Open Acces

Systematic review of the cost-effectiveness of preoperative antibiotic prophylaxis in reducing surgical-site infection

J. Allen^{1,2}, M. David^{2,4} and J. L. Veerman^{2,3,5}

¹Queensland Audit of Surgical Mortality, Royal Australasian College of Surgeons, and ²School of Public Health, University of Queensland, Brisbane, ³School of Medicine, Griffith University, Southport, Queensland, ⁴School of Medicine and Public Health, University of Newcastle, Callaghan, and ⁵Cancer Council NSW, Woolloomooloo, New South Wales, Australia

Correspondence to: Mrs J. Allen, Queensland Audit of Surgical Mortality, PO Box 7476, East Brisbane, Queensland 4169, Australia (e-mail: jenny.allen@surgeons.org)

Background: Surgical-site infections (SSIs) increase the length of hospital admission and costs. SSI prevention guidelines include preoperative antibiotic prophylaxis. This review assessed the reporting quality and cost-effectiveness of preoperative antibiotics used to prevent SSI.

Methods: PubMed, Web of Science, Cumulative Index to Nursing and Allied Health Literature, Index of Economic Articles (EconLit), Database of Abstracts of Reviews of Effect (including the National Health Service Economic Evaluation Database) and Cochrane Central databases were searched systematically from 1970 to 2017 for articles that included costs, preoperative antibiotic prophylaxis and SSI. Included were RCTs and quasi-experimental studies conducted in Organisation for Economic Co-operation and Development countries with participants aged at least 18 years and published in English. Two reviewers assessed eligibility, with inter-rater reliability determined by Cohen's κ statistic. The Consolidated Health Economic Evaluation and Reporting Standards (CHEERS) and modified Drummond checklists were used to assess reporting and economic quality. Study outcomes and characteristics were extracted, and incremental cost-effectiveness ratios were calculated, with costs adjusted to euros (2016) ($\ell 1 = US$ \$1.25; $\ell 1$ sterling = $\ell 1.28$).

Results: Twelve studies published between 1988 and 2014 were included from 646 records identified; nine were RCTs, two were nested within RCTs and one was a retrospective chart review. Study quality was highest in the nested studies. Cephalosporins (first, second and third generation) were the most frequent prophylactic interventions. Eleven studies demonstrated clinically effective interventions; ten were cost-effective (the intervention was dominant); in one the intervention was dominated by the control; and in one the intervention was more effective and more expensive than the control.

Conclusion: Preoperative antibiotic prophylaxis does reduce SSI, costs to hospitals and health providers, but the reporting of economic methods in RCTs is not standardized. Routinely nesting economic methods in RCTs would improve economic evaluations and ensure appropriate selection of prophylactic antibiotics.

Funding information No funding

Paper accepted 13 December 2017 Published online 14 April 2018 in Wiley Online Library (www.bjsopen.com). **DOI:** 10.1002/bjs5.45

Introduction

Surgical-site infections (SSIs) occur in 1-25 per cent of surgical patients, although the occurrence and severity vary¹⁻³. These variations depend on the type, duration and time of day of the operation, and the time from infection onset to detection and successful treatment^{1,3-6}. SSI leads to longer hospital stays and higher costs to patients, hospitals and health systems⁷⁻¹¹. In Europe, a minimum

estimate of increased health cost due to SSI in 2004 was $\notin 1.47 - 19.1$ billion¹², and more recently in the USA (2014) SSI was associated with double the costs compared with those for a patient without SSI¹³.

Jointly, the Centers for Disease Control and Prevention (CDC) in the USA, the National Institute for Health and Care Excellence in the UK and the World Health Organization developed SSI prevention guidelines⁴.

Records identified through Additional records identified Identification database searching through other sources n=628 n = 18Records screened after duplicates removed n=526 Screening Records excluded n = 335Full-text articles excluded n=179 No age stated or inadequate age data n=66Full-text articles assessed Eligibility Children n = 15for eligibility Inadequate or no costing data n=34n=191 Discussion/symposium n = 16Systematic review, meta-analysis or review n=14Non-OECD country n = 13Decision trees, modelling or programs n=8Letter, editorial n=5Studies included in Protocols, guidelines or surveys n=3qualitative synthesis No antibiotics n=3n=12 Non-English language n=1Drummond quality criteria not addressed n=1Included Studies included in quantitative synthesis (meta-analysis) n = 0

Fig. 1 PRISMA flow diagram for the review. OECD, Organisation for Economic Co-operation and Development

These include several prevention measures: preoperative screening of patients and decolonization of nasal cavities, showering, hair removal, intraoperative skin preparation using chlorhexidine, preoperative prophylactic antibiotic administration (within 1 h before surgery), normothermia and body temperature regulation, use of incision drapes, administration of supplemental oxygen throughout the operative use of surgical dressings and appropriate hand hygiene. The prevention measures may be implemented individually or as a bundle (3-5 interventions are grouped together).

Several systematic reviews have reported on aseptic skin preparation (including surgical hand asepsis, intraoperative skin antisepsis and skin preparation with chlorhexidine)^{14–16}, dressings including wound edge protection devices^{16,17}, increased oxygen supplementation¹⁸, glucose control¹⁹ and thermoregulation²⁰. Two reviews have reported on the cost-effectiveness of the interventions^{14,16} and the quality of health economic reporting¹⁶.

Despite the routine use of antibiotic prophylaxis, which is inexpensive^{21–23}, SSIs continue to occur. This suggests that implementation of SSI prevention is suboptimal – that more can be done, and done cost-effectively. To date, no cost-effectiveness review of preoperative antibiotic prophylaxis has been performed, despite the existence of clinical guidelines for antibiotic prophylaxis in surgery^{21–23}.

The aim of this review was to evaluate the cost-effectiveness of preoperative antibiotic prophylaxis used to prevent SSIs, and to assess the reporting quality of clinical effectiveness and cost-effectiveness for each study.

Methods

Data sources

Published studies were identified by following the Cochrane Review Group search strategy²⁴, the University of York Centre for Reviews and Dissemination²⁵ and the PRISMA statement²⁶. Six databases were searched: the Cochrane Library (Cochrane Central), PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL via EBSCO), Web of Science core collection, Journal of Economic Literature and the Index of Economic Articles (EconLit via EBSCO), and Database of Abstracts of Reviews of Effect (DARE, via the University of York Centre for Reviews and Dissemination, which incorporates the National Health Service Economic Evaluation Database (NHS EED)). Earlier databases were

Table 1 Characteristics of included studies

			Preoperative	e prophylaxis	Preoperative p outcome m		
Reference	Population	Follow-up	Control	Intervention	Primary (efficacy)	Secondary (cost analysis)	Conclusion
Blair <i>et al.</i> ³⁵ (1995)	'Clean' neck dissection: 192	n.s.	No prophylaxis No prophylaxis No prophylaxis No prophylaxis	Cefazolin 600 mg* Clindamycin 2 g* Penicillin* Drug name n.s.*†	First-generation cephalosporin; clindamycin and penicillin <i>versus</i> no antibiotic to prevent postoperative wound infection	Cost-benefit analysis (hospital stay and cost)	No significant difference in infections. Preoperative antibiotic prophylaxis advocated. Cost-effective
Bold <i>et al.</i> ³⁶ (1998)	Axillary lymph node dissection: 178	4 weeks after surgery	Placebo (normal saline)	Cefonicid 1 g (single dose)	Second-generation cephalosporin versus placebo to decrease postoperative wound complications	Cost-benefit analysis	No significant difference in infections. Preoperative antibiotic prophylaxis advocated
Davey et al. ³⁷ (1988)	Abdominal or vaginal hysterectomy: 400	Every 3 days, then after discharge (visit week 2, phone call week 6)	Placebo (normal saline)	Cephradine 2 g (single dose) Mezlocillin 5 g (single dose)	First-generation cephalosporin versus broad-spectrum penicillin to prevent wound infection	Cost-benefit analysis (patient, hospital and community services)	Cephradine antibiotic prophylaxis advocated in abdominal hysterectomy. Antibiotic prophylaxis questionable in vaginal hysterectomy
Dhadwal <i>et al.</i> ³⁸ (2007)	Median sternotomy for primary CABG of at least 1 thoracic artery and at least 1 of 4 defined risk factors: 201‡and 186§	Daily until discharge, then after discharge (week 6 and 90 days)	Cefuroxime 1-5 g (single dose), then cefuroxime 750 mg at reversal of anti- coagulation, 8 and 16 h after surgery	Rifampicin 600 mg (single dose), then gentamicin 2 mg/kg + vancomycin 15 mg/kg on induction of anaesthesia. Postoperative vancomycin 7.5 mg/kg at 12, 24 and 36 h	Second-generation¶ cephalosporin versus gentamicin combined with rifampicin and vancomycin to prevent sternal wound infection	Cost-benefit analysis	Longer and broader- spectrum preoperative antibiotic prophylaxis advocated. Cost-effective
Dijksman <i>et al.</i> ³⁹ (2012)	Intestinal resection with primary anastomosis, with or without a diverting ileostomy or closure of a temporary colostomy: 289	1 year	Placebo for 2 days before surgery, then parenteral perioperative cefuroxime 1500 mg + metronidazole 500 mg 30 min before surgery. Cefuroxime 1500 mg + metronidazole 500 mg continued 8-hourly for 24 h	SDD (polymyxin B sul- phate100 mg + tobramycin 80 mg + amphotericin B 500 mg) for 2 days before surgery and continued for at least 3 days after surgery or until normal bowel function. Parenteral perioperative antibiotic cefuroxime 1500 mg + metronidazole 500 mg 30 min before surgery. Cefuroxime 1500 mg + metronidazole 500 mg continued 8-hourly for 24 h	Perioperative selective decontamination of digestive tract (polymyxin B sulphate with tobramycin and amphotericin B) versus placebo to reduce infection	Cost-effectiveness analysis	Selective decontamination of digestive tract advocated. Cost-effective

Table 1 Continued

			Preoperativ	ve prophylaxis	Preoperative p outcome m		
Reference	Population	Follow-up	Control	Intervention	Primary (efficacy)	Secondary (cost analysis)	Conclusion
Garcia-Rodriguez <i>et al.</i> ⁴⁰ (1989)	Gastroduodenal or biliary surgery with at least 1 of 11 defined risk factors: 1451	16 days	Cefoxitin 2 g (single i.v. dose), then cefoxitin 2 g 6, 12 and 18 h after surgery	Cefotaxime 1 g (single dose)	Second- and third-generation cephalosporin ⁴ to prevent postoperative infection	Cost-benefit analysis	Cefotaxime antibiot prophylaxis advocated. Cost-effective
lones <i>et al.⁴¹</i> (1987)	Obstetrics and gynaecology, gastrointestinal; orthopaedics and other (total joint replacement and open reduction of fractures) surgical procedures: 812	30 days	Cefotaxime 1.0 g (slow i.v. bolus after anaesthesia but 30 min before incision). Additional cefotaxime 1.0 g given during surgery if procedure duration 2 h or more. For bowel surgery, standard bowel preparation before prophylaxis	Cefoperazone 1-0 g (slow i.v. bolus after anaesthesia but 30 min before incision). For bowel surgery, standard bowel preparation before prophylaxis	Two third-generation cephalosporins to prevent perioperative infection	Cost containment	Both cefoperazone and cefotaxime antibiotic prophylaxis advocated. Both cost-effective
Лаrroni <i>et al.⁴²</i> (1999)	Abdominal aortic or lower limb prosthetic vascular surgery: 238	Daily until discharge, then after discharge (3 monthly for 1 year, then at 24 months)	Cefazolin 2 g (single i.v. dose)	Teicoplanin 400 mg (single dose)	Efficacy and tolerability of first-generation cephalosporin and a glycopeptide to prevent postoperative infection	Cost-benefit analysis	Cefazolin antibiotic prophylaxis advocated. Cost-effective
/latkaris <i>et al.</i> ⁴³ (1991)	Abdominal hysterectomy: 200	4–5 days if no SSI, otherwise kept in hospital until infection resolved	No prophylaxis	Ceftriaxone 2 g (single dose). Additional dose if postoperative infection Cefotaxime 2 g (single dose). Additional dose if postoperative infection Ceftazidime 2 g (single dose). Additional dose if postoperative infection	Efficacy and safety of three third-generation cephalosporins to prevent postoperative infection	Cost-benefit analysis	Single dose of any of the three antibioti prophylaxes advocated. Cefotaxime was most cost-effection
/atsui <i>et al.</i> ⁴⁴ (2014)	Laparoscopic cholecystectomy for gallbladder stones or polyps: 437	8 days after surgery in outpatient setting	No prophylaxis	Cefazolin 1 g (3 doses before skin incision, then 12 and 24 h after surgery). Additional cefazolin 1 g in theatre if duration of surgery more than 3 h	First-generation† cephalosporin to reduce postoperative complications, including SSI and distant infection	Cost- effectiveness analysis	Antibiotic prophylax advocated. Cost-effective
šisto <i>et al.⁴⁵</i> (1994)	CABG: 551	Daily until discharge (10–12 days) or to another hospital (6–7 days)	Ceftriaxone 2 g (single dose)	Cefuroxime 1.5 g (single dose), then cefuroxime 1.5 g (8-hourly to end of postoperative day 2)	Efficacy and side- effects of single-dose third-generation cephalosporin versus multiple doses of second-generation cephalosporin to prevent postoperative infection	Cost-benefit analysis	Efficacy of ceftriaxone and cefuroxime equivalent. Ceftriaxone cheaper and simpler to use
/ilson <i>et al.</i> ⁴⁶ (2008)	Colorectal surgery: 672#	4 weeks after surgery	Ertapenem 1 g (single dose)	Cefotetan 2 g (single dose)	Preoperative prophylaxis of second-generation cephalosporin and a β-lactam to reduce postoperative infectious complications	Cost-benefit analysis	Ertapenem antibioti prophylaxis advocated. Cost-effective

*Prophylactic antibiotic dose not stated; †antibiotic trade name or generation of the cephalosporin not stated; ‡intention-to-treat data for antibiotic efficacy; §per-protocol data for costs³⁸; ¶blinding not stated; #per-protocol data. n.s., Not stated; CABG, coronary artery bypass graft; SDD, selective decontamination of digestive tract; i.v., intravenous; SSI, surgical-site infection. A more detailed version of this table is available as *Table S3*, supporting information^{47,48}.

searched from 1970 (PubMed, EconLit) and others from 1994 (DARE and NHS EED), 1996 (Cochrane Central) and 1982 (CINAHL). The search of all databases was concluded on 28 June 2017.

Search strategy

Keywords and search terms were matched with database-specific medical subject heading (MeSH) terms or title fields. Keywords for four different themes were linked with AND (cost AND prophylaxis AND prevention AND surgical-site infection). Full search strategies can be found in *Table S1* (supporting information). Search results were exported into EndNote[®] version X7 (Thomson Reuters, New York, USA) and duplicates were removed. Manual screening of references from included articles was performed to identify additional publications not identified by the search.

Selection criteria

Systematic reviews, guidelines, conference proceedings and letters were excluded. Only articles published in English and in peer-reviewed journals were included. The studies had to define a SSI, even if it did not conform to the CDC definition⁴: an infection related to an operative procedure that occurs at or near the surgical incision within 30 days of the procedure or within 1 year if an implant is left in place. PICO (population, intervention, comparison and outcomes) were used to evaluate study eligibility. Studies were included if they were economic evaluations in RCTs or quasi-experimental studies that compared the efficacy between different antibiotic prophylaxis regimens or placebo. Economic evaluations were defined as the comparative analysis of the costs and consequences of alternative programmes²⁷. Studies were excluded if they were performed in non-OECD (Organisation for Economic Co-operation and Development) countries. OECD countries were defined as high-income-earning economies²⁸, and included 31 OECD members (Table S2, supporting information). Other exclusion criteria were: study participants younger than 18 years of age and surgery that did not require a general anaesthetic.

Data extraction

Data from outcomes and resource use studies were used to construct and judge the cost-effectiveness. Two reviewers independently applied the inclusion and exclusion criteria to the eligible studies. They first screened the titles, then abstracts and finally the full text. At each step their agreement was assessed using Cohen's κ statistic with a 95 per cent c.i.²⁹. Cohen's κ statistic adjusts the proportion of articles for which there is agreement by the amount of agreement expected by chance $alone^{29,30}$. Agreement strengths for Cohen's κ are defined^{29,30} as: poor, $\kappa < 0.00$; slight, $\kappa = 0.00 - 0.20$; fair, $\kappa = 0.21 - 0.40$; moderate, $\kappa = 0.41 - 0.60$; substantial, $\kappa = 0.61 - 0.80$; and almost perfect, $\kappa = 0.81 - 1.00$.

Disagreements were resolved by discussion, and when consensus could not be reached a third reviewer acted as referee. Reasons for exclusion were documented. All eligible articles that passed the full-text screening were included in the review.

Extracted study data were recorded in a data collection form; they included year and country of study, study design, definition of SSI, population demographics, surgical procedures, antibiotic prophylaxis (costs, dosage and mode of administration), mean hospital and patient costs, and outcome data (duration of hospital stay, mortality, incidence of SSI, bacteria identified and antimicrobial resistance).

Reporting quality assessment

The 24-item Consolidated Health Economic Evaluation and Reporting Standards (CHEERS) checklist³¹ was used to assess comprehensively the quality of the clinical and methodological reporting relating to title, structured abstract, methods, results, discussion, conclusion, funding and conflicts of interest. Two of the checklist items (choice of a model and assumptions) were not included as they were not applicable to any of the studies. Each of the remaining 22 items were assigned a weighted rating¹⁶: 0, did not report; 1, reported poorly; 2, reported well. The overall quality rating is the proportion of items reported well: high quality, 17 or more of 22 (77 per cent or above); medium/acceptable quality, 11 or more and fewer than 17 of 22 (50 per cent or above and less than 77 per cent); and low/unacceptable quality, fewer than 11 of 22 (less than 50 per cent). There is methodological reporting overlap between the CHEERS checklist and the economic quality checklist described below.

Economic quality assessment

A modified version of the Drummond *et al.* checklist²⁷ was used to assess the quality of the economic and methodological reporting. The checklist includes ten questions, of which two have subquestions. These 12 questions enabled assessment of the following elements for each study: methods used (appropriate and accurate measurement of costs and outcomes), clinical effectiveness, limitations, uncertainty, relevance, generalizability and conclusions. Answers

		No.	of studies reporting (n	= 12)
	Questions	Not reported	Poorly reported	Well reported
Title and abstract	Title	6	3	3
	Abstract	0	6	6
Introduction	Background and objectives	0	2	10
Methods	Target population and subgroups	0	3	9
	Setting and location	0	4	8
	Study perspective	0	5	7
	Comparators	0	5	7
	Time horizon	3	6	3
	Discount rate	12 n.a.	0	0
	Choice of health outcomes	2	7	3
	Measurement of effectiveness	2	7	3
	Measurement and valuation of preference-based outcomes	1 n.a.	7	4
	Estimating resources and costs	1 n.a.; 1	7	3
	Currency, price date and conversion	5	6	1
	Choice of model	12 n.a.	0	0
	Assumptions	12 n.a.	0	0
	Analytical methods	0	11	1
Results	Study parameters	12	0	0
	Incremental costs and outcomes	10	0	2
	Characterizing uncertainty	9	1	2
	Characterizing heterogeneity	3	8	1
Discussion	Study findings, limitations, generalizability and current knowledge	0	9	3
Other	Source of funding	8	0	4
	Conflict of interest	10	0	2

Table 2 CHEERS checklist summary of reporting quality

n.a., Not applicable.

assigned to each question could be: 'yes', 'no' or 'not applicable'. The overall quality ratings are based on the number of questions answered as 'yes': high quality, nine or more of 12 (75 per cent or above); medium/acceptable quality, six or more and fewer than nine of 12 (50 per cent or more and less than 75 per cent); and low/unacceptable quality, fewer than six of 12 (less than 50 per cent).

Incremental cost-effectiveness ratio

effect and When treatment (TE) incremental cost-effectiveness ratios (ICERs) were not reported, they were calculated using the study data. Treatment effect is defined as the difference between the control and intervention effect (TEc-TEi). To determine the incremental cost saving of SSIs averted, the difference in mean total cost between the intervention and control prophylaxis was divided by the treatment effect. Calculated ICER costs were then adjusted to British pounds (2016) in a two-step process, using the Campbell and Cochrane Economics Methods Group-Evidence for Policy and Practice Information and Coordinating Centre cost converter web-based tool^{32,33}. Step 1 inflates the cost from the original price year to April 2016, using a Gross Domestic Product deflator index (GDPD values), obtained

from the International Monetary Fund World Economic Outlook Database GDP deflator index data set³⁴. Step 2 converts the original currency to British pounds, using conversion rates based on Purchasing Power Parities for GDP (PPP values)^{32,33}. Using a web-based tool, the 2016 British pound to euro conversion factor for £1 sterling is €1.28. When not stated, accepted standard practice to infer price year and/or currency³³ was used. The price year was assumed to be either the year the study ended or the year of publication, and the original currency to be the same as that in the study setting.

Results

The search yielded 628 articles; 508 remained once duplicates had been removed. The remaining articles were subjected to a systematic review by two independent reviewers who applied the inclusion criteria. A further 18 articles were identified by hand-searching. The inclusion criteria were first applied to the article titles, then abstracts and finally the full text. Cohen's κ statistic calculated for each step showed almost perfect ($\kappa = 0.89$, 95 per cent c.i. 0.80 to 0.98), substantial ($\kappa = 0.64$, 0.53 to 0.75) and moderate ($\kappa = 0.55$, 0.45 to 0.65) agreement respectively. Five full-text articles required review by a third reviewer, and

Table 3 Evidence of efficacy of preoperative prophylactic antibiotics

		Definition of	Preoperativ	ve prophylaxis		Sample size		Postop	erative infec	tions
Reference	Surgical procedure	postoperative infection	Control	Intervention	Total (M : F)	Control*	Inter- vention*	Control*	Inter- vention*	Р
Blair <i>et al.</i> ³⁵ †	Neck dissection	Wound infection: based on wound grading scale developed by Johnson <i>et al.</i> ⁴⁹	No prophylaxis	Cefazolin 600 mg Clindamycin 2 g Penicillin Drug n.s.	192 (139 : 53)	99 (51.6)	58 (30·2) 13 (6·8) 17 (8·6) 5 (2·6)	10 (10.0)	3 (3·3)	0.08
Bold <i>et al.</i> ³⁶	Axillary lymph node dissection	Infection of surgical wound in the absence of any other site of infection	Placebo (normal saline)	Cefonicid 1 g	178 (24 : 154)	90 (50.6)	88 (49·4)	12 (13.0)	5 (6.0)	0.08
Davey <i>et al.</i> ³⁷ §	AH or VH	Infected wound; pelvic infection	Placebo (normal	Cephradine 2 g	400 (0 : 400)	AH 102 (25·5)	AH 97 (24·3)	Hospital Pelv		
			saline)			VH 29 (7·2)	VH 34 (8·5)	AH 20 (19.6) VH 6 (21) Hospita AH 42 (41.2)	AH 6 (6) VH 1 (3) I total AH 16 (16)	< 0.05 < 0.05 < 0.01
								VH 10 (34) Home w Pelv	VH 8 (24) vound ric	0.41
								AH 9 (8·8) VH 2 (7) Home	AH 10 (10) VH 1 (3) total	0-81 VH 0-59
								AH 15 (14·7)	AH 25 (26)	AH 0-0
				Mezlocillin 5 g		AH 102 (25·5)	AH 101 (25·3)	VH 7 (24) Hospital Pelv		VH 0-0
						VH 29 (7·2)	VH 37 (9·2)	AH 20 (19·6)		0.86
								VH 6 (21)	VH 0 (0)	< 0.01
								Hospita		
								AH 42 (41·2) VH 10 (34)	AH 30 (29-7) VH 6 (16)	0·11 0·15
								Home w	vound	
								Pelv	ric	
								AH 9 (8·8)	AH 4 (4·0)	0.25
								VH 2 (7) Home	VH 0 (0) total	0.19
								AH 15 (14·7)	AH 14 (13·9)	1.00
								VH 7 (24)	VH 2 (5)	0.04
Dhadwal et al. ³⁸	CABG	NNIS infection risk score ³⁵	Cefuroxime 1.5 g	Rifampicin 600 mg; gentamicin	201 (165 : 36)	106 (52.8)	95 (47·2)	NNIS 30-day 12 (11⋅3)	y infection 4 (4)	0.0
		CDC sternal wound ⁵⁰		2 mg/kg; vancomycin 15 mg/kg				Sternal woun 25 (23·6)	d (90 days) 8 (8)	0.0
								Supert 11 (10·4)	ficial 4 (4)	0.0
								Dee	^s p	
								8 (7·5) Organ s	2 (2) space	0.1
								6 (5·7) Deep + org	2 (2) an space	0.3
								14 (13·2) Sternal deb	4 (4) pridement	0.0
								19 (17⋅9) Harvest site	4 (4) e infection	0.0
								7 (6.6)	45 (5)	0.6

© 2018 The Authors. *BJS Open* published by John Wiley & Sons Ltd on behalf of BJS Society Ltd

Table 3 Continued

		Definition of			Sa	mple size		Postop	erative infe	ctions	
	Surgical	postoperative	· · · · · ·	e prophylaxis		_	Inter-		Inter-		
Reference	procedure	infection	Control	Intervention	Total (M : F)	Control*	vention*	Control*	vention*	Р	
Dijksman <i>et al.</i> ³⁹	Digestive tract surgery	Wound infection, intra-abdominal abscess and anastomotic leak ^{47,51} . Calculated event rate was percentage of patients who suffered at least 1 infectious complication	Placebo. Parenteral perioperative antibiotic cefuroxime 1500 mg + metronidazole 500 mg	SDD (polymyxin B sulphate100 mg + tobramycin 80 mg + amphotericin B 500 mg). Parenteral perioperative antibiotic cefuroxime 1500 mg + metronidazole 500 mg	289 (156 : 133)	146 (50·5)	143 (49-5)	45 (30- 8)	28 (19-6)	0∙03¶	
Garcia-Rodriguez et al. ⁴⁰ **	Gastroduodenal or biliary surgery	Surgical wound infection: cellulitis with purulent secretion, with or without dehiscence (NRC ⁵²)	Cefoxitin 2 g	Cefotaxime 1 g	1451 (624 : 827)	716 (50·2)	722 (49·8)	Wound ir 54 (7·5)	nfection 24 (3·3)	< 0.002	
Jones et al.41 ††	Gastrointestinal;	Postoperative	Cefotaxime	Cefoperazone	812 (42 : 770)	401	411	Wound in			
	gynaecological,	surgical	1 g	1 g		(49.4)	(50.6)	12 (3.0)	9 (2·2)	> 0.05	
	orthopaedic (total joint	incision or peritoneal			Total general	96	89	1 (1)	2 (2)	1.000	
	replacement cavity infection			UGIT	72	66	0 (0)	0 (0)			
	and open	,			Colorectal	24	23	1 (4)	2 (9)	1.000	
	reduction of				Total O+G	168	168	9 (5.4)	6 (3.6)	0.60	
	fractures) and				Hysterectomy	119	125	8 (6.7)	6 (4.8)	0.59	
	other surgery					C-section	19	18	1 (5)	0 (0)	1.000
					Other O+G	30	25	0 (0)	0 (0)		
					Total orthopaedic	74	77	1 (1)	0 (0)	0.49	
					Total joints	51	59	0 (0)	0 (0)		
					Other orthopaedic Other	23	18	1 (4)	0 (0)	1.000	
Marroni <i>et al.</i> ⁴² ‡‡	Abdominal aortic	Surgical wound	Cefazolin 2 g	Teicoplanin	surgery 238 (220 : 18)	61 119	77 119	1 (2) SS	1 (1)	1.000	
manon or an $++$	or lower limb	infection; deep	o o la Lonin L g	400 mg	200 (220 1 10)	(50.0)	(50.0)	2 (1.7)	7 (5.9)	0.19	
	prosthetic	wound						Gra	aft		
	vascular	infection						2 (1.7)	0 (0.0)	0.49	
	surgery	(CDC ⁵³)						Wou	ind		
								5 (4.2)	2 (1.7)	0.46	
Matkaris et al.43	AH	Fever > 38°C for	No prophylaxis	Ceftriaxone 2 g	200 (0 : 200)	50 (25.0)	50 (25.0)	15 (30)	3 (6)	< 0.01§§	
		24 h, blood analysis, urine analysis, clinical evaluation		Cefotaxime 2 g Ceftazidime 2 g			50 (25·0) 50 (25·0)		4 (8) 4 (8)		
Matsui <i>et al.</i> ⁴⁴ ¶¶	Laparoscopic	SSI (surgical	No prophylaxis	Cefazolin 1 g	1037	519	518	SS	SI		
	cholecystec-	wound and			(490 : 547)	(50.0)	(50.0)	19 (3.7)	4 (0.8)	0.001	
	tomy for	subhepatic						Wou	ind		
	removal of gallbladder stones or	abscess)						16 (3·1) Subhe	4 (0⋅8) patic	0.005	
	polyps							3 (0.6)	0 (0.0)	0.249	
								All infe			
								35 (6.7)	6 (1·2)	< 0.001	

Table 3 Continued

		Definition of	_		Sa	mple size		Posto	perative infect	tions					
	Surgical	postoperative	Preoperativ	e prophylaxis			Inter-		Inter-						
Reference	procedure	infection	Control	Intervention	Total (M : F)	Control*	vention*	Control*	vention*	Р					
Sisto et al.45##	CABG	Superficial and	Ceftriaxone 2 g	Ceftriaxone 2 g Cefuroxime 1.5		274	277	Supe	rficial						
		deep sternal		g, then cefuroxime 1-5 g 8-hourly until end of	(437 : 114)	(49.7)	(50·3)	4 (1.5)	7 (2.5)	0.56					
		wound infection;						De	ер						
		donor-site						8 (2.9)	8 (2.9)	1.00					
		infection						day 2 after	day 2 after				Donor site		
				surgery				3 (1.1)	4 (1.4)	1.00					
Wilson et al.46***	Colorectal	SSI (organ space;	Ertapenem 1 g	Cefotetan 2 g	672	338	334	S	SI						
	surgery	deep incisional;			(365 : 307)	(50.3)	(49.7)	62 (18.3)	104 (31.1)	< 0.001					
		either superficial						Organ	'space						
		infection or						4 (1.2)	12 (3.6)	0.05					
		anastomotic						De	ер						
		leak)						13 (3.8)	17 (5.1)	0.46					
		(NNIS ^{54,55})						Supe	rficial						
								45 (13·3)	75 (22.5)	0.002					
								Anastom	otic leak						
								10 (3·0)	14 (4-2)	0.41					

*Values in parentheses are percentages. †Intervention failure results for cefazolin, clindamycin and cefoperazone were pooled as individual results were not stated; statistical method was not stated, but assumed to be Fisher's exact test. ‡Fisher's exact test (P < 0.050 was considered significant with 80 per cent confidence level). §Analysis of significance in fourfold tables was done with the χ^2 test with Yates' correction unless the total number of observations was less than 60 or the number in any cell was zero, when Fisher's exact test was used; threefold or greater tables were analysed with the χ^2 test. $[\chi^2]$ or Fisher's exact test with two-sided significance level of 0.05. $\#\chi^2$ test with Yates' correction. **Intention-to-treat data; statistical analysis with Fisher's exact test; infection data were missing for six patients in the control group and seven in the intervention group. ††Per-protocol data; statistical analysis with Fisher's exact test or χ^2 test; P < 0.050 considered significance level of 0.05; Fisher's exact test used for subhepatic comparison as expected frequencies in cells were less than 5. \$\$Statistical method not stated. $\P \| \chi^2$ test with significance level of 0.05; Fisher's exact test used for subhepatic comparison as expected frequencies in cells were less than 5. ##Student's t test for parametric data and Mann–Whitney or χ^2 test for non-parametric data; significance level of 0.05. ****Per-protocol data; absolute difference and 95 per cent c.i. for percentage prophylactic failure were determined in a statistical model adjusting for surgical procedure; 95 per cent c.i. that did not overlap zero indicated significant difference between groups at P < 0.050. n.s., Not stated; AH, abdominal hysterectomy; VH, vaginal hysterectomy; CABG, coronary artery bypass graft; NNIS, National Nosocomial Infections Surveillance; CDC, Centers for Disease Control and Prevention; SDD, selective decontamination of digestive tract; NRC, National Research Council; UGIT, upper gastrointe

one was included. The five main reasons for full-text exclusion were: age restriction (81 articles), inadequate or no cost data (34), discussion or symposium paper (16), systematic review (14) and studies performed in non-OECD country (13). Twelve articles met the inclusion criteria (*Fig. 1*).

Table 1 provides detailed characteristics of the 12 included studies^{35–46}. These were published between 1988 and 2014 with four published after 2000^{38,39,44,46}. Nine^{36–38,40–45} were RCTs, two^{39,46} were nested within an RCT and one³⁵ was a retrospective chart review. Eight were conducted in Europe (Greece^{35,43}, Scotland³⁷, UK³⁸, Spain⁴⁰, Italy⁴², Finland⁴⁵ and the Netherlands³⁹), three in the USA^{36,41,46} and one in Japan⁴⁴. The studies encompassed head and neck, gynaecological, vascular, cardiothoracic, general (breast and endocrine, intestinal and colorectal, and hepatopancreatobiliary) and orthopaedic surgery. Eleven studies^{35–38,40–46} evaluated the effectiveness of preoperative prophylaxis of the antibiotic cephalosporin (either first, second or third generation).

These included 'clean' surgery (neck dissection³⁵, axillary lymph node dissection³⁶, coronary artery bypass graft (CABG)^{38,45}, abdominal aortic or lower limb prosthetic vascular surgery⁴²) and 'clean-contaminated' surgery (abdominal or vaginal hysterectomy^{37,41,43}, digestive tract resection with anastomosis³⁹, colonic resection and colorectal surgery^{41,46}, biliary⁴⁰ and gallbladder surgery⁴⁴). One study³⁹ evaluated selective decontamination of the digestive tract in clean-contaminated surgery of the digestive tract with anastomosis.

Quality assessment of reporting

The reporting quality of most of the studies was low to moderate using the CHEERS statement checklist³¹ (*Table 2*; *Table S4*, supporting information). Only one study³⁹ had a high reporting quality for 18 of the 22 items. Three studies^{37–39} reported economic evaluations in their titles. In most studies the objectives, methods (settings, populations and comparators) were well

Barl relation Perpendition Point of the proper table of the second of t						Ler		n of hospita	al stay*			Mortality	/‡
Bile of al. ³⁶ / ₄ Nok dissection No prophysical servand enclosing. Control of al. ³⁶ / ₄ No prophysical servand enclosing. Control of al. ³⁶ / ₄ Auliary lymph node dissection No prophysical servand enclosing. Control of al. ³⁶ / ₄ So prophysical servand enclosing. Control of al. ³⁶ / ₄ Auliary lymph node dissection No prophysical servand enclosing. Control of al. ³⁶ / ₄ So prophysical servand enclosing. Control of al. ⁴⁶ / ₄₁ Auliary lymph node dissection No prophysical servand enclosing. Control of al. ⁴⁶ / ₄₁ So prophysical servand enclosing. Control of al. ⁴⁶ / ₄₁ Auliary lymph node dissection No prophysical servand enclosing. Control of al. ⁴⁶ / ₄₁ So prophysical servand enclosing. Control of al. ⁴⁶ / ₄₁ Autor lymph node enclosing. Control of al. ⁴⁶ / ₄₁ <th>Reference</th> <th></th> <th></th> <th></th> <th></th> <th>C</th> <th>I</th> <th></th> <th></th> <th>Р</th> <th>C</th> <th></th> <th>Р</th>	Reference					C	I			Р	C		Р
Bold et al. ³⁶ / Dissort of al. ³⁶ / Mained and all second information dissort of all second information all provided information and metromation and metromaticable information and metromaticable and metromaticable information and metromaticable and metromaticable information and metromaticable info		·	No prophylaxis <i>versus</i> cefazolin, clindamycin and										
Dawsy et al. ³⁷ After yields on formal salesy versus capitariane (allow versus allow versus al	Bold <i>et al.</i> ³⁶ ¶		Placebo (normal saline) <i>versus</i>	90	88	5.9 (2–15)	3			n.c.	n.s.	n.s.	
Alt-placebo from serves metocilin Alt-placebo from serves metocilin 79 79	Davey et al. ³⁷	AH or VH	AH: placebo (normal saline) <i>versus</i>	102	97					n.c	n.s.	n.s.	
Wite placebe (orwall copbridge) 29 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)			AH: placebo (normal saline) <i>versus</i>		101					n.c.	n.s.	n.s.	
Wit: placebo (promate methodilin) 37 7.2 7.3 (7.2) 7.3 (7.2) <th(7.2)< th=""> (7.2) <th(7.2)< td=""><td></td><td></td><td>VH: placebo (normal saline) <i>versus</i></td><td>29</td><td>34</td><td></td><td></td><td></td><td></td><td>n.c.</td><td>n.s.</td><td>n.s.</td><td></td></th(7.2)<></th(7.2)<>			VH: placebo (normal saline) <i>versus</i>	29	34					n.c.	n.s.	n.s.	
Dhadwal et al. ³⁸ # CABG Cafurosine versus refinippicin + gentamion + vancomprint 106 95 1.7 (4-69) 9.5 0.063 4 (4) 1 (1) 0.630 Dijksman et al. ³⁹ Digestive tract surger vancomprint Digestive tract surger vancomprint 146 143 (12, 9-18) (1, - 9-14) 0.055 5 (3.4) 6 (4-2) 0.732 Garcia-Rodriguez of al. ⁴⁰ -70 Castroduodenal or bility surgery gestiontrestinal and other (mainly onthopeacit total joint replacement and open reduction of fractures) surgery of fractures) surgery of fractures) 610 72 11.7 9.5 10.2 13.7 4.00 7 (0.6) 4.0-6) n.s. Marconi et al. ⁴¹ (†) Hysterectomy, gestiontrestinal and other (mainly onthopeacit total) Cefotatime versus ceforazione 101 11.5 14.3 10.2 13.7 4.00 n.s. n.s. n.s. Marconi et al. ⁴² Abdominal aortic or forwaring Cefotatime versus ceforazione 119 119 14.8 16.2 13.7 4.00 1.00 1.00 Mataris et al. ⁴⁴ (‡) Abdominal aortic or forwaring Cefotatime versus cefotazime 50 5.46 4.32 <<0.001			VH: placebo (normal saline) <i>versus</i>		37					n.c.	n.s.	n.s.	
Dijksman et al. ³⁹ Digestive tract surgery netronidazole versus SDD, celuroxime and metronidazole redu. ^{40,*} 19acebo, celuroxime versus SDD, celuroxime and metronidazole versus SDD, celuroxime and opental unteronidazole redu. ^{40,*} (11, 9-14) 0.055 5 (3.4) 6 (4.2) 0.732 Garcia-Rodriguez redu. ^{40,*} Gastroduodenal or bilars yurgery oeftoxime stand other (mainy orthopacidi total joint replacement and open reduction of fractures) surgery Cefotatime versus cefotazime orthopacidi total joint replacement and open reduction of fractures) surgery 11 11.5 14.3 10.2 13.7 <0.001	Dhadwal e <i>t al.</i> ³⁸ #	CABG	Cefuroxime <i>versus</i> rifampicin + gentamicin +	106	95	11.7 (4–69)				0.063	4 (4)	1 (1)	0.630
Garcia-Rodriguez et al. ⁴⁰⁺⁺⁺ Gastroduodenal or biliary surgery Cefoxitin versus coefoaxime 712 11.7 9.5 10.2 13.7 <0.00 7 (0.6) 4 (0.6) n.s. Jones et al. ⁴⁰⁺⁺ Hysterectomy genitourinary, gen	Dijksman <i>et al.</i> ³⁹	Digestive tract surgery	Placebo, cefuroxime and metronidazole <i>versus</i> SDD, cefuroxime and	146	143	(12, 9–18)				0.055	5 (3.4)	6 (4.2)	0.732
Jones et al. 41 ††Hysterectomy, genitourinary, gastrointestinal and other (mainy orthopaedic total ljoint replacement and open reduction of fractures) surgeryCefotaxime versus ecfoperazone40141111.514.3n.c.n.s.n.s.Maroni et al. 42 Abdominal aortic or lower limb prosthetic vascular surgeryCefazolin versus telcoplanin11911914.816.2n.c.3 (2.5)4 (3.4)1.000Matkaris et al. 42 Abdominal aortic or lower limb prosthetic vascular surgeryCefazolin versus telcoplanin505.464.32<0.001			Cefoxitin versus	716	722					< 0.001	7 (0.6)	4 (0.6)	n.s.
lower limb prosthetic vascular surgery teicoplanin Matkaris et al. ⁴³ AH No antibiotic 50 50 5-46 4-32 < 0.001	Jones <i>et al.</i> ⁴¹ ††	Hysterectomy, genitourinary, gastrointestinal and other (mainly orthopaedic total joint replacement and open reduction	Cefotaxime versus	401	411	11.5	14.3	(3.3 - 10.3)	(12.4-13.0)	n.c.	n.s.	n.s.	
Matkaris et al. ⁴³ AH No antibiotic prophylaxis versus ceftriaxone 50 50 5-46 4-32 < 0.001 n.s. n.s. No antibiotic prophylaxis versus ceftoaxime No antibiotic prophylaxis versus ceftoaxime 50 5-46 4-36 < 0.001	Marroni <i>et al.</i> ⁴²	lower limb prosthetic vascular		119	119	14.8	16-2			n.c.	3 (2.5)	4 (3.4)	1.000
No antibiotic prophylaxis versus cefotaxime505.464.36<0.001n.s.n.s.No antibiotic prophylaxis versus cefotazime505.464.50<0.001	Matkaris <i>et al.</i> ⁴³		prophylaxis versus	50	50	5.46	4.32			< 0.001	n.s.	n.s.	
No antibiotic prophylaxis versus ceftazidime 50 5-46 4-50 <0.001			No antibiotic prophylaxis <i>versus</i>		50	5.46	4.36			< 0.001	n.s.	n.s.	
Matsui et al. ⁴⁴ \$\$\$ Laparoscopic cholecystectomy for removal of gallbadder stones or polyps No antibiotic prophylaxis versus cefazolin 519 518 4-07(3-00)† 3-69(5-26)† 0-010 0 (0) 0 (0) 0 (0) Sisto et al. ⁴⁵ CABG Ceftriaxone versus cefuroxime 274 277 n.s. n.s. n.c. 3 (1-1) 4 (1-4) 1-000 Wilson et al. ⁴⁶ §§ Colorectal surgery Ertapenem versus 338 334 7-6 8-7 n.c. 3 of 451 7 of 450 0-340			No antibiotic prophylaxis <i>versus</i>		50	5.46	4.50			< 0.001	n.s.	n.s.	
Sisto et al. ⁴⁵ CABG Ceftriaxone versus cefuroxime 274 277 n.s. n.s. n.c. 3 (1-1) 4 (1-4) 1-000 Wilson et al. ⁴⁶ §§ Colorectal surgery Ertapenem versus 338 334 7-6 8-7 n.c. 3 of 451 7 of 450 0-340	Matsui <i>et al.</i> ⁴⁴ ‡‡	cholecystectomy for removal of gallbladder stones	No antibiotic prophylaxis <i>versus</i>	519	518	4·07(3·00)†	3.69(5.26)	Ť		0.010	0 (0)	0 (0)	
Wilson et al. ⁴⁶ §§ Colorectal surgery Ertapenem versus 338 334 7-6 8-7 n.c. 3 of 451 7 of 450 0-340	Sisto et al.45			274	277	n.s.	n.s.			n.c.	3 (1.1)	4 (1.4)	1.000
	Wilson et al. ⁴⁶ §§	Colorectal surgery	Ertapenem versus	338	334					n.c.			0.340

Table 4 Length of hospital stay and mortality associated with preoperative prophylactic antibiotics

*Values are mean (median, range) unless indicated otherwise; †values are mean(s.d.). ‡Values in parentheses are percentages. §Infection rate and length of stay (LOS) for cefazolin, clindamycin and cefoperazone were pooled as individual results were not stated; mean cost per patient was based on length of hospital stay (LOS). ¶Patients with infection were admitted to hospital (7 placebo, 1 intervention). #Mann–Whitney *U* test for LOS and χ^2 test with Yates' correction for mortality. **Intention-to-treat data; infection data were missing for six patients in the control group and seven in the intervention group. ††Per-protocol data. ‡‡Intention-to-treat data. §§Per-protocol data; intention-to-treat data used for mortality reported in the nested study of Itani *et al.*⁴⁸. C, control; I, intervention; n.c., not calculated (insufficient data in article); n.s., not stated; AH, abdominal hysterectomy; VH, vaginal hysterectomy; CABG, coronary artery bypass graft; SDD, selective decontamination of the digestive tract. *P* values are those reported in the article.

 Table 5 Evidence of preoperative prophylactic antibiotics in bacterial isolates and resistance patterns

		Preoperative	e prophylaxis	Bacterial is	solates	Bacterial
Reference	Population	Control	Intervention	Control	Intervention	resistance patterns
Dhadwal <i>et al</i> . ³⁸ *	Median sternotomy for primary CABG of at least one thoracic artery and at least one of four defined risk factors: 201	Cefuroxime 1.5 g (single dose), then cefuroxime 750 mg at reversal of anticoagulation 8 and 16 h after surgery	Rifampicin 600 mg (single dose), then gentamicin 2 mg/kg + vancomycin 15 mg/kg on induction of anaesthesia. Postoperative vancomycin 7.5 mg/kg at 12, 24 and 36 h	19 of 99 GNB: 15 GPB: 10 Rifampicin-resistant GPB: 4 Vancomycin- resistant GPB: 0 Anaerobic: 2 Yeast: 1	7 of 87 GNB: 7 GPB: 4 Rifampicin- resistant GPB: 1 Vancomycin- resistant GPB: 0 Anaerobic: 1 Yeast: 1	No increase in vancomycin- resistant <i>Enterococcus</i> or MRSA
Garcia-Rodriguez <i>et al.</i> ⁴⁰ †	Gastroduodenal or biliary surgery with at least one of the 11 defined risk factors: 1451	Cefoxitin 2 g (single i.v. dose), then cefoxitin 2 g 6,12 and 18 h after surgery	Cefotaxime 1 g (single dose)	Escherichia coli and Staphylococcus aureus most common; frequency and study group not mentioned		Not stated
Jones <i>et al.</i> ⁴¹	Hysterectomy, genitourinary, gastrointestinal or other (total joint replacement and open reduction of fractures) surgical procedures: 812	Cefotaxime 1-0 g (slow i.v. bolus after anaesthesia but 30 min before incision). Additional cefotaxime 1-0 g given during surgery if procedure duration 2 h or more. For bowel surgery, standard bowel preparation before prophylaxis	Cefoperazone 1-0 g (slow i.v. bolus after anaesthesia but 30 min before incision). For bowel surgery, standard bowel preparation before prophylaxis	12 of 21 GNB: 2 GPB: 5 Anaerobic: 3	18 of 21 GNB: 2 GPB: 3 Anaerobic: 2	Aerobic organisms 92% susceptible to cefoperazone and 72% inhibited by cefotaxime
Marroni <i>et al.</i> ⁴²	Abdominal aortic or lower limb prosthetic vascular surgery: 238	Cefazolin 2 g (single i.v. dose)	Teicoplanin 400 mg (single dose)	Graf MRSA: 0 SW GNB: 1 GPB: 1 UTI GNB: 3 Bloodsti GNB: 2	MRSA: 0 GNB: 2 GPB: 1 GNB: 4	n.s.
Sisto <i>et al.</i> ⁴⁵	CABG: 551	Ceftriaxone 2 g (single dose)	Cefuroxime 1.5 g (single dose), then cefuroxime 1.5 g 8-hourly until end of postoperative day 2	GNB: 2 Mediast GNB: 1 GPB: 6 Anaerobic: 0 Clostridium difficile: 0		n.s.
Wilson <i>et al.</i> ⁴⁶ ‡	Colorectal surgery: 672)	Ertapenem 1 g (single dose)	Cefotetan 2 g (single dose)	GPB: 42 Anaerobic: 36 GNB: 17 <i>C. difficile</i> : 2	GPB: 51 Anaerobic: 44 GNB: 23	67% resistant to cefotetan; 16% resistant to ertapenem

*Intention-to-treat data for antibiotic efficacy. †Infection data were missing for six patients in the control group and seven in the intervention group. ‡Per-protocol data; bacterial isolates and susceptibility data from nested study by Itani *et al.*⁴⁸. GNB, Gram-negative bacteria; GPB, Gram-positive bacteria; MRSA, methicillin-resistant *Staphylococcus aureus*; SWI, surgical wound infection; UTI, urinary tract infection; CABG, coronary artery bypass graft.

		No. of studies reporting $(n = 12)$								
Question	Yes	No	Unsure	Not applicable						
Well defined question stated?	12	0	0	0						
Description of alternatives?	12	0	0	0						
Evidence of clinical effectiveness established?	10	1	1	0						
Relevant costs and outcomes identified?	7	5	0	0						
Costs measured accurately in appropriate units?	8	4	0	0						
Outcomes measured accurately in appropriate units	8	4	0	0						
Costs valued credibly?	10	2	0	0						
Outcomes valued credibly?	10	2	0	0						
Costs discounted? $(n = 6)$	0	6	0	6						
Was incremental analysis performed?	1	11	0	0						
Was sensitivity analysis performed?	1	11	0	0						
Was generalizability discussed?	2	10	0	0						

 Table 6
 Summary of quality assessment checklist for assessing economic evaluations of included studies

reported^{35–39,41,43–46}, although time horizons and discounting were poorly reported^{35,37,38,40–44,46}. Overall the results were poorly reported, including study parameters, incremental costs and characterization of uncertainty and heterogeneity^{36–46}. Discussion around the individual study findings, their limitations and generalizability was also of poor quality^{37,40–46}. Source of funding and conflict of interest was poorly reported: four^{35,36,41,44} reported funding and two^{38,44} reported conflict of interest. Only one⁴⁴ of these studies reported on both funding and conflict of interest.

Clinical effectiveness of antibiotic prophylaxis, length of hospital stay and mortality

All studies included a definition for postoperative SSI (*Table 3*). Four studies^{38,40,42,46} used several variations of recognized definitions: the National Nosocomial Infections Surveillance^{54–56}, variations of the CDC definition^{50,53} and the National Research Council definition^{50,52}. The definition used by Blair and colleagues³⁵ was developed by Johnson and co-workers⁴⁹ in 1984, and the definition reported by Dijksman *et al.*³⁹ was that of Rommes *et al.*⁵¹, used in the nested study of Roos and colleagues⁴⁷.

All studies reported SSI rates and the effectiveness of the preoperative antibiotic prophylaxis. Prophylactic effectiveness was demonstrated in 11 studies^{35–44,46}, although effectiveness was statistically significant in only seven^{37–40,43,44,46}. Blair and colleagues³⁵ demonstrated effectiveness of the intervention compared with placebo, but failed to stipulate which of the three interventions was effective (cefazolin, clindamycin or cefoperazone). Effectiveness was therefore calculated for the pooled interventions. Matkaris *et al.*⁴³ demonstrated significant effectiveness of three prophylactic antibiotics *versus* the no-antibiotic control, and also reported comparable differences between the three prophylactic antibiotics. The study that did not demonstrate prophylactic effectiveness for the intervention compared a single dose of ceftriaxone (third-generation cephalosporin) with three doses of cefuroxime (second generation) given three times daily, in patients undergoing CABG⁴⁵.

Eleven studies^{35-44,46} reported length of hospital stay (LOS), although the reporting was inconsistent between treatment groups as well as between infected and non-infected patients (Table 4). Overall LOS was reduced in the intervention group for all of the studies, although this was significant in only one study⁴⁴. LOS was increased in the presence of infection compared with no infection in two studies^{35,40}. Five studies^{38-40,42,45} reported on mortality, although none stated the day of admission when the death occurred; there was no significant difference in mortality rates between intervention and control groups in the five studies^{38-40,42,45}. There was one death from infection in each arm of the Marroni study⁴², whereas in the Sisto study⁴⁵ no death was from infection. Mortality was not reported in the paper by Wilson et al.46, but was reported in the nested study of Itani and co-workers48; the difference was not statistically significant and was not directly related to the prophylaxis.

Bacterial isolates and antimicrobial resistance

Six studies^{38,40-42,45,46} reported and identified the bacterial pathogens responsible for SSIs; the pathogens were similar across the studies (*Table 5*). *Clostridium difficile*, a toxic organism found in the intestine causing colitis, was identified in one study⁴⁵ after surgery following a second dose of cefuroxime. Wilson *et al.*⁴⁶ also reported *C. difficile* colitis (in 2 patients who received ertapenem) and antimicrobial resistance of the pathogens to ertapenem *versus* cefotetan in the nested study⁴⁸. Resistance of pathogens to ertapenem was much lower (16 per cent) than that to cefotetan (67 per cent). Only two other studies^{38,41} reported antimicrobial resistance. Dhadwal and colleagues³⁸ found no increase in vancomycin-resistant *Enterococcus* or methicillin-resistant *Staphylococcus aureus*

	-					-			
Reference	Intervention <i>versus</i> control	Intervention failure*	Control failure*	Treatment effect (TEc – TEi)	Mean cost of intervention (includes treatment cost)	Mean cost of control (includes treatment cost)	Incremental cost per patient	Incremental cost per patient (2016 €)†	ICER (2016 €)†
Blair <i>et al.</i> ³⁵ ‡	Cefazolin, clindamycin and cefoperazone <i>versus</i> placebo	3 of 93 (3)	10 of 99 (10)	7	\$36 240.00	\$36 030.00	\$210.00	293.79	Dominant
Bold <i>et al.</i> ³⁶ §	Cefonicid <i>versus</i> placebo	5 of 88 (6)	12 of 90 (13)	7	\$149.80	\$364.87	-\$215·07	-269.26	Dominant
Davey et al.37¶	AH: cephradine <i>versus</i> placebo	40 of 97 (41)	53 of 102 (52·0)	11	£18·26	£31.34	-£13·08	-37.92	Dominant
	AH: mezlocillin <i>versus</i> placebo	40 of 101 (39·6)	53 of 102 (52·0)	12.4	£17.61	£31.34	-£13·73	-37.92	Dominant
	VH: cephradine <i>versus</i> placebo	14 of 34 (41)	15 of 29 (52)	11	£40.60	£41·20	-£0.60	-1.65	Dominant
	VH: mezlocillin <i>versus</i> placebo	7 of 37 (19)	15 of 29 (52)	33	£8-80	£41·20	-£32·40	-89.50	Dominant
Dhadwal <i>et al.</i> ³⁸ #	Rifampicin +gentamicin +vancomycin <i>versus</i> cefuroxime	8 of 87 (9)	25 of 99 (25)	16	\$15 158·00	\$19054.00	-\$3896.00	-4315·99	Dominant
Dijksman <i>et al.</i> ³⁹ **	SDD (amphotericin B, polymyxin B sulphate + tobramycin) <i>versus</i> placebo	28 of 143 (19·6)	45 of 146 (30·8)	11.2	€12 031.00	€14 635.00	–€2604.00	-2731·28	Dominant
Garcia-Rodriguez et al. ⁴⁰ ††	Cefotaxime versus cefoxitin	22 of 722 (3·3)	54 of 716 (7·7)	4-4	\$28.64	\$104·43	-\$75.79	-120.72	Dominant
Jones <i>et al.</i> ⁴¹ ‡‡	Cefoperazone versus cefotaxime	9 of 411 (2·2)	12 of 401 (3·0)	0.8	\$14.50	\$12.90	\$1.60	2.64	5.12
Marroni <i>et al.</i> ⁴² §§	Cefazolin <i>versus</i> teicoplanin	7 of 119 (5·9)	2 of 119 (1.7)	-4.2	\$4803.13	\$4361.86	\$441.27	552.45	Dominated by control
Matkaris <i>et al.</i> ⁴³ ¶¶	Ceftriaxone <i>versus</i> no antibiotic	3 of 50 (6)	15 of 50 (30)	24	\$150.12	\$248.03	-\$97.91	-140.10	Dominant
	Cefotaxime <i>versus</i> no antibiotic	4 of 50 (8)	15 of 50 (30)	22	\$128.06	\$248.03	- \$119∙97	-171.67	Dominant
	Ceftazidime <i>versus</i> no antibiotic	4 of 50 (8)	15 of 50 (30)	22	\$137-81	\$248.03	-\$110·22	-157.71	Dominant
Matsui <i>et al.</i> ⁴⁴ ##	Cefazolin <i>versus</i> no antibiotic	6 of 518 (1·2)	35 of 519 (6·7)	5.5	\$766.10	\$831·90	-\$65.80	-60.75	Dominant
Sisto et al.45***	Ceftriaxone versus cefuroxime	21 of 274 (7·7)	23 of 277 (8·3)	0.6	\$36·11	\$107.82	-\$71.71	-95.95	Dominant
Wilson <i>et al.</i> ⁴⁶ †††	Ertapenen <i>versus</i> cefotetan	143 of 334 (42·8)	95 of 338 (28·1)	-14.7	\$15 230.00	\$17 411.00	-\$2181.00	-2340.81	Dominant

Table 7 Summary of reported costs and incremental cost-effectiveness ratio calculated from study data

*Values in parentheses are percentages. †'Discounted' cost per patient and incremental cost-effectiveness ratio (ICER) calculated by means of a two-step discounting process using the Campbell and Cochrane Economics Methods Group-Evidence for Policy and Practice Information and Coordinating Centre cost converter web-based tool^{32,33}. The 2016 implied conversion factor is \$1 = \$0.70 sterling; the 2016 euro conversion factor is \$1 sterling = €1.28. ‡Treatment effects of cefazolin, clindamycin and cefoperazone were pooled, and costs were pooled and averaged; cost inferred from study setting to be US\$; for conversion of 1992 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1992 to 2016 value is 1.57. \$Price year inferred from publication date; for conversion of 1998 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1998 to 2016 is 1.41. Price year inferred from publication date; for conversion of 1988 British pounds to 2016 British pounds, the implied inflation factor for £1 sterling in 1988 to 2016 is 2.16. #Price year inferred from study end date; cost data based on per-protocol analysis; for conversion of 2004 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 2004 to 2016 is 1.24. **For conversion of 2008 euros to 2016 euros, the implied inflation factor for €1 in 2008 to 2016 is 1.05. ††Cost inferred from study setting to be US\$; for conversion of 1988 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1988 to 2016 is 1.79; infection data were missing for six patients in the control group and seven in the intervention group. ‡‡Price year inferred from publication date; all treatment failures; for conversion of 1987 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1987 to 2016 is 1.87. §§Price year inferred from study end date; for conversion of 1998 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1998 to 2016 is 1.41. ¶Price year inferred from publication date; for conversion of 1991 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1991 to 2016 is 1-61. ##Price year inferred from publication date; for conversion of 2013 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 2013 to 2016 is 1.04. ***Price year inferred from study end date; for conversion of 1994 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 1994 to 2016 is 1.50. †††Cost inferred from study setting to be US\$; cost data based on per-protocol analysis; for conversion of 2005 US dollars to 2016 British pounds, the implied inflation factor for US \$1 in 2005 to 2016 is 1-21. TEc, treatment effect for control; TEi, treatment effect for intervention; AH, abdominal hysterectomy; VH, vaginal hysterectomy; SDD, selective decontamination of digestive tract. A more detailed version of this table is available as Table S6, supporting information.

(MRSA) in CABG, although Gram-positive bacteria resistant to rifampicin were identified in both control (cefuroxime) and investigation (rifampicin, vancomycin and gentamicin) groups. Jones and co-workers⁴¹ found few pathogens (8 per cent) resistant to cefoperazone and, although no pathogens were resistant to cefotaxime, 72 per cent were inhibited by cefotaxime in several surgical procedures.

Quality assessment of economic evaluation

A modified Drummond checklist²⁷ was used to assess economic methodological quality for each study (*Table 6*; *Table S5*, supporting information). Overall four studies^{39–41,46} were evaluated as being of high quality, six^{36–38,43–45} as moderate/acceptable quality, and two^{35,42} as low/unacceptable quality. All studies defined an answerable question and included an alternative treatment. Eight studies^{37–41,44–46} accurately measured their outcomes and costs, which were both reported in the appropriate units. No study performed sensitivity analysis or discounted cost, although discounting was not applicable in six studies^{37,39,41,44–46}. Only one study³⁹ performed an ICER analysis.

Cost analysis of antibiotic prophylaxis

Of the included studies, nine^{35-38,40,42,43,45,46} were cost-benefit studies, two were cost-effectiveness studies^{39,44} and one⁴¹ was a cost containment study (Table 1; Table S3, supporting information). These were all from the perspective of the healthcare provider, with costs reported as mean cost per patient or per patient episode. Sources for the cost data were reported in all studies, and costs included prophylactic antibiotic, daily hospital charge, nursing/staff time, hospital care, care after discharge, and treatment of the SSIs (*Table 7*). The currencies reported were: $euros^{39}$, British pounds³⁷, US dollars^{35,36,38,40-46}, drachma⁴³ and pesetas⁴⁰; both drachma and pesetas were converted to US dollars, which was the currency used in all cost analyses. Only four studies^{39,40,42,46} reported the price year for the currency conversion. Nine studies^{35,36,38-40,43-46} reported cost savings favouring the use of the preoperative prophylaxis intervention and two^{37,42} reported cost savings favouring the control prophylaxis. Davey and colleagues³⁷ showed significant clinical effectiveness for cephradine and mezlocillin in abdominal and vaginal hysterectomy, but neither intervention was considered cost-effective. One study³⁹ reported an ICER when using selective decontamination of the digestive tract versus placebo in gastrointestinal surgery, with the prevention of at least

one infection leading to a reported saving of $\notin 23\,164$ per patient. No study discounted costs, although Dijksman *et al.*³⁹ stated that the reason for not discounting costs included a 1-year time horizon, and they did perform a sensitivity analysis. One study⁴⁵ considered only the acquisition and delivery cost of the antibiotic prophylaxis and not the treatment failures.

Calculated incremental cost-effectiveness ratio

The calculated ICER was based on the results of each study, their reported currency and euros (2016) (Table 7; Table S6, supporting information). Eight studies did not clearly state the price year for the cost calculations, so the year in which the study ended^{38,42,45} and date of publication^{36,37,41,43,44} were used. The calculated treatment effect showing the proportion of infections averted ranged from 0.06 per cent in clean CABG surgery⁴⁵ to 0.33 per cent in clean-contaminated vaginal hysterectomy³⁷, with one study⁴² showing a negative effect in vascular prosthetic surgery. The intervention in ten studies^{35-40,43-46} was dominant (more effective and cheaper than the control) and in one study⁴² the intervention was dominated by the control (it was less effective and more expensive). In the remaining study⁴¹, the intervention was more effective and more expensive than the control. This resulted in an incremental increase of €2.64 per patient and a resultant ICER of €5.12 for the year 2016.

Discussion

This review aimed to evaluate the cost-effectiveness of preoperative antibiotic prophylaxis in preventing SSIs, including assessment of the reporting quality of the clinical and cost-effectiveness. Twelve studies published between 1988 and 2014 were identified, and included preoperative antibiotic prophylaxis as well as costs. Most of the studies had a large sample size: five had more than 500 participants, four had between 200 and 500 participants and three had fewer than 200 participants. All studies reported some measure of costs, but only two reported on incremental cost-effectiveness and none included any of the recommended economic checklists^{27,31}. All identified studies reported on prophylactic effectiveness, although few included antibiotic resistance and none addressed the appropriateness of antibiotic stewardship.

Prophylactic effectiveness was achieved in ten studies. The size of these effects is considered clinically important, particularly in contaminated and clean-contaminated surgery^{37,39–41,44,46}, which has a higher risk of baseline SSI compared with clean procedures⁵⁷. Five^{35,36,38,42,45} of the included studies involved clean surgical procedures, so clinical effectiveness in four^{35,36,38,42} of these studies was not unexpected. Prophylactic effectiveness was also achieved even when the comparator was another antibiotic^{38,40,41,46}. Most of the prophylactic interventions involved first-, second- or third-generation cephalosporins compared with either placebo or a control. Cephalosporins are safe and have a long half-life, ensuring penetration of tissues²¹. They offer cover against most S. aureus strains and some Gram-negative organisms, but not coagulase-negative staphylococci or MRSA²². Only two studies mentioned screening for C. difficile. Cephalosporins, especially third-generation drugs, have been linked to patients having an increased risk of colonization with C. difficile, causing toxic C. difficile colitis²², even when administered as a single dose^{58,59}. The size and dosage of antibiotic prophylaxis is important, as single-dose administration may precipitate resistance unless the prophylactic drug has a sufficient half-life and tissue penetration. One study showed that a single dose of the intervention (cefoperazone) was less effective clinically and cost more than control prophylaxis (cefotaxime). Both of these antibiotics are third-generation cephalosporins, and both were administered as a single bolus 30 min after anaesthesia but before incision. Cefotaxime was administered again during surgery if the duration of the procedure exceeded 2 h.

Teicoplanin, a glycopeptide, may also be administered as a single dose. Its use as an intervention, however, was less effective and more expensive compared with cefazolin (a first-generation cephalosporin). Cefazolin remains the prophylactic choice in vascular surgery as it is effective against S. aureus (the most frequently isolated organism in infected vascular wounds). Cefazolin has been shown to be as effective as cefamandole and cefuroxime in prosthetic vascular surgery⁶⁰. With the increase in MRSA, vancomycin is an alternative, but it is toxic. Teicoplanin is similar to vancomycin, but is less toxic and has a longer half-life, so may be administered once daily. Teicoplanin lacks activity against Gram-negative bacteria, however, and most infections in the teicoplanin study were caused by Gram-negative bacteria; this may have contributed to the increased costs per patient.

Combining the findings of economic evaluations with those of clinical-effectiveness trials provides healthcare policy-makers with evidence-based options for healthcare decision-making. The methodology of economic evaluations needs to be defined clearly at the study outset. This review identified low to acceptable reporting of the economic evaluations, but with great variation, whereas the reporting of clinical effectiveness was more standardized. The most recent studies were more consistent in terminology and reporting of costs and their units. Some of the studies did not include treatment failures in their cost analysis, and this may result in an intervention that is cost-saving but not necessarily cost-effective. In addition, cost-effectiveness may be more favourable in procedures that carry a higher baseline risk of SSI when the cost of prophylaxis is the same. Length of hospital stay is a recognized factor contributing to $costs^{7-9,11}$, and all studies reported a reduced length of stay compared with the control regimen; however, it was difficult to determine the exact costs of the stay. It is also recognized that mean daily costs decrease with extended length of stay, with the most intensive costs incurred in the period shortly after admission⁹; this may be perceived as a disincentive for hospitals to eliminate all SSIs^{9,10}. None of the included studies reported decreasing costs of the hospital admission; all reported a daily hospital charge. Mortality also has an associated cost, and in cost-effectiveness studies is considered a permanent sequela. Only five studies and a nested study reported mortality, and none included deaths in the cost analysis.

The methodological quality of the included studies was not well reported, as evidenced by low scores on the CHEERS checklist³¹, whereas economic reporting was moderate to high, with seven studies ranking 75 per cent or above on the modified Drummond quality checklist²⁷. Two of the highest-quality studies were among the most recent ones, published in 2008 and 2012. There was, however, no standard method of reporting costs, and some cost components were not always reported; discounting was not reported in any study. Consistent inclusion of standardized economic studies in clinical trials and quasi-experimental studies would allow evidence-based decision-making with respect to antibiotic efficacy and cost-effectiveness.

This review has five main limitations. First, the search terms used may not have identified all articles, as a wide variety of terms exist to describe economic evaluations, prophylaxis and infection. Second, the review was restricted to studies performed in OECD countries. The purpose of the restriction was to reduce the effect of differences in operating theatre conditions and surgical procedures on the incidence of SSI. Third, the ICER analysis is based on the published study data and, because there was heterogeneity between the studies and sensitivity analysis was not always reported, it was limited to point estimates. Fourth, in this review, an ICER was not sensitive enough to rank cost-effectiveness, as most of the interventions were dominant. For the dominant interventions using an ICER the range of difference could not be determined, and possibly a quality-adjusted life-year framework would be more suitable; however, this would require standardized reporting. Fifth, despite the importance of preventing primary antibiotic resistance, the review did not attempt to address the development of resistance or antibiotic stewardship, because no study reported on either. This also implies that the results of these studies have limited generalizability; if resistance patterns differ, a drug that is (cost-)effective in one context may not be in another. The specific findings of the studies reviewed here should therefore be treated with caution.

The strengths of this review are several. It is the first to include both clinical and economic effectiveness of preoperative prophylaxis; it included five databases, and the numerous keywords were matched with indexed terms specific to the databases. This review summarized large data sets that encompassed many surgical specialties and procedures. It is recommended^{29,30,61} that more than one reviewer should screen for papers to be included in a systematic review. This review used two independent reviewers, and the κ statistic for each level of screening was at the higher end of the scale (from substantial to almost perfect).

This review of the cost-effectiveness of preoperative antibiotic prophylaxis found that most interventions were cost-effective. To ensure that preoperative prophylaxis continues to prevent SSI, there needs to be increased awareness of the prevalence of resistance within each facility and improved antibiotic stewardship to reduce the development of resistance. Antibiotic stewardship includes use of the appropriate recommended antibiotic prophylaxis based on the most common pathogens likely to cause SSI for a specific surgical procedure, following recommended timing of administration before incision to ensure maximum tissue concentration, adjusting the prophylaxis dose according to the patient's bodyweight, redosing the prophylaxis at intervals of two half-lives, and discontinuing prophylaxis after surgery within recommended time frames. New antibiotic prophylaxis regimens may be implemented when they are less effective or more expensive if economic methods are not included routinely in RCTs and quasi-experimental studies. Economic methods would improve the understanding and true economic benefit of these new regimens. The economic methods need to be standardized against recommended guidelines and incorporate sensitivity analysis, discount rates, year and date of the study, unit costs, mortality, treatment effects, antibiotic resistance and quality-of-life costs.

Disclosure

The authors declare no conflict of interest.

References

- 1 de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. *Am J Infect Control* 2009; **37**: 387–397.
- 2 Anderson DJ. Surgical site infections. Infect Dis Clin North Am 2011; 25: 135–153.
- 3 Ozdemir S, Gulpinar K, Ozis SE, Sahli Z, Kesikli SA, Korkmaz A *et al.* The effects of preoperative oral antibiotic use on the development of surgical site infection after elective colorectal resections: a retrospective cohort analysis in consecutively operated 90 patients. *Int J Surg* 2016; 33: 102–108.
- 4 Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG. CDC definitions of nosocomial surgical site infections, 1992: a modification of CDC definitions of surgical wound infections. *Infect Control Hosp Epidemiol* 1992; 13: 606–608.
- 5 Lankiewicz JD, Yokoe DS, Olsen MA, Onufrak F, Fraser VJ, Stevenson K *et al.* Beyond 30 days: does limiting the duration of surgical site infection follow-up limit detection? *Infect Control Hosp Epidemiol* 2012; **33**: 202–204.
- 6 Boltz MM, Hollenbeak CS, Julian KG, Ortenzi G, Dillon PW. Hospital costs associated with surgical site infections in general and vascular surgery patients. *Surgery* 2011; **150**: 934–942.
- 7 Dimick JB, Chen SL, Taheri PA, Henderson WG, Khuri SF, Campbell DA. Hospital costs associated with surgical complications: a report from the private-sector National Surgical Quality Improvement Program. *J Am Coll Surg* 2004; **199**: 531–537.
- 8 Broex EC, van Asselt AD, Bruggeman CA, van Tiel FH. Surgical site infections: how high are the costs? *J Hosp Infect* 2009; **72**: 193–201.
- 9 Shepard J, Ward W, Milstone A, Carlson T, Frederick J, Hadhazy E *et al.* Financial impact of surgical site infections on hospitals: the hospital management perspective. *JAMA Surg* 2013; **148**: 907–914.
- 10 Jenks PJ, Laurent M, McQuarry S, Watkins R. Clinical and economic burden of surgical site infection (SSI) and predicted financial consequences of elimination of SSI from an English hospital. *J Hosp Infect* 2014; 86: 24–33.
- 11 Plowman R, Graves N, Griffin MA, Roberts JA, Swan AV, Cookson B *et al.* The rate and cost of hospital-acquired infections occurring in patients admitted to selected specialties of a district general hospital in England and the national burden imposed. *J Hosp Infect* 2001; **47**: 198–209.
- 12 Leaper DJ, Van Goor H, Reilly J, Petrosillo N, Geiss HK, Torres AJ *et al.* Surgical site infection – a European perspective of incidence and economic burden. *Int Wound J* 2004; 1: 247–273.
- 13 Schweizer ML, Cullen JJ, Perencevich EN, Vaughan Sarrazin MS. Costs associated with surgical site infections in Veterans Affairs hospitals. *JAMA Surg* 2014; 149: 575–581.
- 14 Lee I, Agarwal RK, Lee BY, Fishman NO, Umscheid CA. Systematic review and cost analysis comparing use of chlorhexidine with use of iodine for preoperative skin

antisepsis to prevent surgical site infection. *Infect Control Hosp Epidemiol* 2010; **31**: 1219–1229.

- 15 Noorani A, Rabey N, Walsh SR, Davies RJ. Systematic review and meta-analysis of preoperative antisepsis with chlorhexidine *versus* povidone–iodine in clean-contaminated surgery. *Br J Surg* 2010; **97**: 1614–1620.
- 16 Gillespie BM, Chaboyer W, Erichsen-Andersson A, Hettiarachchi RM, Kularatna S. Economic case for intraoperative interventions to prevent surgical-site infection. *Br J Surg* 2017; **104**: e55–e64.
- 17 Gheorghe A, Roberts TE, Pinkney TD, Bartlett DC, Morton D, Calvert M. The cost-effectiveness of wound-edge protection devices compared to standard care in reducing surgical site infection after laparotomy: an economic evaluation alongside the ROSSINI trial. *PLoS One* 2014; 9: e95595.
- 18 Patel A, Bergman A, Moore B, Haglund U. The economic burden of complications occurring in major surgical procedures: a systematic review. *Appl Health Econ Health Policy* 2013; **11**: 577–592.
- Kao LS, Meeks D, Moyer VA, Lally KP. Peri-operative glycaemic control regimens for preventing surgical site infections in adults. *Cochrane Database Syst Rev* 2009; (3)CD006806.
- 20 Beltramini AM, Salata RA, Ray AJ. Thermoregulation and risk of surgical site infection. *Infect Control Hosp Epidemiol* 2011; **32**: 603–610.
- 21 Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK et al.; American Society of Health-System Pharmacists; Infectious Disease Society of America; Surgical Infection Society; Society for Healthcare Epidemiology of America. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm 2013; 70: 195–283.
- 22 Scottish Intercollegiate Guidelines Network (SIGN). Antibiotic Prophylaxis in Surgery; SIGN Publication number 104; July 2008 [updated April 2014]. http://www.sign.ac.uk/ assets/sign104.pdf [accessed 16 June 2017].
- 23 Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L *et al.* Strategies to prevent surgical site infections in acute care hospitals: 2014 update. *Infect Control Hosp Epidemiol* 2014; 35: 605–627.
- 24 Higgins JPT, Green S (eds). Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0; updated March 2011. http://handbook.cochrane.org [accessed 30 May 2014].
- 25 Centre for Reviews and Dissemination (CRD), University of York. Systematic Reviews: CRD's Guidance for Undertaking Reviews in Health Care; 2009. https://www.crd.york.ac.uk/ CRDWeb/GuideToSearching.asp [accessed 30 May 2014].
- 26 Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009; 151: 264–269.
- 27 Drummond MF, Sculpher MJ, Torrance GW, O'Brien BJ, Stoddart GL. *Methods for the Economic Evaluation of Health*

Care Programmes (3rd ed.). Oxford University Press: New York, 2005.

- 28 World Bank Group. Data: Country and Lending Groups 2014. http://data.worldbank.org/about/country-and-lending-groups [accessed 16 July 2014].
- 29 Watson PF, Petrie A. Method agreement analysis: a review of correct methodology. *Theriogenology* 2010; 73: 1167–1179.
- 30 Landis JR, Koch GG. The measurement of observer agreement for categorical data. *Biometrics* 1977; 33: 159–174.
- 31 Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D *et al.*; CHEERS Task Force. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. *BM*7 2013; 346: f1049.
- 32 Campbell and Cochrane Economics Methods Group (CCEMG) and Evidence for Policy and Practice Information and Coordinating Centre (EPPI-Centre). *CCEMG – EPPI-Center Cost Converter*, v.1.5; April 2016. http://eppi.ioe.ac.uk/costconversion/default.aspx [accessed 20 May 2017].
- 33 Shemilt I, Thomas J, Morciano M. A web-based tool for adjusting costs to a specific target currency and price year. *Evid Policy* 2010; 6: 51–59.
- 34 International Monetary Fund. World Economic Outlook Database; April 2016. https://www.imf.org/external/pubs/ft/ weo/2016/01/weodata/index.aspx [accessed 20 May 2017].
- 35 Blair EA, Johnson JT, Wagner RL, Carrau RL, Bizakis JG. Cost analysis of antibiotic prophylaxis in clean head and neck surgery. *Arch Otolaryngol Head Neck Surg* 1995; 121: 269–271.
- 36 Bold RJ, Mansfield PF, Berger DH, Pollock RE, Singletary SE, Ames FC *et al.* Prospective, randomized, double-blind study of prophylactic antibiotics in axillary lymph node dissection. *Am J Surg* 1998; **176**: 239–243.
- 37 Davey PG, Duncan ID, Edward D, Scott AC. Cost-benefit analysis of cephradine and mezlocillin prophylaxis for abdominal and vaginal hysterectomy. *Br J Obstet Gynaecol* 1988; 95: 1170–1177.
- 38 Dhadwal K, Al-Ruzzeh S, Athanasiou T, Choudhury M, Tekkis P, Vuddamalay P *et al.* Comparison of clinical and economic outcomes of two antibiotic prophylaxis regimens for sternal wound infection in high-risk patients following coronary artery bypass grafting surgery: a prospective randomised double-blind controlled trial. *Heart* 2007; **93**: 1126–1133.
- 39 Dijksman LM, Roos D, Gerhards MF, Tijssen JG, Gouma DJ, Dijkgraaf MG. Cost-effectiveness of perioperative selective decontamination of the digestive tract *versus* placebo in elective gastrointestinal surgery. *Dig Surg* 2012; 29: 384–390.
- 40 Garcia-Rodriguez JA, Puig-LaCalle J, Arnau C, Porta M, Vallve C. Antibiotic prophylaxis with cefotaxime in gastroduodenal and biliary surgery. *Am J Surg* 1989; **158**: 428–432.

- 41 Jones RN, Wojeski WV. Single-dose cephalosporin prophylaxis of 929 surgical procedures in a prepaid group practice: a prospective, randomized comparison of cefoperazone and cefotaxime. *Diagn Microbiol Infect Dis* 1987; 6: 323–334.
- 42 Marroni M, Cao P, Fiorio M, Maghini M, Lenti M, Repetto A et al. Prospective, randomized, double-blind trial comparing teicoplanin and cefazolin as antibiotic prophylaxis in prosthetic vascular surgery. Eur J Clin Microbiol Infect Dis 1999; 18: 175–178.
- 43 Matkaris M, Markantes K, Stayannis K, Iatrakis G, Kourounis G, Tzingounis V. Reduction of hospital cost and administration of prophylactic antibiotherapy in gynecological surgery. *Isr 7 Med Sci* 1991; 27: 134–136.
- 44 Matsui Y, Satoi S, Kaibori M, Toyokawa H, Yanagimoto H, Matsui K *et al.* Antibiotic prophylaxis in laparoscopic cholecystectomy: a randomized controlled trial. *PLoS One* 2014; 9: e106702.
- 45 Sisto T, Laurikka J, Tarkka MR. Ceftriaxone vs cefuroxime for infection prophylaxis in coronary bypass surgery. Scand J Thorac Cardiovasc Surg 1994; 28: 143–148.
- 46 Wilson SE, Turpin RS, Kumar RN, Itani KM, Jensen EH, Pellissier JM *et al.* Comparative costs of ertapenem and cefotetan as prophylaxis for elective colorectal surgery. *Surg Infect (Larchmt)* 2008; **9**: 349–356.
- 47 Roos D, Dijksman LM, Oudemans-van Straaten HM, de Wit LT, Gouma DJ, Gerhards MF. Randomized clinical trial of perioperative selective decontamination of the digestive tract *versus* placebo in elective gastrointestinal surgery. *Br 7 Surg* 2011; **98**: 1365–1372.
- 48 Itani KMF, Wilson SE, Awad SS, Jensen EH, Finn TS, Abramson MA. Ertapenem *versus* cefotetan prophylaxis in elective colorectal surgery. *N Engl J Med* 2006; 355: 2640–2651.
- 49 Johnson JT, Myers EN, Thearle PB, Sigler BA, Schramm VL Jr. Antimicrobial prophylaxis for contaminated head and neck surgery. *Laryngoscope* 1984; 94: 46–51.
- 50 Jonkers D, Elenbaas T, Terporten P, Nieman F, Stobberingh E. Prevalence of 90-days postoperative wound infections after cardiac surgery. *Eur J Cardiothorac Surg* 2003; 23: 97–102.
- 51 Rommes JH, Rios G, Zandstra DF. Therapy of infection. *Trends Anaesth Crit Care* 2001; **12**: 25–33.

- 52 Berard F, Gandon J. Postoperative wound infections: the influence of ultraviolet irradiation of the operating room and of various other factors. *Ann Surg* 1964; **160**(Suppl 2): 1–192.
- 53 Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. *Am J Infect Control* 1988; 16: 128–140.
- 54 Horan TC, Culver DH, Gaynes RP, Jarvis WR, Edwards JR, Reid CR. Nosocomial infections in surgical patients in the United States, January 1986–June 1992. National Nosocomial Infections Surveillance (NNIS) System. *Infect Control Hosp Epidemiol* 1993; 14: 73–80.
- 55 Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital Infection Control Practices Advisory Committee. *Infect Control Hosp Epidemiol* 1999; 20: 250–278.
- 56 Jarvis WR. Benchmarking for prevention: the Centers for Disease Control and Prevention's National Nosocomial Infections Surveillance (NNIS) system experience. *Infection* 2003; **31(**Suppl 2): 44–48.
- 57 Bowater RJ, Stirling SA, Lilford RJ. Is antibiotic prophylaxis in surgery a generally effective intervention? Testing a generic hypothesis over a set of meta-analyses. *Ann Surg* 2009; 249: 551–556.
- 58 Privitera G, Scarpellini P, Ortisi G, Nicastro G, Nicolin R, de Lalla F. Prospective study of *Clostridium difficile* intestinal colonization and disease following single-dose antibiotic prophylaxis in surgery. *Antimicrob Agents Chemother* 1991; 35: 208–210.
- 59 Ambrose NS, Johnson M, Burdon DW, Keighley MR. The influence of single dose intravenous antibiotics on faecal flora and emergence of *Clostridium difficile*. *J Antimicrob Chemother* 1985; 15: 319–326.
- 60 Edwards WH Jr, Kaiser AB, Tapper S, Edwards WH Sr, Martin RS III, Mulherin JL Jr *et al.* Cefamandole *versus* cefazolin in vascular surgical wound infection prophylaxis: cost-effectiveness and risk factors. *J Vasc Surg* 1993; 18: 470–476.
- 61 Edwards P, Clarke M, DiGuiseppi C, Pratap S, Roberts I, Wentz R. Identification of randomized controlled trials in systematic reviews: accuracy and reliability of screening records. *Stat Med* 2002; 21: 1635–1640.

Supporting information

Additional supporting information can be found online in the Supporting Information section at the end of the article.