending
areas over 10,000 cycles of bending when the rc was set to 1.5mm.
However, when the rc was reduced to 1.0mm, cracks were generated
after 300 cycles of bending.

Adhesion strength
The adhesion strength of FTD coating on CPI filmswas performed on a
PosiTest AT–A automatic pull–off adhesion tester (DeFelsko, America)
under ambient conditions (room temperature, ~25 °C; relative
humidity, ~40%) in accordance with ASTM D4541. The aluminum
spindles with a diameter of 20mm were tightly adhered onto the
coating surface using glue. The pull speed was 0.2MPa s−1. The result
was obtained from 3 times parallel tests.

Touch test
A CPI film coated with FTD coating was pasted on half of the touch
panel, and shots from an ion gun were applied to the touch panel with
and/or without CPI film coatedwith FTD coating before the touch test.
Touch test results were evaluated based on the writing effect of “SCU”.
It should be noted that touch panels used for the touch test were
eliminated electrostatic modules by cellphone repair shops.

Statistical analysis
In this study, every statistical resultwas conductedusing data obtained
from three parallel samples, with each experiment repeated at least
three times. The statistical data presented includes means ± standard
deviations, or in some cases,means incorporating all results.Mean and
STDEV.P functions within Microsoft Excel software were employed to
calculate the means and standard deviations, respectively.

Data availability
The authors declare that the data supporting the findings of this study
are available within the article and Supplementary Information. Addi-
tional datasets related to this study are available from the corre-
sponding authors upon request. Source data are provided with
this paper.
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