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A semi‑automatic toolbox 
for markerless effective semantic 
feature extraction
Vito Paolo Pastore1,2*, Matteo Moro2 & Francesca Odone2

VisionTool is an open‑source python toolbox for semantic features extraction, capable to provide 
accurate features detectors for different applications, including motion analysis, markerless pose 
estimation, face recognition and biological cell tracking. VisionTool leverages transfer‑learning with 
a large variety of deep neural networks allowing high‑accuracy features detection with few training 
data. The toolbox offers a friendly graphical user interface, efficiently guiding the user through the 
entire process of features extraction. To facilitate broad usage and scientific community contribution, 
the code and a user guide are available at https:// github. com/ Malga‑ Vision/ Visio nTool. git.

Human motion understanding is a relevant task in many fields in science and medicine. Quantitative and quali-
tative motion analysis, e.g. predicting and describing human behavior while performing different actions, is 
essential in neuroscience to understand the brain behaviour in both physiological and pathological  conditions1–4. 
Moreover, it is helpful for human-computer interaction applications, where a computer can be controlled with 
dedicated  gestures5–7, for human-robot interaction, where a robot can detect change in human landmarks to 
provide dedicated  assistance8,9 and for augmented reality applications for gaming and  rehabilitation10,11. Lastly, 
human motion understanding is largely adopted in proxemic recognition in order to predict how people 
 interact12,13. Nowadays, the gold standard techniques commonly adopted to characterize and study human 
motion rely on wearable sensors, motion capture systems and physical markers placed on the body  skin14. How-
ever, markers are intrusive, they may limit natural movements, and their location is assigned a priori by expert 
operators, making the study of human motion  biased15. Furthermore, they are cumbersome, making the analysis 
of motion patterns problematic in certain application  fields16,17.

For these reasons, recently, RGB video analysis has become a possible alternative to marker-based systems to 
perform human motion  analysis18,19. This is due to the increasing progress—in terms of accuracy and computa-
tional cost—of deep learning algorithms in solving computer vision  problems20. In particular, recent advances 
on pose estimation algorithms based on deep neural networks are opening the possibility of adopting efficient 
methods for extracting motion information starting from common red–green–blue (RGB) video  data21. Pose 
estimation consists in identifying the position of the subject body in images or image sequences, and it involves 
body landmark points detection and skeleton estimation. The latter may be carried out exploiting  spatial22–24 or 
spatio-temporal  relationships25.

Besides full body human pose estimation, in many application scenarios it is not necessary to retrieve people 
skeleton, but there is the need to focus and localize specific features in the image planes (as usually done for 
body keypoints detection in pose estimation algorithms). In fact, there is a large variety of application fields in 
science where the availability of accurate algorithm for the detection of semantic features in the image plane 
may be crucial, including the analysis of body parts and human faces, animal pose-estimation24, small objects 
 localization26 or biological image analysis.

Having in mind this broad range of applications, it becomes clear that versatility is a fundamental feature 
for a toolbox aiming to provide general-purpose semantic features extraction. In particular, it requires: (1) the 
possibility to define the set of high-level features to detect (e.g., animal joints, the center of a cell body, a set of 
face descriptors, etc.); (2) no assumption on input data, which may be a video or a set of static and uncorrelated 
images; (3) high accuracy with minimal training data because obtaining annotated data is not a trivial process. 
In fact, annotation is time-consuming and user-dependent. Moreover, the availability of training data may be 
intrinsically limited in certain application fields (e.g., biology and medicine).

In this paper, we present VisionTool, a Python toolbox for general-purpose markerless semantic features 
detection. VisionTool is based on transfer learning with deep neural networks, and has been designed to give 
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appropriate importance to the following properties. (1)  Versatility: the toolbox allows the user to define the 
semantic features to detect and to graphically annotate a set of training data to be used for further steps. (2) Pre-
diction accuracy: precision in keypoints coordinates detection is a key factor in pose estimation since high-level 
features are later extracted from keypoints’ positions. (3) Annotation efforts reduction: after a minimal training 
set has been annotated (e.g., 5–25 frames, depending on the application domain), the toolbox offers the pos-
sibility to use an assisted annotation procedure. A neural network is trained on the annotated data, and used to 
predict the remaining frames (either the entire video or a random subset). The predictions are then automatically 
uploaded to the annotation tool and identified with different color maps with respect to the first set. The user 
can visually inspect the predictions, and correct mistakes dragging them with the mouse, adding or removing 
a label, in order to obtain a bigger annotated dataset, potentially improving further predictions. (4) Simple and 
immediate adoption: the toolbox is provided with an intuitive GUI that allows all the users to easily exploit all 
the implemented features (see Fig. 1). (5) Modularity: the toolbox is modular, meaning that new features and 
modules can be easily added to the package. (6) Extensibility: a key feature of VisionTool is the possibility to 
easily import a custom neural network model, integrating it with all the toolbox implemented features, using 
the available GUI. This feature supports longevity and usability of the toolbox, since it can be constantly updated 
with respect to the state-of-the-art architectures, as well as to exploit custom neural networks designed to solve 
specific problems. As shown in Section Results, VisionTool can be exploited in different ways. Firstly, it can be 
used as annotator, meaning that, given the frames composing one video or a set of images, a neural network 
can be trained on a subset of them and used to predict the remaining ones with high accuracy. In addition, the 
toolbox has good generalization properties (see “Generalization: prediction of unseen videos” section). Thus, 
it is possible to train a model on a set of frames belonging to one video and use it to detect the analogous set of 
selected keypoints in frames extracted from a different video.

With respect to state-of-the-art available toolboxes for semantic features extraction (e.g.,  DeepLabCut24) 
VisionTool presents the following main novelties: (1) The possibility to import and integrate a custom DNN 
model, extending the available set of fully convolution architectures and neural network backbones. (2) A higher 
number and variety of available pre-trained neural network models, as reported in the “Available deep neural 
network” section. (3i) The possibility to use the toolbox as assistant in the annotation process. In fact, a key-factor 
in VisionTool is the annotation GUI that allows to check and potentially correct an initial set of predictions, 
obtained with few training data, thus efficiently extending the annotations with minimal effort.

The reminder of the paper is organized as follows: first, we provide a schematic description of VisionTool’s 
algorithms, pipeline and GUI. Then, to test VisionTool’s versatility and precision, we apply the toolbox to three 
different domain of applications: (1) human action videos for action recognition; (2) face descriptors extraction 
and (3) plankton cell tracking. We show that, with less than 50 annotated frames, VisionTool is able to provide 
accurate features detectors ( mAP0.5 > 0.95 ) for all the three included examples of application.

Figure 1.  Example of VisionTool’s annotation GUI. The user can annotate keypoints of interest with the mouse, 
visualize images and the predictions overlaid on them.
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Results
VisionTool validation. A semantic features detection toolbox should be versatile with respect to semantic, 
number of keypoints and domains of application, as well as precise, intuitive, and easy to use. To validate the 
VisionTool with respect to such requirements, we applied the toolbox to the analysis of three different datasets 
and associated application fields: (1) upper-body human actions from the Multiview Cooking Actions dataset 
(MOCA)27; (2) human faces from the Facial Keypoints Detection Kaggle’s  dataset28; (3) videos of swimming 
plankton cells from the Plankton  dataset29 (see Fig.  2). Each of them has specific challenges (reported in the 
following subsections) that support the evaluation of different aspects of the toolbox.

Datasets. Multiview cooking actions dataset. The MOCA  dataset27 collects video sequences acquired from 
multiple views of upper body actions in a cooking scenario. The purpose of MOCA is to provide a rich test bed 
to understand motion recognition skills and view-invariance properties of both biological and artificial percep-
tual systems. The dataset includes 20 cooking actions involving one or two arms of a volunteer and the tools to 

Figure 2.  Examples of challenges for the datasets included in the work. (a, b) Moca’s keypoints occlusion in 
egocentric point of view (a) and frontal point of view (b) for action pouring-multi. It is common for such views 
to have little finger occluded by index, as well as wrist occluded by hand. (c, d) Mouth keypoints can be correctly 
annotated with a difference of several pixels. (c) ground-truth; (d) example of a different manual annotation. 
(e–g) stentor ceruleous contracting and relaxing during different stages of swimming with significant shape 
changing.
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perform the correspondent action. Three different view-points have been considered for the acquisitions, i.e. 
lateral, egocentric, and frontal. Each action includes a training and a testing video, each containing, on average, 
25 repetitions of the action itself. Since the dataset is multimodal, the volunteer was wearing markers in corre-
spondence to the five keypoints considered for the detection task: (1) index; (2) little finger; (3) hand; (4) wrist 
and (5) elbow. However, no frames annotations are available with the dataset, so we needed to build a 2D ground 
truth for keypoints location to actually evaluate VisionTool’s features detectors accuracy. Hence, ground truth 
keypoints location was obtained exploiting VisionTool’s assistance annotation feature. The presence of physi-
cal markers makes the annotation process precise and repeatable, since it is immediate to build the annotation 
masks on top of the existent markers. On the other hand, occlusions and peculiar motion patterns represent a 
challenge for detecting the semantic features in the dataset (see Fig.  2a,b).

Facial keypoints detection dataset. The facial keypoints detection  dataset28 was released for a kaggle competi-
tion focused on improving features detection accuracy in the context of face recognition. It contains 96× 96 
pixels images of different subjects faces, with a total of 7049 training images and 1783 testing images. Complete 
annotations are only provided for a subset of training data. The detection task consists in identifying 15 facial 
keypoints, divided in 4 semantic groups: (1) eyebrow: left and right inner and outer limits; (2) eye: left and right 
eye center, inner and outer corners; (3) nose: nose tip, (4) mouth: left and right corners, top and bottom centers. 
Here, the challenge is mostly related to the low image resolution and the ambiguity in the identification (and 
annotation) of the keypoints (e.g., the top and bottom center of mouth, can be annotated and correctly predicted 
within a radius of several pixels, see Fig.  2c,d for an example).

Plankton dataset. The plankton  dataset29 contains static images of swimming plankton extracted from 1-min-
ute videos of 10 species of plankton acquired using a digital detector. The system used for acquisition employs 
the principles of a lensless  microscope30. The dataset includes a total of 5000 images (500 per species) for train-
ing, and 1400 images for testing (140 per species). We evaluated VisionTool’s accuracy in detecting the center 
of the plankton cell. No ground truth was available, so we needed to annotate the data for actually evaluating 
VisionTool’s detectors accuracy. To perform annotation, first, we exploited an image-processing algorithm to 
select the centroid of the cell body (i.e., contour detection on available cell body masks, followed by selection of 
centroid for the contour with highest area). Then, we visually inspected the annotation with VisionTool’s anno-
tation GUI, correcting the body cell center detection, when needed. In the plankton dataset, the challenge is 
represented by the low-resolution images and the intrinsic semantic of the keypoint to detect. For circular shape 
cells, in fact, it is trivial and precise the annotation process. However, few of the classes included in the dataset 
(i.e., the spirostomum ambiguum, the dileptus and the stentor coeruleous) can contract and relax (see Fig.  2e,f,g 
for an example), radically changing their shape, making hard and not unique the identification of the center cell 
for annotation and, consequently, for prediction.

Evaluation metrics. VisionTool’s semantic features detection accuracy was evaluated in terms of mean 
Average Precision (mAP). As commonly done in literature and COCO  challenges31, we computed mAP with 
respect to three different thresholds, defined as values of Object Keypoint Similarity (OKS): (1) 0.5; (2) 0.75; (3) 
average mAP value with OKS thresholds from 0.50 to 0.95 and steps of 0.05. Equation 1 reports the standard 
definition for OKS:

where di is the distance between prediction and ground truth position for keypoint i,σi is the per-keypoint 
standard deviation that controls fall-off, s is a scale factor and vi is a visibility flag. In our evaluation protocol, 
the standard deviation and the scale factor were computed with respect to keypoints mask area, and exploiting 
redundant  annotations31. In our experiments, keypoints circle mask radius was set accordingly to the size of the 
semantic features to detect: 13 pixels for MOCA dataset (i.e., approximately the the size of the physical markers 
in the cooking videos); 2 pixels for faces, and 7 pixels for plankton dataset.

The notation mAP0.5 corresponds to the mAP computed as in point (1); mAP0.75 corresponds to the mAP 
computed as in point (2); while mAP refers to mAP computed as in point (3). In our evaluation metrics, the 
mAP at OKS = 0.5 can be interpreted as the percentage of correct keypoints (PCK)  metric32 (i.e., the fraction 
of predicted keypoints that fall within a threshold distance from the ground truth location) with a maximum 
allowed distance corresponding to an Intersection over Union (IoU) between ground truth and prediction 
keypoints masks equal to 0.5.

VisionTool’s results on MOCA dataset. Automatic annotation accuracy. The toolbox can be adopt-
ed as an annotation assistant (i.e., trained on frames belonging to a certain video and tested on its remaining 
frames), to speed-up the annotation process while reducing user efforts. Annotation assistance is a key-feature in 
VisionTool, allowing to obtain a large set of high accuracy annotations with only few manually annotated frames. 
In fact, after few frames are annotated, the toolbox offers the possibility to train a neural network to provide 
coarse annotations and predict the remaining frames in the video. The prediction is then loaded in the same 
annotation interface used for the manual annotation, and potential mis-detected annotation points can be drag 
in the correct position (or missing labels added, if needed), to provide a final set of accurate annotations, that 
can be further used to train a more accurate model. We used the MOCA dataset testing videos for the three view 
points (i.e., lateral, egocentric and frontal) to validate VisionTool as automatic annotator, since no ground truth 
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was provided with the dataset. The set of semantic features to detect includes: index, little finger, hand, wrist, 
and elbow. The first step consisted in using the toolbox to perform manual annotation of the 5 keypoints on a 
set of randomly extracted training frames. We used a random subset of 10 action videos among the 20 available 
from the lateral view-point to perform an automatic annotation accuracy evaluation as a function of the number 
of frames manually annotated. For this experiment, we used a  LinkNet33 neural network with  EfficientNetb134 
backbone pre-trained on  ImageNet35 (RMSprop optimizer, weighted categorical cross-entropy as loss function, 
batch size equal to 5). The number of annotated frames was 10, 25 and 50. As expected, mAP increased with the 
number of annotated frames, reaching a maximum value of 0.974 for 50 annotated frames (see Table 1). A higher 
number of annotated frames could bring to higher detection accuracy, however, we limited our analysis to 50 
frames, since the aim of the experiment is to test the toolbox potential with minimal manual annotation efforts.

To show the importance of ImageNet fine-tuning, we trained and tested VisionTool’s semantic features extrac-
tion algorithms with randomly initialized weights. With the same number of annotated frames per video and the 
same neural network and backbone (i.e., LinkNet neural network with EfficientNetb1 backbone), keypoints pre-
dictions confidence is below the adopted minimum level of significance (i.e., 0.6 in our experiments), proving the 
importance of transfer learning to obtain high accuracy semantic features detectors with minimal training data.

As a next step, we evaluated the annotation accuracy with respect to the specific neural network applied. We 
used the same set of 50 annotated frames of previous step to compute prediction accuracy with 4 different neural 
networks  (Unet36,  LinkNet33, Pyramid Scene Parsing Network (PSPNet)37 and Feature Pyramid Network (FPN)38) 
and two popular neural network backbones in the computer vision literature: EfficientNetb1 and  ResNet5039. 
As reported in Table 2, EfficientNetb1 outperformed ResNet50 for all the considered neural networks, with 
FPN and Unet leading to higher accuracy with respect to the other models. Table 3 provides information on 
the neural networks used in this experiment with respect to number of FLoating point Operations Per Second 
(FLOPs) and parameters. As we can see, even if Unet and FPN with EfficientNetb1 backbone accuracy are simi-
lar, the former works with a number of FLOPs significantly lower than the latter. Thus, having in mind the best 
compromise between efficiency and accuracy, we used Unet with EfficientNetb1 as backbone, and we trained 
it with 50 annotated frames to evaluate VisionTool’s annotation accuracy on the entire MOCA dataset. Table 4 
summarizes the obtained results.

Generalization: prediction of unseen videos. We showed that VisionTool is able to provide high-accuracy seman-
tic features detectors with minimal annotated data, when used as annotator (i.e., trained on frames belonging 
to a certain video and tested on its remaining frames). However, when dealing with semantic features extrac-
tion tasks, generalization properties are crucial, since the same keypoints will have to be accurately detected in 
different testing videos with respect to the training ones. This is especially true in pose estimation tasks, where 
different subjects performs the same action in different environments. To investigate how the algorithms imple-
mented in the toolbox generalize and perform on unseen videos, we used each view-points set of 20 videos to 

Table 1.  VisionTool’s detection accuracy with respect to number of annotated frames on MOCA dataset. 
A LinkNet with EfficientNetb1 backbone is trained on (i) 10; (ii) 25 and (iii) 50 frames, and used to predict 
the remaining ones, for each of the 10 lateral view point videos included in the evaluation subset. The results 
reported in this table correspond to the average mAP computed across the whole subset of videos. Best results 
are in bold.

# Frames mAP0.5 mAP0.75 mAPindex mAPlittle finger mAPhand mAPwrist mAPelbow mAP

10 0.888 0.869 0.818 0.855 0.866 0.882 0.890 0.862

25 0.979 0.966 0.852 0.862 0.967 0.888 0.890 0.892

50 0.984 0.977 0.949 0.972 0.975 0.986 0.989 0.974

Table 2.  VisionTool’s detection accuracy on MOCA dataset, with respect to neural networks and backbones. 
The 4 neural networks (i.e., FPN, LinkNet, PSPNet and Unet) are combined with EfficientNetb1 and ResNet50 
backbone. Each model is trained on the 50 annotated frames, and used to predict the remaining ones, for 
each of the 10 lateral view-point videos included in the evaluation subset. The results reported in this table 
correspond to the average mAP computed across the whole subset of videos. Best results are in bold.

Net/Backbone mAP0.5 mAP0.75 mAPindex mAPlittle finger mAPhand mAPwrist mAPelbow mAP

FPN/Efficientb1 0.991 0.984 0.957 0.973 0.981 0.987 0.991 0.978

FPN/ResNet50 0.975 0.944 0.874 0.949 0.923 0.978 0.985 0.942

LinkNet/Efficientb1 0.992 0.987 0.974 0.945 0.985 0.971 0.976 0.969

LinkNet/ResNet50 0.858 0.849 0.769 0.786 0.859 0.788 0.890 0.819

PSPNet/Efficientb1 0.987 0.957 0.894 0.929 0.928 0.957 0.949 0.931

PSPNet/ResNet50 0.983 0.914 0.803 0.867 0.850 0.927 0.935 0.876

Unet/Efficientb1 0.993 0.981 0.962 0.976 0.978 0.984 0.976 0.970

Unet/ResNet50 0.952 0.945 0.848 0.875 0.878 0.887 0.975 0.893
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perform a k-fold experiment, with k = 5, each time using onefold as testing data and the remaining four to train 
the detection algorithms (16 training and 4 testing videos per fold). As we can see in Table 5 the toolbox is able 
to provide features detectors that generalize well between different videos. In fact, the mAP0.5 is higher than 0.95 
for all of the considered set of videos, while the mean mAP across the 5 different folds, is higher than 0.90. As 
expected, the elbow and the wrist are the easiest keypoints to detect, since they are the most stable with respect 
to different videos, while the index and the little-finger are the hardest ones, since they are the most variable and 
the ones characterized by the highest level of motion. Finally, as expected, the frontal view-point is the hardest 
one to predict, since videos acquired with such view-point present the highest variability of keypoints detection 
and number of occlusion with respect to the 20 cooking actions. As a final step, we investigated how accurate are 
VisionTool’s detections when trained on three different view-points videos at once. Hence, we trained a neural 
network on the entire dataset with a k-fold approach (k = 5). We split the dataset into the fivefolds imposing to 
have the same number of videos belonging to the three different view-points at each fold (i.e., 16 videos per each 
view for training and 4 videos for testing, for a total of 48 training and 12 testing videos per fold) obtaining a 
corresponding mAP equal to 0.908.

Face dataset results. In this section, we evaluated if VisionTool is able to provide accurate features detec-
tion for the face dataset. We extracted a set of 1500 images from the training set provided with full annotation. 
We split the dataset in training and testing with ratio 3:1, resulting in 1000 images for training and 500 for test-
ing. We evaluated the 4 neural networks included in VisionTool (i.e., Unet, LinkNet, PSPNet and FPN) with Effi-
cientNetb1 backbone, (considering that on the MOCA dataset this was the best performing backbone, batch size 
equal to 5, RMSprop optimizer). Table 6 summarizes the obtained results in terms of mAP. The detector based 
on FPN and EfficientNetb1 shows the highest detection accuracy, with a mAP0.75 around 0.96 and a mAP of 0.86.

Plankton dataset results. As a final quantitative application, we evaluated if VisionTool is able to provide 
an accurate detector for the center of the plantkon cell body. We considered the testing set of 140 images for each 
of the 10 included classes of plankton in the dataset, for a total of 1400 images. We considered only the testing 

Table 3.  Neural networks and backbones complexity in terms of FLoating point Operations Per Second 
(FLOPS), number of parameters and layers.

Net/Backbone FLOPS (bilions) # Params (milions) # Layers

FPN/Efficientb1 12.80 0.96 379

FPN/ResNet50 6.43 2.69 237

LinkNet/Efficientb1 8.04 0.86 388

LinkNet/ResNet50 2.09 2.88 246

PSPNet/Efficientb1 1.76 0.18 142

PSPNet/ResNet50 0.90 0.39 116

Unet/Efficientb1 8.72 1.26 373

Unet/ResNet50 2.58 3.26 231

Table 4.  VisionTool’s detection accuracy on MOCA dataset, when used as annotator. A Unet with 
EfficientNetb1 backbone is trained on 50 frames, and used to predict the remaining ones, for each of the 60 
videos included in the dataset. The results reported in this table correspond to the average mAP computed 
across the whole set of videos.

View point mAP0.5 mAP0.75 mAPindex mAPlittle finger mAPhand mAPwrist mAPelbow mAP

All together 0.992 0.987 0.974 0.945 0.985 0.971 0.976 0.970

Table 5.  VisionTool’s detection accuracy on MOCA dataset. A k-fold (k = 5) approach is used for each view 
point (i.e., the detectors are trained on fourfolds and the remaining one was predicted). The results reported in 
the table correspond to the average mAP computed across the different folds.

View point mAP0.5 mAP0.75 mAPindex mAPlittle finger mAPhand mAPwrist mAPelbow mAP

Lateral 0.969 0.905 0.865 0.845 0.889 0.958 0.988 0.909

Egocentric 0.962 0.929 0.925 0.789 0.963 0.922 0.978 0.915

Frontal 0.957 0.858 0.861 0.907 0.836 0.930 0.992 0.905

All together 0.954 0.904 0.880 0.821 0.912 0.949 0.980 0.908
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set because it contains a sufficient number of images to accomplish our task and because in this way we reduced 
labeling efforts. For each class, we annotated a random set of 50 images, as previously explained. After ground 
truth annotations have been created, we trained the 4 neural networks included in VisionTool with the same 
configuration adopted for the Face dataset (previous subsection) on the 50 images for each class, and predicted 
the plankton cell center on the 90 remaining images. Table 7 shows the performances in terms of mAP. Despite 
the intrinsic morphology change and the arbitrarity in the keypoint annotation, VisionTool was able to achieve 
high detection accuracy. The most accurate detectors correspond to a FPN and Unet with EfficientNetb1 back-
bone, reaching a mAP0.75 averaged across the 10 classes equal to 0.92 and a mAP around 0.91.

Discussion
This paper introduces VisionTool, a toolbox for semantic features extraction. To facilitate broad usage and 
scientific community contribution, the toolbox and a detailed user guide are available at https:// github. com/ 
Malga- Vision/ Visio nTool. git. We showed that transfer-learning from pre-trained deep neural network can be 
quickly applied to completely different contexts and applications (from cooking actions to swimming cells) with 
accurate results. We believe that VisionTool could supplement the list of available toolboxes for video analysis, 
allowing even inexperienced users to obtain high-accuracy features detectors for a wide range of applications.

Dataset annotation and performances. VisionTool is based on transfer-learning from ImageNet 
pre-trained deep neural networks. Transfer-learning combined with the implemented training strategies, that 
include data augmentation, the possibility to easily customize the model hyperparameters (e.g., the optimizer, 
the learning rate, the number of epochs, the batch size and the loss function), the availability of a weighted ver-
sion of the loss functions with a customized weights computation to handle class imbalance and the implementa-
tion of basic learning strategies (i.e., learning rate scheduling and early stopping) allow to obtain high-accuracy 
detectors with minimal annotated training data. In our experiments, we showed that 50 frames were sufficient 
to obtain high accuracy detectors ( mAP > 0.9 ) for the three investigated datasets. In general, the accuracy of 
fine-tuned features detectors may depend on the number and quality of annotations. A precise labeled train-
ing set may be not trivial to obtain, it is time-consuming and user-dependent. As a solution, our toolbox offers 
the possibility to obtain an additional set of data with an automatic procedure, where a deep neural network is 
trained to predict a subset of frames, with predictions that are later available in the annotation GUI for checking 
and potential correction. We used such procedure to obtain a ground truth for the MOCA dataset, where anno-
tations were not provided with data. However, in noisy videos where objects move with high frequency, frames 
where this particular behavior is present could be not part of the randomly selected minimal annotated set for 
training. The exclusion of such frames from training potentially brings to sub-optimal results. In such cases, a 
solution comes directly from VisionTool’s output, with a post-processing training frame addition. In fact, Vision-
Tool provides as output confidence maps (of the same size of the input image) for each keypoint, where pixel 
intensity corresponds to the confidence of that pixel belonging to the detected keypoint. These maps (also called 
probability maps) are thresholded with a minimum level of confidence to provide the final predicted keypoints 
locations. Hence, frames with particularly low level of confidence could be added to the training set to test if the 
accuracy can be improved. Low values in the probability maps could also occur when keypoints are occluded. In 
this case, multiple view-points (as in the MOCA dataset) are ideal to improve precision in features extraction.

Table 6.  Facial keypoints detection accuracy in terms of mAP. EfficientNetb1 is used as backbone for the 4 
neural networks implemented in VisionTool. The 15 detected Keypoints are divided into 4 semantic groups, as 
explained in “Facial keypoints detection dataset” section. Best results are in bold.

Net/Backbone mAP0.5 mAP0.75 mAPeyebrow mAPeye mAPnose mAPmouth mAP

FPN/Efficientb1 0.998 0.958 0.791 0.939 0.739 0.926 0.859

LinkNet/Efficientb1 0.998 0.950 0.771 0.920 0.724 0.908 0.838

PSPNet/Efficientb1 0.992 0.896 0.742 0.915 0.636 0.878 0.803

Unet/Efficientb1 0.994 0.934 0.749 0.905 0.708 0.896 0.824

Table 7.  Plankton cell center detection accuracy in terms of mAP. EfficientNetb1 is used as backbone for the 4 
neural networks implemented in VisionTool. Best results are in bold.

Net/Backbone mAP0.5 mAP0.75 mAP

FPN/Efficientb1 0.980 0.919 0.908

LinkNet/Efficientb1 0.951 0.837 0.839

PSPNet/Efficientb1 0.942 0.776 0.784

Unet/Efficientb1 0.976 0.919 0.907

https://github.com/Malga-Vision/VisionTool.git
https://github.com/Malga-Vision/VisionTool.git
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VisionTool’s versatility. We showed that VisionTool is able to provide accurate detections for three differ-
ent datasets: (1) MOCA; (2) facial keypoints detection and (3) swimming plankton cells. We chose such datasets 
because their different features supported the evaluation of specific aspects of the proposed toolbox. In the 
MOCA dataset, in fact, even if videos were acquired by three different view-points, it was still possible to obtain 
high-accuracy (mAP > 0.9) when detectors were trained with different view-points videos at once. In the face 
dataset, we showed that VisionTool provides accurate detectors (mAP > 0.9) when input data are sequences of 
static low-resolution images and features are smaller and more user-dependent with respect to previous dataset 
(where annotations coincide with physical marker positions). Finally, the plankton dataset has low-resolution 
images and the position of cell centroid is ambiguous and strongly dependent from the user. To prove this point, 
we asked three different annotators to provide annotations for 50 frames per each class. The standard deviation 
among the different set of annotations reached a maximum value of 7 pixels for the class dileptus, where strong 
intrinsic morphology change and the shape of the cell make harder to precisely identify its centroid. However, 
VisionTool’s was still able to train an accurate detector (mAP > 0.9) for each of the ten species of plankton 
included in the dataset.

VisionTool’s computational cost details. The deep neural network embedded in the toolbox were 
trained and tested on resized version of the original video frames (in the current version, to size 288× 288 ), that 
were later scaled to the original size with no effect on features detection accuracy. Thus, VisionTool’s semantic 
features extraction can be quite fast on modern hardware. For instance, inference rate for the MOCA dataset 
spanned from 50 to 85 Hz on a Nvidia RTX2060 with 6 GB of RAM (for Unet with EfficientNetb1 backbone). 
Such prediction time makes VisionTool compatible with real-time features detection applications. The inference 
time could be further decreased by increasing the resize rate, cropping the frames, or modifying the architectures 
(e.g., with pruning algorithms) to speed up the prediction process.

VisionTool’s extensibility. VisionTool includes four largely used fully convolutional architectures for 
detection and segmentation, with 30 different ImageNet pre-trained neural network models to be used as back-
bones. Such architectures, together with the implemented training strategies, generally allow to obtain accurate 
detectors with minimal annotated training data. However, a toolbox for general-purpose markerless semantic 
features detection should ideally be extensible, allowing the user to exploit all the toolbox implemented features 
with custom neural network models. Such extensibility is fundamental for two main reasons: (1) longevity and 
usability: the possibility to import custom architectures may be fundamental to keep the toolbox updated with 
the state-of-the-art as well as to exploit neural networks appositely designed for the solution of a certain prob-
lem or tailored to certain properties of an investigated dataset; (2) two-stage fine tuning: the possibility to easily 
upload a neural network model pre-trained on a certain custom dataset, and re-use the information stored in 
its weights to perform fine-tuning on a different problem, may be useful and lead to accuracy improvement. For 
these reasons, extensibility is a key-point of novelty in VisionTool with respect to the state-of-the-art semantic 
features extraction toolboxes. In particular, it is possible to upload and integrate a custom deep neural network 
model, including a pre-trained custom model on a certain dataset, in order to re-use the learnt weights, still 
exploiting all VisionTool implemented functionalities, including the annotation interface, the training strategies, 
data augmentation, prediction visualization and corrections. To improve user experience, a custom model can 
be simply imported using an apposite button in the corresponding GUI.

Methods
In this section we formulate the machine learning problem underlying semantic feature detection, we provide 
a schematic description of VisionTool’s features extraction pipeline and give a detailed report on the available 
implemented neural networks.

Machine learning problem formulation. VisionTool’s semantic features detection algorithm is struc-
tured as an image segmentation task, in the form of a multi-class classification problem. More formally, let us 
represent a dataset as a set of N images I = {I0, I1, .., IN } with pixels xxx(x1, x2) on a discrete grid m× n with inten-
sities IiIiIi(xxx) ∈ J ⊂ R . Let us split the dataset I into three separated subsets: ITRAIN for training, IVAL for validation 
and ITEST for testing. For each training (and validation) image Ii we assume a ground truth is available as a set 
of binary segmentation masks MIl with pixels intensities ∈ [0,1]; l ∈ [0, L] represents the semantic label, and L is 
the number of keypoints to detect. Let M ′

I be the cumulative ground truth matrix, with pixel intensities ∈ [0, L] . 
A multi-class neural network is trained to learn a function F : I −→ M ′ that maps each pixel x ∈ I to its semantic 
label l with some probability. To maximize such probability, a loss function is defined to estimate the deviation 
of the network prediction from ground truth, at each training step (i.e., the training error). To minimize the 
prediction error, the loss function is decreased iteratively with training, until a defined set of stopping criteria is 
met. Since we are only interested in detecting a set of defined keypoints, a background class is added to the set 
of semantic labels. Thus, each pixel of an image can be assigned either to one of the keypoints classes or to the 
background. Considering that the pixels belonging to the keypoints area are generally significantly less than the 
ones belonging to the background (i.e., everything in the image which is not a keypoint to detect), the problem 
becomes an imbalanced multi-class classification problem, and imbalance between classes is handled by using 
a set of weights for each class, with an inverse proportion with respect to the number of pixels belonging to the 
specific feature class. Hence, we adopted a weighted version for the implemented loss functions and a custom-
ized approach to set the correspondent weights, depending on number of keypoints and background pixels.
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VisionTool’s workflow. VisionTool is a semantic features extraction toolbox written in Python based on 
tensorflow and the embedded neural network library keras (see Fig. 3 for a schematic description of VisionTool’s 
workflow). The toolbox offers a user-friendly interface allowing the user to easily exploit all the implemented fea-
tures. First, the user creates a new project, imports input data (videos or set of images), defines the keypoints (i.e., 
the semantic features to detect) and selects the number of frames to be annotated, which is randomly extracted 
from the total available set. The number of frames to be annotated (i.e., the training set size) is a fundamental 
parameter for the features detection task. A meaningful choice should be a compromise between annotation 
efforts and the quality of prediction. In general, it depends on the difficulty of the specific task (e.g., number 
of keypoints, percentage of occlusions, average standard deviation of keypoints location, number of poses in 
pose estimation applications). To manually perform features annotation, the user exploits the dedicated annota-
tion interface (see Fig. 1), using the mouse to select the keypoints (e.g., keypoints coordinates in human-pose 
estimation). A deep neural network is chosen among the available ones and trained on the annotations. Data 
augmentation based on random transformations (i.e. rotation, shearing, zooming and shifting) is performed at 
training time to allow for better generalization ensuring high accuracy on few training data. The trained model 
is then ready to be used to perform features extraction in testing videos (either unseen videos, or the remaining 
frames of the training video). After testing, the obtained results can be visually inspected by the user; if they 
are not satisfactory, they can be corrected and used as a further set of annotated data in the training procedure, 
implementing an active learning  framework40. VisionTool’s GUI guides the user through the entire process of 
semantic features extraction. More details on the main steps are reported in the next subsections.

Input data import and annotation. After a project is created (or an existing project is opened), the user 
can add new videos (or process the existing ones). The videos are automatically read by the toolbox to provide 
the total length (in number of frames), helping the user to set a valid number of frames to annotate. After the 
user sets the number j of frames to annotate, a random set of j frames is extracted among all the available ones 
and annotated.

When the user annotates an image, a circle with radius r is draw over the frame in the annotation tool, where 
r can be set by the user through the annotations option GUI. Such circles are then used to form the ground truth 
segmentation masks.

Vision Tool as an annotation assistance tool. The larger the training set, the higher the algorithm 
precision in detecting the semantic features from videos. However, the annotation procedure is time consuming, 
forcing to choose a compromise between number of annotations and prediction accuracy. In order to partially 
solve this issue, VisionTool implements a deep neural network-based automatic annotation procedure. After at 
least 10 frames are manually annotated, in fact, there is an option to train a deep neural network, to provide an 
initial annotation estimation for a number k of randomly extracted frames, with k input by the user. After the 
prediction, the automatic annotated frames are loaded in the same GUI used for manual annotation, and the 
user can check the results and correct potentially mis-predictions by dragging the points to the correct location, 
adding or removing a detected keypoint, with a significant saving in term of annotation efforts. The automatic 
and manual frames predictions are represented with different color maps in order to be clearly distinguishable 
in the GUI. The checked and corrected frames are added to the original set of manual annotations to increase 
the training set size. The automatic annotation tool is a key feature and the main novelty in VisionTool, reducing 

Figure 3.  VisionTool’s workflow description.
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the user annotation efforts while speeding up the entire features detection process, eventually leading to a higher 
prediction accuracy and better generalization.

Available deep neural networks. VisionTool includes 4 different largely used architectures for detec-
tion and segmentation:  UNet36,  LinkNet33, Pyramid Scene Parsing Network (PSPNet)37 and Feature Pyramid 
Network (FPN)38. These architectures encode the input exploiting sequential downsamples (i.e., compressing 
the images) and then reconstruct the input by specular sequential upsamples with different combinations with 
respect to the downsamples layers according to the specific architectures. The encoding module can be adapted 
from different neural networks, choosing the number of parameters and network depth according to the specific 
pose estimation problem. VisionTool offers 30 models (including EfficientNets, ResNets and MobileNets) to be 
used as backbones for each of the available deep network. A key-feature in VisionTool is the possibility to obtain 
high accuracy in the semantic features extraction with a limited training set (i.e., with limited annotations). Such 
feature is implemented exploiting transfer learning, providing better generalization than training from scratch. 
In fact, ImageNet pre-trained weights are available for each of the neural network backbones. Neural networks 
implementations is based on the library proposed  in41.

Model training. A dedicated GUI offers the possibility to select the neural network, the optimizer, the loss 
function, the learning rate and the number of epochs to wait if validation loss does not decrease before stopping 
training, training from scratch or using transfer-learning from ImageNet pre-trained weights. The learning rate 
is halved at every z epochs to facilitate the convergence of the trained model, and z is again set through the dedi-
cated architectures preferences GUI. Data augmentation with random rotation, distortions, zooming and shift-
ing is performed during training to improve model generalization. The training is performed with a mini-batch 
approach, with batch size set by the user with the dedicated GUI. In the current version, the two available loss 
functions are (1) categorical cross-entropy and (2) dice loss. Both the loss functions are adopted in a weighted 
version, with weights defined as described in the “Machine learning problem formulation” section.

Model deployment. After training, VisionTool can be used to annotate other frames of the same videos 
or new videos. The final locations of the detected keypoints are obtained by thresholding the confidence maps. 
Confidence maps (one per keypoint in each image) have pixels intensities corresponding to the probability of 
finding the keypoint at that precise location (the higher the intensity, the higher the algorithm confidence about 
the pixel belonging to that specific keypoint). A hard threshold is applied to the predicted image (the threshold 
is set by the user through the architectures preferences GUI). Such threshold corresponds to a tolerance, as the 
minimum value of accepted confidence for a prediction. The final estimation confidence is computed as the aver-
age grey level value of the thresholded predicted masks, while the corresponding centroid is used as keypoint’s 
estimated location. VisionTool’s final output corresponds to a dataframe reporting the estimated locations for 
the detected features in each frame, stored both as a h5 and a csv file. They include the detected keypoints coor-
dinates and the corresponding estimation confidence for each of the video frames. If one of the keypoints has 
not been detected in a certain frame, the corresponding output coordinates are automatically set to a negative 
number (i.e., the point ( −1,−1)). The toolbox offers the possibility to save the predicted maps for each keypoint 
for user visual inspection or further processing.

Ethics declarations. The MOCA dataset is publicly available and described  in27. The kaggle face recogni-
tion dataset is publicly available and accessible  at28. For the ethics declaration we refer to the original datasets 
publication.

Data availibility
All the datasets analyzed during the current study are publicly available. The MOCA dataset is publicly available 
at https:// sites. google. com/ view/ themo capro ject/ welco me and described  in27. The kaggle face recognition dataset 
is publicly available and described at https:// www. kaggle. com/c/ facial- keypo ints- detec tion/ data28. The lensless 
dataset of freshwater plankton is publicly available at https:// www. dropb ox. com/s/ kb96x zmxlr fii3k/ LENSL ESS% 
20DAT ASET. zip? dl=0 and described  in29.
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