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Abstract: Background: Neurodegeneration is a progressive/irreversible loss of neurons, building 
blocks of our nervous system. Their degeneration gradually collapses the entire structural and func-
tional system manifesting in myriads of clinical disorders categorized as Neurodegenerative Disorders 
(NDs) such as Alzheimer’s Disease, (AD), Parkinson’s Disease (PD), Frontotemporal Dementia 
(FTD) and Amyotrophic Lateral Sclerosis (ALS). NDs are characterized by a puzzling interplay of 
molecular and cellular defects affecting subset of neuronal populations in specific affected brain areas.  
Objective: In present study, comparative in silico analysis was performed by utilizing gene expression 
datasets of AD, PD, FTD and ALS to identify potential common features to gain insights into complex 
molecular pathophysiology of the selected NDs.  
Methods: Gene expression data of four disorders were subjected to the identification of Differential 
Gene Expression (DEG) and their mapping on biological processes, KEGG pathways and molecular 
functions. Detailed comparative analysis was performed to highlight the common grounds of these 
disorders at various stages. 
Results: Astoundingly, 106 DEGs were found to be common across all disorders. Alongwith in total 
100 GO terms and 7 KEGG pathways were found to be significantly enriched across all disorders. 
EGFR, CDC42 and CREBBP have been identified as the significantly interacting nodes in gene-gene 
interaction and in Protein-Protein Interaction (PPI) network as well. Furthermore, interaction of com-
mon DEGs targets with miRNA’s has been scrutinized. 
Conclusion: The complex molecular underpinnings of these disorders are currently elusive. Despite 
heterogeneous clinical and pathological expressions, common features have been recognized in many 
NDs which provide evidence of their convergence. 

Keywords: Neurodegeneration, Alzheimer’s, Parkinson’s, Frontotemporal dementia, Amyotrophic lateral sclerosis, Dysregu-
lated genes, Retrograde endocannabinoid signaling, Calcium signaling. 

1. INTRODUCTION 

 Neurodegenerative Disorders (ND) represent a large het-
erogeneous group of neurological conditions characterized 
by progressive atrophy/loss of structure and function of neu-
rons in central and peripheral nervous system. As neurons 
cannot be replaced, their degeneration results in debilitating 
disorders manifesting in diverse clinical and pathological 
expressions in specific subset of neuronal populations, cir-
cuitry and affected areas of the brain [1]. Alzheimer’s Dis-
ease (AD), Parkinson’s Disease (PD), Amyotrophic Lateral 
Sclerosis (ALS) and Frontotemporal Dementia (FTD) are 
examples of major devastating NDs that are incurable with 
no existing therapies to prevent and/or slow down disease 
progression. The lion's share of the NDs is age-associated 
 

*Address correspondence to this author at the Biosciences Department, 
COMSATS Institute of Information Technology, Islamabad, Pakistan;  
Tel: + (051) 9247000-6104; E-mail: nighat.noureen@comsats.edu.pk 
# Equally contributing authors 

and their prevalence is expected to increase significantly 
worldwide, partly owing to extensions in lifespan. The 
pathoethiology of NDs is chiefly multifactorial involving 
interplay of both genetic and environmental factors. AD 
(MIM: 104300), a major source of age-associated dementia, 
accounting for 60-70% of cases, is characterized by loss of 
neurons of cerebral cortex and subcortical regions resulting 
in progressive cognitive dysfunction including memory loss, 
language difficulties and executive dysfunction and non-
cognitive dysfunction comprising of behavioral disturbances 
[2]. The pathophysiological signatures of AD brain are 
marked by depositions of extracellular amyloid beta (Aβ) 
plaques, intracellular neurofibrillary tangles (NFT), and loss 
of synaptic connectivity between neurons for memory and 
learning [3, 4]. 20% of early-onset dementia cases are asso-
ciated with the Frontotemporal dementia (FTD; OMIM: 
600274), characterized by progressive loss of neurons in 
frontal and temporal lobes with heterogeneous clinical symp-
toms classified into behavioral dysfunctions variant, seman-
tic dementia and progressive nonfluent aphasia [5]. FTD 
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shows a strong genetic contribution with 40% of patients 
having a positive family history. To date, mutations in 
MAPT, GRN and C9orf72 genes accounts for majority (60%) 
of familial FTD, while rarer gene variants (<5%) have been 
detected in other genes (VPC, CHMP2B, TARDP, FUS, 
ITM2B, TBK1 and TBP) [6, 7]. Parkinson’s Disorder (PD; 
MIM: 168600) is the second most prevalent progressive 
adult onset ND, which mainly affects the motor system 
manifesting as tremors, muscle rigidity, bradykinesia, pos-
tural impairment and disorders of speech and cognition. PD 
results from progressive depletion of dopamine producing 
neurons in the pars compacta of the substantia nigra in the 
mid brain and abnormal accrual of misfolded α-synuclein 
proteins forming inclusions called Lewy bodies which 
causes neuronal anomalies [8, 9]. ALS (MIM: 105400), a 
prototypical fatal Motor Neuron Disease (MND) is caused 
by the loss of motor neurons in upper and lower brain cortex, 
brain stem, and spinal cord responsible for controlling the 
voluntary muscles which manifest in muscular weakness and 
atrophy. Multiple mechanisms such as aggregates of protein-
rich inclusions, oxidative stress, mitochondrial dysfunction, 
apoptosis and glutamate toxicity are linked with neuronal 
degeneration [10]. 
 Although considerable research progress has been made 
in elucidating different aspects of neurodegeneration, but 
complete picture of exact molecular mechanisms involved in 
NDs remains elusive thus far. Despite heterogeneous clinical 
profiles and distinct brain affected areas, commonalities such 
as aberrant protein aggregates, mitochondrial dysfunctions, 
oxidative stress, defective cellular transport, iron accrual and 
glutamate excitotoxicity have been identified in NDs, point-
ing towards certain degree of pathways convergence [11, 
12]. An improved comprehension of the common links in 
mechanisms underlying NDs pathogenesis is vital to facili-
tate better effective drug targets, diagnostics and treatments 
in order to tackle NDs in similar fashion. Therefore, the ob-
jective of the present study was to identify potential common 
relationships in pathways at molecular level among four neu-
rodegenerative disorders i.e. AD, PD, FTD and ALS. The 
study employed pathway analysis using R (statistical envi-
ronment) and other network based tools on four microarray 
gene expression datasets (AD GSE1297, PD GSE8397, FTD 
GSE13162, ALS GSE56808) retrieved from Gene Expres-
sion Omnibus (GEO) repository [13]. 

2. MATERIALS AND METHODS 

2.1. Data Set for Study 

 Differential expression and comparison of four neurode-
generative disorders were approached using the expression 
data (raw data CEL files) from Gene Expression Omnibus 
(GEO) [13]. 
 The first expression dataset of Alzheimer’s disease (AD) 
used Affymetrix HG-U133A chips, consisting of hippocam-
pal gene expression of nine controls and 22 AD subjects (of 
brain hippocampi) with variant severity (GEO Accession 
Number: GSE1297) [14]. The dataset of Parkinson’s disease 
(PD) from Affymetrix HG-U133A chips contained 39 indi-
vidual tissue samples, which were based upon 15 samples of 
medial parkinsonian (MSN), 9 samples of lateral parkin-
sonian (LSN), 8 samples of medial nigra controls and 7 sam-

ples of lateral nigra controls (GEO Accession Number: 
GSE8397) [15, 16]. 
 The dataset of Frontotemporal Dementia (FTD) based on 
Affymetrix HG-U133A_2 chips, consisted of 56 samples of 
3 brain regions (cortex, hippocampus and cerebellum). There 
were 6 control and 6 disease samples taken from cerebellum, 
2 control and 8 disease samples taken from hippocampus and 
8 control and 10 disease samples taken from cortex (GEO 
Accession Number: GSE13162) [17]. The dataset of 
Amyotrophic Lateral Sclerosis (ALS) (fibroblasts) consisting 
of 10 control and 10 diseased samples used Illumina Hu-
manRef 8 Beadchips (GEO Accession Number: GSE56808) 
[13]. 

2.2. Preprocessing and Selection of Differentially Ex-
pressed Genes (DEGs) 

 The expression levels (CELL files) of AD, PD, FTD and 
ALS were log transformed via R commands obtained from 
GEO2R [18] and then changed according to the requirement. 
Optical noise and non-specific binding (NSB) based back-
ground intensities were adjusted via normalization [18] for 
the data passed through QC. GEO2R processed the data via 
GEO query [19] and limma R [20] packages of Bioconductor 
and produced a text file consisting of a list of all the genes 
present in samples (disease vs. control) along with their 
LogFC values, p- values, adjusted p values, t-statistic (t) val-
ues, gene symbols, gene IDs and Gene titles. 
 Differentially Expressed Genes (DEGs) for AD, PD, ALS 
and FTD were identified using p-value default threshold of < 
0.05 and absolute log expression change (LogFC) of < 0.6. 

2.3. Common DEGs, Pathways and Networks Across All 
Disorders 

 The DEGs of all disorders were subjected to the identifi-
cation of common genes using a Venn diagram based tool 
[21].  
 The interactions among common DEGs of all disorders 
based on various parameters including physical contacts, co-
expression, genetic interactivity, shared protein domains, co-
localization, etc., were retrieved in the form of network using 
GeneMania [22] plugin of Cytoscape [23]. The hub node 
bearing the maximum connectivity in the common DEGs 
network of GeneMania was obtained using the CytoHubba 
[24] application of Cytoscape. 
 The Protein-Protein Interaction (PPI) network for com-
mon DEGs was attained via the information resource from 
STRINGS [25] database. Along with the PPI network, com-
mon biological processes, molecular functions, cellular com-
ponents [26] and KEGG [27] pathways were also retrieved 
from STRINGS. PPI network was also subjected to hub 
identification using CytoHubba plugin. 
 Along with genes and proteins, functional interactions of 
microRNA’s (miRNA) with common DEGs of all disorders 
were obtained via miRNet [28]. The interactions were at-
tained in the form of a network which was utilized further to 
highlight the hub node in this case based on maximum con-
nectivity. The hub node connectivity has been visualized 
through BioLayout3D software [29]. 
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3. RESULTS 

 The current study identified molecular, cellular path-
ways, biological processes, molecular functions, associated 
proteins and miRNA’s targets for four neurodegenerative 
disorders i.e., Alzheimer’s Disease (AD), Parkinson’s Dis-
ease (PD), Frontotemporal Dementia (FTD) and Amyotro-
phic Lateral Sclerosis (ALS) by performing comparative 
analysis on Differentially Expressed Genes (DEGs) of each 
disorder obtained from microarray data. The normalized data 
were used for the identification of DEGs (Fig. 1).  

3.1. Identification of Differentially Expressed Genes 

 A total of 2313 Differentially Expressed Genes (DEGs) 
out of 22283 in AD, 9855 out of 22283 in PD, 4137 out of 
54675 in ALS and 5920 out of 22277 in FTD were identi-
fied. The DEGs were selected on the basis of standard 
threshold p-value of 0.05. Expression values of DEGs have 
been visualized in the form of heat maps (Fig. 2). 

3.2. Common DEG’s Across the Disorders 

 Detailed analysis of DEGs highlighted common behav-
iors in all four disorders simultaneously as well as in differ-
ent pairings (Fig. 3; Table S1). In total 106 Differentially 
Expressed Genes (DEGs) were found in common across all 
disorders. However, 321dysregulated genes between ALS, 
FTD and PD, 38 between AD, ALS and FTD, 129 between 
AD, ALS and PD, 382 between AD, FTD and PD, 235 be-
tween ALS and FTD, 568 between ALS and PD, 70 between 

ALS and AD, 1578 between FTD and PD, 205 between AD 
and FTD, 621 between AD and PD were found in common. 
 The interactions among common DEGs were obtained 
via GeneMania [22]. Gene-gene interaction network (Fig. 
4a) showed interactions based on various parameters where 
physical interactions among the genes scored 72.23% 
(marked in pink color) of all interactions, co-expression 
based interactions (in light purple color) were 18.23%, ge-
netic interactions (in light green color) were 4.42% and the 
rest were the rare interactions. The network seems like a 
dense interaction network among the genes based on all pos-
sible interactions highlighted.  
 Gene interaction network was subjected to hub identifica-
tion. Hub node has been identified based on maximum inter-
actions with the neighboring nodes. Degree centrality was 
chosen as the measure of hub identification in CytoHubba. 
EGFR gene has been highlighted as the hub node (marked in 
red color) in Fig. (4b). EGFR has maximum connectivity of 
63 with all other DEGs of the network. It means it is con-
nected to 63 DEGs as listed in Table S2. Top 50 nodes with 
maximum connectivity have been highlighted in Fig. (4b). 
EGFR gene showed maximum connectivity and is ranked as 
1 while VCAN gene showed lower connectivity and is ranked 
50 based on degree centrality. The least connected node 
having only one connection in the network is EXOSC7 
gene. Along with degree centrality measures, the values 
of other network parameters obtained via CytoHubba in-
cluding betweenness centrality, closeness centrality and 
many others have also been mentioned in Table S2.

 
Fig. (1). Box plots of ALS, AD, FTD and PD representing the gene expression data sets. Control versus Diseased samples distribution have 
been shown after data normalization via GEO2R script. ALS plot shows 6 control case samples along with 12 disease case samples. AD plot 
shows 9 control case samples and 22 disease case samples. FTD has 17 control case samples and 39 disease case samples. PD has 17 control 
case samples whereas 30 diseased case samples. 



Common Features of Neurodegenerative Disorders Current Genomics, 2018, Vol. 19, No. 4    303 

 
Fig. (2). Heat maps of four disorders representing the differential gene expression of significantly enriched genes with p-value < 0.05. The 
lowest expression value in all cases is represented with dark green color and the highest expression value is represented by the golden yellow 
color. The expression trends seem quite similar in case of AD and ALS. FTD and PD also represent similar expression trend. PD and FTD 
have low number of up-regulated genes, while ALS and AD have high value of up-regulated genes. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this paper.) 

Degree centrality has been focused as the main concern was 
to achieve the maximum connectivity among the nodes. 

3.3. Common DEGs Based Interaction Networks 

3.3.1. Protein-protein Interaction Network 

 The common DEGs across all disorders were searched 
for the related proteins in order to retrieve the protein-protein 
interaction (PPI) network. STRINGS [25] facility was used 
for fulfilling the purpose. The PPIs (Fig. 5) represented in 
the common network for AD, PD, FTD and ALS have some 
nodes with no significant interactions while there are some 
having good number of interacting partners. Among them 
EGFR, CDC42 and CREEBP could be seen having maxi-
mum interactions. The network was subjected to the identifi-
cation of clusters using Markov Clustering Algorithm 
(MCL) [30] facility provided by STRINGS. The inflation 
parameter which defines the contrast between regions of 
strong and weak interactions was set to 1.5. As the network 

is not very dense therefore a big inflation parameter was de-
fining more clusters with weak interactions. It is clearly seen 
that the network (Fig. 6a) contains 3 major clusters having 
maximum interactions where EGFR, CDC42 and CREBBP 
are prominent as the central nodes. Some smaller clusters 
with 2 to 3 interactions are also visible. Besides cluster iden-
tification, PPI network was utilized to identify the hub node 
as well. In this case EGFR has been highlighted as hub based 
on degree centrality measure. EGFR as in gene interaction 
network, showed maximum interactions in PPI network as 
well (Fig. 6b). On the other hand CDC42 and CREBBP have 
low connectivity than EGFR. The degree centrality of EGFR 
is 16, CDC42 is 12 and of CREBBP is 8 (Table S3). The 
other centrality measures are also mentioned in the Table for 
information purpose. In total top 10 nodes with high connec-
tivity have been highlighted in the network along with their 
interacting partners (Fig. 6b). In this case TGFA has been 
highlighted as the node with minimum connectivity of 1. 
Information regarding the significant interacting partners of 
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the top three highly connected proteins EGFR, CDC42 and 
CREBBP is listed in Table S4. 
 

 
Fig. (3). Venn diagram representing the common and uncommon 
number of DEGs across four disorders; AD, PD, FTD and ALS. 
106 DEGs are common in all disorders. 

3.3.2. Interaction Network of miRNA’s and DEGs 

 The interactions of common DEGs with related miRNA’s 
were retrieved via miRNet [28] facility. In total 2129 
miRNA’s (Table S5) have been identified from all over the 
reported data from web of knowledge by miRNet. The net-
work (Fig. 7a) shows interactions of miRNA’s with common 
DEGs from all four disorders. The higher the connectivity, 
the larger is the size of that node in the network. DEGs are 
represented in orange circles while the miRNA’s being cyan 
in color has square shaped representation. AAK1, CPM and 
many other genes could be seen clearly in the network 
whereas in case of miRNA’s hsa-mir-124-3p and hsa-mir-
335-5p are clearly visible. The network reported AAK1 gene 
as the hub node based on maximum connectivity. Degree 
centrality of AAK1 is 87, whereas the lowest connectivity of 
1 in this case was shown by hsa-let-7d-5p miRNA. In total 
top 10 maximally connected nodes have been identified from 
the network. AAK1 gene being the hub is shown in yellow 
color while the remaining 9 are marked in pink along with 
their interacting miRNA’s in blue (Fig. 7b). The degree cen-
tralities of all nodes along with other centrality measures are 
represented for information in Table S6. 

3.4. GO Processes and KEGG Pathways of Common 
DEGs Across All Disorders 

3.4.1. Common GO Enriched Biological Processes 

 In total, 71 significantly enriched GO biological proc-
esses have been retrieved for all four disorders. In this case 
regulation of cell cycle with pathway ID: GO: 0051726 con-
tained 21 genes out of 106 common DEGs of AD, PD, ALS 
and FTD. The biological process was predicted with the 
FDR value of 0.0000205. Among them was the neuron pro-
jection development (GO: 0031175) with FDR value of 
0.0137 and 12 genes in total along with many others (Table 
S7). The significantly enriched biological processes GO 

terms were cell cycle regulation, movement/organization or 
cellular component biogenesis, cell morphogenesis, signal 
transduction, axon guidance/ development, positive regula-
tion of GTPase activity and positive regulation of metabolic 
process etc.  

3.4.2. Common GO Enriched Molecular Functions 

 In case of GO molecular processes, only 4 have been 
highlighted in common with equal FDR value of 0.0192 
while the number of gene count varied. Protein binding (GO: 
0005515) function has a maximum gene count of 41 while 
Rab GTPase binding (GO: 0017137) has the lowest gene 
count of 5. Other molecular function GO terms included 
chromatin binding (11 genes) and macromolecular complex 
binding (17 genes).  

3.4.3. Common GO Enriched Cellular Components 

 The significantly enriched GO cellular components were 
identified as 25 in total in case of common DEGs of all dis-
orders. In this case the chromatin pathway (GO: 0000785) 
has the lowest FDR of 0.000966 and the gene count was 11. 
The cytoplasmic part pathway (GO: 0044444) with gene 
count of 49 showed the FDR value of 0.04 in this case. 
Overall, chromatin, chromosome, macromolecular complex, 
intracellular non-membrane-bounded organelle, cytoplasm, 
neuron projection, microtubule cytoskeleton, adherens junc-
tions and axon were prominent enriched cellular component 
GO terms. All values are shown in Table S7 along with their 
processes and components. 

3.4.4. Common KEGG Pathways 

 The common DEGs were found to be significantly en-
riched in 7 KEGG pathways, which can be categorized into 
functional and disease relevant signaling pathways. Adher-
ens junction (pathway ID: 4520) and FoxO signaling path-
way (pathway ID: 4068) comprise of functional, while 4 
cancer pathways (pathway IDs: 5200, 5221, 5211, 5215 ) 
and Morphine addiction (pathway ID: 5032) are disease 
relevant pathways (Table S7). 
 The biological processes, molecular functions, cellular 
components and KEGG pathways with respect to common 
DEGs for all four disorders were retrieved during the PPI 
network formation. Overall, the 106 DEGs shared across all 
four NDs are involved in a wide range of vital biological, 
molecular and cellular processes that are relevant to different 
aspects of brain and nervous system development, differen-
tiation and homeostasis (Table S7). 

4. DISCUSSION 

 The present study aimed to explore potential similarities 
among four neurodegenerative disorders (AD, PD, FTD and 
ALS) in terms of dysregulated genes, molecular/cellular 
pathways and associated microRNAs of common target 
DEGs by extensive bioinformatics analysis of their respec-
tive gene expression profiles. 

4.1. Top Significant Genes Identified in Gene and Protein 
Interaction Networks 

 In our study, EGFR, CDC42 and CREBBP were high-
lighted as the topmost highly connected proteins in PPI 
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(a) 

 

 
(b) 

Fig. (4). a) Network of common DEGs in AD, PD, ALS and FTD. Figure shows the connectivity among all the DEGs. The colored lines repre-
sent the interactions of various types among the DEGs. In them pink color lines are dense which represent the physical interaction or connectivity 
of the DEGs. Among the interactions, 72.23% belong to physical interactions while 18.23% show the co-expression of genes (in purple color). 
The green color lines bearing the weightage of 4.42% represent the genetic interactions b) Network of common DEGs AD, PD, ALS and FTD 
representing the Hub Node. In this network EGFR gene is the Hub node of the network with respect to Degree centrality measure. EGFR has 
maximum connectivity of 63 with all other DEGS of the network. It means it is connected to 63 other DEGS in the network. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this paper.) 
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Fig. (5). Network of Proteins of commons DEGs of AD, PD, ALS and FTD. The network represents few associations based on confidence 
score. In these networks EGFR is connected to TGFA with the maximum confidence score of 0.994 while the lowest confidence score is of 
EGFR with RBL2 which is of 0.401.  

network based on 106 common DEGs identified in the four 
NDs with 16, 12 and 8 interacting partners (Fig. 6a and 6b; 
Table S3). EGFR gene was also identified as the topmost 
significant hub node in gene interaction network (Fig. 4b; 
Table S2). Information regarding the significant interacting 
partners of the top three highly connected proteins EGFR, 
CDC42 and CREBBP illustrated in Fig. (6b) are listed in 
Table S4. Epidermal Growth Factor Receptor (EGFR) is a 
transmembrane tyrosine kinase receptor of ligands known as 
Epidermal Growth Factors (EGFs) that play a crucial role in 
regulation of neuronal development, differentiation, survival, 
functions and glial proliferation [31-36]. EGFR is widely 
expressed in human fetal brain and in adult brain regions 
with persisting adult neurogenesis suggesting key role of 
EGFR signaling in regeneration and survival of neurons 
[32]. EGFR mediated signal pathway promotes neuron pro-
tection and survival against oxidative stress, excitotoxicity 
and traumatic insults [31-34]. Aberrant EGFR expression 
and signal pathway have been implicated in neurodegenera-

tive disorders in particular AD [31, 33], PD [35] and stroke 
[31]. Mouse models with absence of EGFR or its ligand (Hb-
EGF) develop cortical neurodegeneration [36] or in some in-
stances die postnatally [37]. In relation to AD, PD and ALS 
[38], overexpression of EGFR and its ligands has been re-
ported [33] which is in agreement with our study which 
showed upregulated EGFR in AD, PD, ALS and FTD. Defec-
tive EGFR related CNS functions as a consequence of dys-
regulated EGFR signaling pathways might contribute towards 
neurodegenerative pathology. Cell Division Cycle 42 
(CDC42) is a Rho-subfamily’s small GTPase protein, which 
acts as a molecular switch by cycling between an active GTP 
bound form and inactive GDP bound state to regulate diverse 
array of cellular functions including cell cycle progression, 
cell polarity/morphology, migration, actin/microtubule cy-
toskeletal organization and intracellular trafficking [39, 40]. 
Different lines of studies have shown involvement of CDC42 
in key pathways orchestrating neuritogenesis, dendritic spine 
formation, maintenance and synaptic plasticity specifically
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(a) 

 

 
(b) 

Fig. (6). a) MCL clustering applied on PPI network of common DEGs of AD, PD, ALS and FTD. The network show 3 major clusters while 
there are smaller other clusters as well. The first major cluster has EGFR as the hub node and it is shown in red color, while the 2nd major 
cluster has CDC42 as the hub node and the cluster color is light green. The 3rd major cluster is shown in skin color has CREBBP as the hub 
node b) PPI network in (a) subjected to hub calculation for the common DEGs of AD, PD, ALS and FTD. EGFR has been identified as the 
main Hub of the PPI network highlighted in red color. CREBBP and CDC42 have also been highlighted in the network. EGFR has maximum 
connectivity i-e: degree centrality of 16 which means it is connected to 16 other nodes in the network. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this paper.) 
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(a) 

 
(b) 

Fig. (7). a) Network of common DEGs of AD, PD, ALS and FTD with related miRNA’s. DEGs have been represented in orange color while 
the miRNA’s are shown in cyan color. The size of the node is dependent on the connectivity b) Network obtained from (a) after subjection to 
hub calculation using CytoHubba. Network shows the top 10 DEGs based on degree centrality measure along with their miRNA’s. Among 
them AAK1 has the maximum degree centrality measure of 87 meaning it is connected to 87 miRNA’s to date. Therefore in this case AAK1 
is the hub node with respect to this network. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this paper.) 
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being involved in positive regulation of oligodentrocytes 
differentiation, neuronal polarity, neuronal migration, axon 
growth, pathfinding and synaptic vesicle trafficking/release 
[40-42]. The indispensible role played by CDC42 in mam-
malian nervous system development has been highlighted by 
studies of CDC42 inactivation in mice neuroepithelial cells 
that revealed defects in neuronal, axon and glial cell forma-
tion duo to disrupted cytoskeletal structural dynamics [43, 
44]. Dysregulated Rho GTPase has been implicated in dif-
ferent NDs [42], consistent with this CDC42 down regula-
tion is noted in AD, PD, ALS and FTD in present analysis. 
The third topmost significant candidate CREBBP, binding 
protein of CREB (cAMP response element binding protein), 
acts as an essential transcriptional co-activator of various 
transcription factors including CREB and possesses intrinsic 
histone acetyltransferase (HAT) activity to affect chromatin 
remodeling [45, 46] and is involved to be in a key neuronal 
related functions [47]. The role of CREB signaling cascade 
is well established in synaptic/neuronal plasticity and long 
term memory consolidation [48, 49]. Consistent with this, 
loss of function of CREBBP and disturbed CREB signal 
pathways are considered to contribute towards age related 
cognitive deficits, AD and ALS [49] and therefore enhancing 
CREBBP levels has been suggested as AD relevant thera-
peutic strategy [48]. 

4.2. Top Clusters in miRNA’s-common DEGs Regulatory 
Network 

 The microRNAs mediated regulation of gene expression 
underlies myriads of physiological processes in central nerv-
ous system and neurodegeneration [50]. From the analysis of 
network representing interaction of the experimentally vali-
dated human microRNAs and their common DEGs targets 
for the four NDs (Fig. 7a; Table S5) in our study, ten genes 
have been pointed out as the most significant central hubs 
consisting of AAK1, QKI, CPM, CPT1A, SMC1A, TCF7L2, 
UBE2B, GNAS, EVI5 and RABGAP1L (Fig. 7b; Table S6). 
Amongst these, the topmost one gene AAK1, encodes an 
adopter /AP2 associated kinase 1 involved in clathrin medi-
ated endocytosis and vesicle transport [51], and shown to 
interact with 87 miRNAs (Table S6). The second top signifi-
cant gene QKI (KH domain containing RNA binding), en-
codes an RNA binding protein belonging to signal transduc-
tion and activation of RNA (STAR) family that regulates 
mRNA splicing, RNA transport, translation and stability [52] 
and involved in oligodendrocyte differentiation and myelini-
zation, thereby essential for brain maturation and is associ-
ated with Schizophrenia [53, 54]. QKI has been shown to be 
regulated by 86 miRNAs in present network (Fig. 7b; Table 
S6). The encoded protein of CPM, the third significant gene, 
is a membrane-bound arginine/lysine carboxypeptidase 
which removes C-terminal basic residues (Arg, Lys) from 
various peptides and proteins including EGF [55]. CPM have 
a role in controlling peptide hormone and growth factor ac-
tivity at the cell surface and in the membrane-associated deg-
radation of extracellular proteins [56] and is expressed in 
central and peripheral nervous system [57], but the func-
tional significance of CPM with respect to ND pathogenesis 
is unclear. In our study, 84 miRNAs were shown to be linked 
with CPM (Fig. 7b; Table S6). 

 Additionally, miR-335-5p and miR-124-3p have been 
highlighted as highly maximally connected microRNAs with 
different commonly identified dysregulated genes for AD, 
PD, ALS and FTD (Fig. 7a; Table S8). In present analysis, 
24 common DEGs including EGFR have been identified as 
targets of miR-335-5p as listed in Table S8. Interestingly a 
recent study [58] demonstrated the role of miR-335-5p in 
modulating hippocampal synaptic plasticity and long term 
spatial memory formation. In case of miR-124-3p, 16 com-
mon DEGs targets have been identified including CPM and 
QKI (Table S8). miR-124 is abundantly expressed in brain, 
retina and spinal cord [59], and down regulated miR-124-3p 
has been implicated in neurodegenerative disorders like AD 
and PD [60].  

4.3. Shared GO and KEGG Pathways Among NDs 

 The GO enriched terms for biological, molecular and 
cellular pathways for common 106 DEGs across all four 
NDs are involved in a wide range of vital processes pertinent 
to different aspects of brain and nervous system develop-
ment, differentiation and homeostasis (Table S7). Our study 
observed significant association of cancer and neurodegen-
erative disorders in 4 KEGG pathways (Table S7). The pre-
sent results are in line with growing body of epidemiologic 
and scientific evidences linking these distinct pathological 
conditions such as low cancer incidence observed in ND 
affected patients and vice versa and overlapping genetic and 
molecular alterations involved in cell cycle control, DNA 
repair, protein quality/turnover, apoptosis, cell survival mi-
tochondrial functions, oxidative stress and autophagy but 
with opposing cellular fates in both disorders [61-63]. An-
other important correlation was observed between FOXO 
signal pathway and NDs. FOXO (forkhead box O), a sub-
class of conserved forkhead transcription factors family, has 
recently emerged as a critical player in diverse signal path-
ways involved in maintenance of cognitive functions, neural 
stem cell regeneration/homeostasis, neurogenesis, apoptosis 
and neural response against stress [64, 65]. Moreover, FoxO 
signaling has been implicated in AD [66] and PD [67] 
pathogenesis via oxidative stress responses and apoptosis. 
Adheren junctions (ADs), component of cell communication 
system, involved in maintenance of blood-brain barrier 
(BBB) integrity essential for CNS homeostasis [68] were 
found significantly correlated with NDs in our study. Litera-
ture review revealed lack of relationship between ADs and 
neurodegeneration, but altered BBB integrity has been re-
ported in AD, ALS [69] stroke and multiple sclerosis [70]. 
Therefore we suggest that ADs pathway deserves more at-
tention in connection with NDs pathogenesis. Morphine ad-
diction pathway, another pathway that has been shown to be 
connected to NDs in our analysis, appears to be underex-
plored in relation to neurodegenerative disorders. However, 
opiate drug abuse exerts neurotoxicity and neuroinflamma-
tion leading to neurodegeneration [71]. 

4.4. Approach Used for Study 

 The extensive bioinformatics approach used in this study 
has been carried out by following various other studies in the 
domain [72-78]. Microarray data sets of four neurodegenera-
tive disorders were preprocessed and subjected to the identi-
fication of differentially expressed genes via the statistical 
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package R as is used by other studies [72, 77]. The differen-
tial expression of these disorders was submitted to consensus 
approach for the identification of commonalities and differ-
ences via Venn diagrams [77]. The common set of differen-
tially expressed genes was analyzed for their contribution in 
various networks including gene-gene interactions using 
GeneMania, protein-protein interactions (PPI) using 
STRINGS [75, 76] and gene-microRNA interactions via 
miRNet [75-77]. All interaction networks were mined for the 
identification of Hub nodes using Cytoscape plugins based 
on degree centralities. One of these studies [77] is focused 
on Multiple Sclerosis (MS) data from multiple subjects (pa-
tients). This study followed the same pattern in their meth-
odology as ours. This study picked multiple microarray 
datasets of MS, preprocessed and analyzed via R. Then the 
consensus data were utilized for different networks using 
Cytoscape and various other sources [21-23]. Gene-gene 
interactions have been discussed in one of the other studies 
[79] via GeneMANIA where comparative analysis of Glyco-
gene expression was focused in different tissues. This study 
also discussed the identification of Hub node based on de-
gree centrality via Cytoscape plugin. In one of the other 
studies [75] where interaction analysis of key genes in hepa-
tocellular carcinoma was focused, GEO2R was used for dif-
ferential gene expression, along with STRINGS was utilized 
for PPI networks.  
 With the present day situation where lots of expression 
data are being generated via different platforms, various 
pipelines have been developed for the analysis purpose. In 
this case the identification of DEGS is an important step for 
which R and its various packages are being used. R is a free 
statistical environment and easily handles various data sets. 
The interactions of DEGs with various other components 
like microRNAs and proteins are one of key components 
which are also focused extensively. This helps us in differen-
tiating the diseased and normal cases deeply. These proce-
dures are similar except the use of different tools at different 
steps. Each day, the addition of new tool to the field helps in 
the identification of a particular module with more advanced 
features like the miRNet facility which helps not only to the 
identification of Genes-gene interaction but also, gene-
miroRNA interaction, microRNA-small molecules interac-
tion, microRNA-disease interaction, microRNA-lncRNA 
interaction and microRNA-epigenetic modifier interactions. 
MiRNet integrates the data from 11different microRNA da-
tabases and also facilitates the functional annotation com-
prehensively [28]. STRINGS database on the other hand 
provides the detailed information relevant to PPI network 
based on the available data to date [25]. It not only provides 
the network but rather helps us in identifying the major clus-
ters in the network using a clustering algorithm. In this way 
main components of the network could be visualized. Along 
with this the functional annotations based on biological, cel-
lular and molecular components could be retrieved via 
STRINGS. It ends not on this but has the added facility of 
providing the relevant KEGG pathways as well. Like protein 
and miRNA interactions, gene interactions via GeneMANIA 
are also in focus these days. GeneMANIA highlights the 
gene-gene interactions along with an additional facility of 
functional annotations of these genes based on biological 
processes. All these facilities help in getting detailed analysis 

for any biological process thus pinpointing the areas of atten-
tion. Such interactive tools will help in future for highlight-
ing the underpinnings of many diseased pathways. 

CONCLUSION 

 In conclusion, comparative pathway and network based 
analysis was performed on publically available microarray 
gene expression datasets of four major neurodegenerative 
disorders AD, PD, FTD and ALS in order to identify poten-
tial common links among the disorders to gain insights about 
the underlying molecular mechanisms impacting the com-
plex disease pathophysiology. Among the common genes, 
EGFR has been identified as hub in gene-gene interaction 
and along with CDC42 and CREBBP in PPI network as 
well. Furthermore, interaction of common DEGs targets with 
miRNA’s has also been scrutinized. Significance of common 
DEGs has also been apparent in several GO terms essential 
for nervous system development and maintenance. The iden-
tified KEGG enriched pathways reinforced the connection of 
neurodegenerative disorders with cancer and FoxO signal 
pathways, and emphasized the need to explore neurodegen-
eration in relation to adheren junction and morphine addic-
tion pathways. The common factors and nodes in three major 
networks provide an idea of connectivity at various levels in 
case of these four disorders. It could be depicted that the 
deregulation of important nodes/hubs could affect the con-
nectivity in normal networks hence leading to major distur-
bances across the whole wiring. The understanding of the 
normal brain network wiring and the abnormal ones could 
help us in fixing the disorders at certain levels by compari-
son. Hence this study could be further extended to provide 
major breakthroughs in the field. 
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