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Abstract

Pregnancy rates for in vitro produced (IVP) embryos are usually lower than for embryos pro-

duced in vivo after ovarian superovulation (MOET). This is potentially due to alterations in

their trophectoderm (TE), the outermost layer in physical contact with the maternal endome-

trium. The main objective was to apply a multi-omics data integration approach to identify

both temporally differentially expressed and differentially methylated genes (DEG and

DMG), between IVP and MOET embryos, that could impact TE function. To start, four and

five published transcriptomic and epigenomic datasets, respectively, were processed for

data integration. Second, DEG from day 7 to days 13 and 16 and DMG from day 7 to day 17

were determined in the TE from IVP vs. MOET embryos. Third, genes that were both DE

and DM were subjected to hierarchical clustering and functional enrichment analysis.

Finally, findings were validated through a machine learning approach with two additional

datasets from day 15 embryos. There were 1535 DEG and 6360 DMG, with 490 overlapped

genes, whose expression profiles at days 13 and 16 resulted in three main clusters. Cluster

1 (188) and Cluster 2 (191) genes were down-regulated at day 13 or day 16, respectively,

while Cluster 3 genes (111) were up-regulated at both days, in IVP embryos compared to

MOET embryos. The top enriched terms were the KEGG pathway "focal adhesion" in Clus-

ter 1 (FDR = 0.003), and the cellular component: "extracellular exosome" in Cluster 2

(FDR<0.0001), also enriched in Cluster 1 (FDR = 0.04). According to the machine learning

approach, genes in Cluster 1 showed a similar expression pattern between IVP and less

developed (short) MOET conceptuses; and between MOET and DKK1-treated (advanced)

IVP conceptuses. In conclusion, these results suggest that early conceptuses derived from

IVP embryos exhibit epigenomic and transcriptomic changes that later affect its elongation

and focal adhesion, impairing post-transfer survival.
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Introduction

Assisted reproductive technologies (ART) have been used in cattle breeding since the 1950s,

generating millions of healthy animals since then [1–3]. After artificial insemination (AI), the

ART most frequently implemented in cattle reproduction is embryo transfer, where embryos

are produced either (i) in vivo by ovarian superstimulation leading to multiple ovulations fol-

lowed by AI, embryo collection and transfer (MOET) or (ii) in vitro embryo production (IVP),

involving maturation and fertilization of oocytes collected from live animals via transvaginal

aspiration of follicles or by recovery from the ovaries after slaughter.

Amongst livestock species, ART are used to the greatest extent in cattle, due to their eco-

nomic importance and the relative ease with which the reproductive tract can be manipulated.

Furthermore, in terms of the commercial embryo transfer industry, embryo production has

shifted from MOET to IVP during the last few years [4]. However, IVP embryos differ in sev-

eral characteristics (morphological, ultrastructural, physiological, transcriptional, and meta-

bolic) from those derived by MOET, which can impact their survival [5]. A comprehensive

review of the post-transfer consequences of IVP embryos noted that such embryos yielded

around ~25% lower pregnancy rates compared with MOET embryos, according to the results

of 12 studies performed from 1992 to 2014 [6]. Pregnancy losses were more prevalent early in

gestation; around 40% of cows receiving an IVP embryo at day 7/8 post-oestrus were no longer

pregnant at day 18 to 21 of gestation. One potential factor influencing embryo survival is

impaired post-hatching elongation of IVP embryos, which begins at around day 13 of preg-

nancy [7]. Around this time, the trophectoderm (TE) begins to secrete interferon-tau, the

pregnancy recognition factor in cattle [8]. Conceptuses derived from the transfer of IVP con-

ceptuses were smaller at day 13 than their MOET counterparts [9], but were similar in length

at day 16 and 17 [10, 11]. This suggests that initiation of elongation might be impaired in IVP

embryos; moreover, for embryos that succeed to elongate, this process may start slowly and

eventually "catch up" with MOET embryos. Furthermore, it has been demonstrated that the

transcriptomic response of the endometrium differs between MOET- and IVP-derived con-

ceptuses both in vivo [12, 13] and in vitro [14].

Several studies have shown that the use of ART can impact on the embryo transcriptome,

both at the blastocyst stage [15–19], and after elongation [20], or in the transition from a

spherical to an ovoid blastocyst [21]. Alterations in the transcriptomic profile are manifested

in the capacity of the blastocyst to sustain development to term, for both MOET [22] and IVP

embryos [23]. The embryo depends on the expression of certain genes encoding for key pro-

teins required to undergo sequential development, including differentiation and lineage com-

mitment, as well as appropriate temporal communication with the female reproductive tract

leading to maternal recognition of pregnancy. ART-induced transcriptomic aberrancies may

hamper the availability of gene products required for further embryo development.

The divergent transcriptomic profile is likely to be also associated with altered epigenetic

regulation [24], defined as heritable changes in gene activity or function without changes in

the DNA sequence [25]. DNA methylation is one of the best-characterized epigenetic mecha-

nisms primarily known to influence gene expression [26]. Usually, hypermethylation of CpG

islands in promoters is related to transcriptional suppression [27]. However, several studies

have shown that gene body methylation is also strongly involved in gene expression [28–30],

with a bias for exonic regions [31]. Furthermore, epigenetic modifications can be induced by

several external factors [32], affecting IVP and MOET embryos differentially. For example,

known factors including the in vitro culture medium used [33], and paternal characteristics,

such as bull age [34], have been shown to impact at the blastocyst stage. Differential methyla-

tion was reported to be most prominent at intragenic sequences within the TE of IVP and
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MOET embryos, but not in the embryonic disc in elongated-day 17-embryos compared to

similar stage embryos produced by AI [35]. Accordingly, abnormalities in the TE, the outer-

most layer of the conceptus that is in contact with the endometrium, may lead to impaired

conceptus elongation.

Undoubtedly, these studies have helped to shed light on the underlying biological mecha-

nisms in the IVP embryo that compromise pregnancy success. However, one of the remaining

unanswered questions is whether transcriptomic aberrancies are exclusively related to the in
vitro process per se or are induced by the lack of exposure to the oviductal and uterine environ-

ment, regardless of variables such as the maturation media, technical procedures, or parental

characteristics. In addition, apart from one [21], these studies have compared the transcrip-

tome or epigenome of embryos at the same stage. Therefore, an analysis integrating different

sources of transcriptomic and epigenomic data of bovine embryos before and after elongation

could unravel crucial differences between IVP-derived embryos and those derived by MOET.

The objective of the present study was to apply a multi-omics data integration approach to

identify genes that are temporally differentially expressed and differentially methylated in the

exonic regions between IVP and MOET embryos from the blastocyst stage to the elongated

conceptus, that could impact on TE function. To accomplish this aim, publicly available data

were integrated and re-analysed using a range of bioinformatics tools. In addition, to underpin

our findings, the main results were employed to make predictions in additional independent

external data, using machine-learning methods.

Materials and methods

The pipeline followed in this study is shown in Fig 1. Each step is explained in detail below.

Step 1: Embryo data collection and bioinformatic processing

Both transcriptomic and epigenomic datasets were downloaded from a public functional geno-

mic data repository: Gene Expression Omnibus (GEO) from the National Center for Biotech-

nology Information [36, 37]. The R software platform [38] was employed for all bioinformatics

procedures.

Transcriptomic data. Six datasets were employed to obtain transcriptomic data from

MOET and IVP embryos. Data from the following types of embryo were downloaded from:

• MOET blastocyst: GSE12327 and GSE21030.

• IVP blastocyst: GSE24596 and GSE24936

• MOET and IVP blastocysts and day 13 conceptuses: GSE27817

• MOET and IVP day 16 conceptuses: GSE40101

Gathering all the samples, the final sample sizes per IVP or MOET groups were: blastocysts,

n = 9; day 13 embryos, n = 3; and day 16 embryos, n = 3; per group.

All these studies employed the Affymetrix Bovine Genome Array platform for hybridiza-

tion. The raw data obtained from all samples were processed with the gcRMA package [39].

Data were imported into R, background corrected, and then transformed and normalized

using the quantile normalization method. Next, rows of each dataset were collapsed to retain

the microarray probe with the highest mean value from the group of genes with the same offi-

cial symbol. Batch effects (i.e., the fact that data were obtained from different studies) were

removed with the ComBat function from the sva package [40].

Epigenomic data. Datasets related to MOET and IVP blastocysts were collected from

four datasets: GSE128354, GSE101895, GSE97517 and GSE69173. Data from the TE of day 17
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embryos were derived from a previous study [35]. These studies employed the two-channel

400 K EmbryoGENE DNA Methylation Array. Following the quality check of each sample

[41], the sample size for the IVP and MOET groups was: blastocyst, n = 8; and day-17 concep-

tuses, n = 4; per group.

Step 2. Determination of temporally differentially expressed genes (DEG)

and differentially methylated regions (DMR)

Identification of DEG and DMR was performed with the limma R package [42]. To identify

genes that behaved differently over time in the IVP embryos relative to the MOET embryos,

contrasts were made between day 16 and day 13 conceptuses, and between day 13 conceptuses

and blastocysts in both groups. For determination of DMR, a previously developed pipeline

[41] was adapted to the present study. Briefly, the M-values and A-values were determined in

the probes that were above the background level. These values were employed for a within-

array loess normalization. Next, a between array quantile normalization was applied to ensure

that the intensities had the same empirical distribution across arrays and across channels. The

linear model was fit to the individual log-intensities for each probe using the lmscFit function.

This last modification was done to analyse the channels separately, as described previously

Fig 1. Pipeline of the methodology followed in this study. Step 1: Datasets with the accession number GSE# were

downloaded from the Gene Expression Omnibus (GEO) or were obtained from a previous study [35] and processed

for data integration. Step 2. Temporally differentially expressed genes (DEG) from day 7 (D7) to D13 and D16 and

differentially methylated regions (DMR) in the trophectoderm (TE) from D7 to D17 were determined between groups.

Differentially methylated genes (DMG) were the genes in the corresponding exons of the DMR. Step 3. DEG and

DMG were overlapped to determine common genes, which were further analysed (Fig 2). Each step is explained in

detail in the methodology section. IVP: embryos produced in vitro. MOET: embryos produced in vivo (after ovarian

superovulation).

https://doi.org/10.1371/journal.pone.0252096.g001

PLOS ONE Identification of key temporal genes influenced by the origin of the embryo

PLOS ONE | https://doi.org/10.1371/journal.pone.0252096 May 24, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0252096.g001
https://doi.org/10.1371/journal.pone.0252096


[43]. Next, contrasts were made between day 17 conceptuses and blastocysts in the IVP vs

MOET groups. For the sake of comparisons, and since the subsequent analyses validated the

findings, a p-value <0.05 and a fold change higher than 1 were employed as statistical criteria

for both DEG and DMR.

Step 3: Identification of common DEG and differentially methylated genes

(DMG)

Genes in the corresponding exons of DMR were defined as DMG. The DMG that overlapped

with the DEG were also methylated in the promoter and/or the intron (S1 Fig) and presum-

ably, these regions were extensively methylated. If a gene showed more than one differentially

methylated region, only the region with the lowest p-value was considered. DEG and DMG

that were differentially expressed and differentially methylated over time in IVP relative to

MOET embryos were identified by Venn Diagram and were subjected to a hierarchical cluster-

ing according to their expression profile in day 13 and day 16 conceptuses, using Spearman

Rank Correlation as similarity metric and complete linkage as clustering method, imple-

mented with the Cluster 3.0 software [44]. The resulting dendrogram and the heat map were

visualized with Java TreeView [45].

Genes in each of the resulting clusters were evaluated through a functional analysis with the

DAVID software [46]. The Bos taurus protein-coding genome was selected as background.

The goal of this step was to determine the top enriched annotation terms in the Functional

Annotation Chart (p<0.01). Additionally, the proportion of hyper- or hypo-methylated DMG

was assessed in each cluster, and the probability of such a proportion, given the proportions in

all the DMR, was estimated through a hypergeometric test. The relative methylation levels for

specific genes in each group were estimated from the fitted coefficients generated from the

application of the lmscFit function of the limma package [42].

Moreover, the GSE56513 dataset was employed to verify the consistency of the expression

profiles for genes in the resulting clusters. This dataset corresponds to a study where mRNA

was extracted from MOET embryos at days 7 and 10, and embryos after AI at days 13, 16 and

19; and measured using RNAseq [47]. Data in RPKM from embryos at days 7, 13 and 16 were

downloaded and log2 transformed. Afterwards, the trajectories of average expression for genes

in the resulting clusters were plotted.

Predictions in independent datasets

With the aim of validating our results, the expressions of significant genes sets were employed

to make predictions in independent datasets. For this, the following datasets were selected and

downloaded from the GEO database:

• GSE75750: Corresponding to a study where the transcriptome of short and long age-

matched day 15 conceptuses derived from MOET was compared [48]. Short conceptuses

(n = 5) were ovoid in shape, with a length<10 mm. Long conceptuses (n = 5) were early

tubular in morphology, with a length between 30 and 100 mm. This study employed the

Affymetrix Bovine Genome Array platform for hybridization of the extracted embryonic

mRNA. The raw data was processed as described for the transcriptomic data in Step 1.

• GSE126680: this dataset corresponds to a study in which IVP embryos were treated or not

with 100 ng/ml of recombinant human Dickkopf-related protein 1 (DKK1) from day 5 to 7.5

of culture [49]. After transfer, conceptuses were recovered at day 15 of gestation and their

lengths were measured. In the present study, only conceptuses with similar length were

employed (DKK1, n = 5, length: 112 ± 33 mm; control, n = 5, length: 100 ± 26 mm). The
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extracted mRNA molecules were quantified through RNAseq. The raw counts were trans-

formed through the variance stabilizing transformation method [50], using the vst function

from the DESeq2 package [51] for R.

For the prediction, three models were constructed with the following groups of genes: tem-

porally DEG, overlapped DEG/DMG (i.e., genes that were both differentially expressed and

differentially methylated), and one of the gene clusters resulting from the clustering of the

overlapped DEG/DMG. The training set consisted of the expression of those three groups of

genes in the day 13 and day 16 conceptuses, while the expression in the short/long conceptuses

and DKK1/control conceptuses constituted the testing sets. An add-on batch effect adjustment

of the testing data with the training data was performed with the bapred package [52]. Support

vector machine with linear kernels was used as a classifier, employing the leave-one-out cross

validation (LOOCV) method as the internal control. The LOOCV was run with 100 resam-

pling interactions. The unknown sample was predicted with 100% accuracy in every case, with

a cost ranging from 0.1 to 2. The algorithm was applied with the kernlab package [53], through

the caret package [54] for the R software. The accuracy of each prediction is reported.

Results

Temporal DEG and DMR from day 7 blastocyst to elongated conceptus in

IVP- and MOET-derived embryos

The numbers of DEG and DMR were 1535 and 43928, respectively. For the DMR, 19562 genes

were differentially hypermethylated and 24366 were differentially hypomethylated in the IVP

group relative to the MOET group from the blastocyst stage to the day 17 conceptus. The abso-

lute proportions of hypermethylated CpG islands and exonic regions were greater for the IVP

group than the MOET group (S2 Fig). Accordingly, there were 6360 DMG (i.e, genes that were

differentially methylated in their exonic regions), corresponding to 4495 (70.7%) hypermethy-

lated regions in the IVP group and 1865 regions (29.3%) in the MOET group.

Genes differentially changing both in expression and methylation levels

from blastocyst to elongated conceptus in IVP- versus MOET-derived

embryos

The main results of this step are illustrated in Fig 2. The Venn Diagram (panel A) depicts 490

genes that were both differentially expressed and hyper -or hypo- methylated from the blasto-

cyst stage to the elongated conceptus in IVP-derived compared to MOET-derived embryos.

The heat map and dendrogram resulting from the hierarchical clustering of these 490 genes

according to their expression in day 13 and day 16 conceptuses are shown in panel B. There

were three main clusters that presented the following average expression patterns in the IVP

conceptuses compared to the MOET conceptuses (panel C). Cluster 1: 188 genes decreasing in

expression by day 13 but increasing again by day 16. Cluster 2: 191 genes with similar expres-

sion by day 13 but lower expression by day 16. Cluster 3: 111 genes with increased expression

by day 13 and day 16. The list of genes in each cluster is detailed in S1 Table. Accordingly, the

expression profile for genes in these clusters in MOET embryos followed similar trajectories to

those in AI-derived embryos, underlining the consistency of the results (Fig 3). The top

enriched annotation terms (p<0.01) in each of the three clusters are shown in Table 1. The

KEGG pathway "focal adhesion" was the top enriched pathway in Cluster 1 (FDR = 0.003), fol-

lowed by the cellular component: "extracellular exosome" (FDR = 0.04). This last term was the

top enriched term in Cluster 2 (FDR<0.0001), followed by UniProtKB keyword
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"Phosphoprotein" (FDR = 0.01). Genes in Cluster 3 also enriched the "extracellular exosome"

term, but this enrichment was not significant at the adjusted p-value (FDR = 0.6).

The number and proportion of genes hypermethylated in the IVP or MOET groups, respec-

tively, in each cluster, were as follows–Cluster 1: 151 (80.3%) and 37 (19.7%); Cluster 2: 130

(68.1%) and 61 (31.9%); Cluster 3: 78 (70.3%) and 33 (29.7%). From the three clusters, only

Cluster 1 presented a significantly higher proportion of hypermethylated genes in the IVP

group, given the proportions of methylation in the exons of the DMR (p = 0.001). Further-

more, the differences in expression and methylation levels for each of the genes in Cluster 1

Fig 2. Identification of temporal genes both differentially expressed and differentially methylated between in vitro and in vivo
produced embryos. A) Venn diagram showing the overlap between differentially expressed genes (DEG) and differentially methylated

genes (DMG). DEG and DMG were defined as those genes or exonic regions changing differentially from blastocyst to elongation between

in vivo and in vitro groups. B) Hierarchical clustering and heat map of the expressions of the 490 overlapped genes in day 13 (D13) and

D16 embryos produced in vitro (IVP) or in vivo (after ovarian superovulation followed by embryo collection and transfer; MOET). C)

Expression trajectories for genes in each of the main determined clusters, at 7, 13 and 16 days of embryo age, in IVP (red lines) or MOET

(blue lines) groups.

https://doi.org/10.1371/journal.pone.0252096.g002

Fig 3. Trajectories of average expression for genes in the three clusters. Clusters were determined as illustrated in Fig 2. (A) Gene expression was obtained from

an external and independent dataset from embryos obtained after artificial insemination, except for day-7 MOET embryos. (B) Gene expression in MOET embryos.

(C). Gene expression in IVP embryos. MOET: embryos produced in vivo (ovarian superovulation followed by embryo collection and transfer). IVP: embryos

produced in vitro. Cluster 1: purple lines. Cluster 2: black lines. Cluster 3: green lines.

https://doi.org/10.1371/journal.pone.0252096.g003
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enriching the "focal adhesion" KEGG pathway from blastocyst to elongated conceptus are

shown in Fig 4.

Predictions in independent datasets

The overall rationale behind this analysis was the following: given that a delayed development

would be manifested in reduced conceptus length, and that DKK1 treatment improves embryo

survival, the expression pattern of at least some genes should resemble those of IVP concep-

tuses in the first case, and MOET conceptuses in the second. Thus, the hypotheses linked with

these predictions, based on expression data of certain genes from day 15 embryos, were the fol-

lowing for each dataset. For GSE75750: short and long conceptuses will be predicted to be IVP

and MOET embryos, respectively, while for GSE126680, DKK1-treated and non-treated

embryos will be predicted to be MOET and IVP conceptus, respectively.

Table 1. Top enriched annotation terms (p<0.01) in each of the three clusters.

Category Term Genes % P-value FDR

Cluster 1

KEGG_PATHWAY Focal adhesion 13 7 0.000019 0.0033

GOTERM_CC extracellular exosome 43 23 0.000220 0.0410

UP_KEYWORDS Actin-binding 8 4.3 0.000440 0.0870

GOTERM_BP oxidation-reduction process 13 7 0.000510 0.4100

KEGG_PATHWAY ECM-receptor interaction 7 3.7 0.001000 0.0900

UP_KEYWORDS Cytoplasm 32 17.1 0.001300 0.1200

UP_KEYWORDS Lipid biosynthesis 6 3.2 0.001900 0.1300

GOTERM_CC basement membrane 5 2.7 0.002600 0.1900

GOTERM_CC ruffle 5 2.7 0.004400 0.1900

GOTERM_CC mitochondrial matrix 7 3.7 0.004900 0.1900

GOTERM_CC extracellular space 21 11.2 0.005100 0.1900

GOTERM_MF actin-dependent ATPase activity 3 1.6 0.005500 1.0000

GOTERM_CC T cell receptor complex 3 1.6 0.006500 0.2000

UP_KEYWORDS Oxidoreductase 11 5.9 0.007500 0.3500

UP_KEYWORDS Myosin 4 2.1 0.009500 0.3500

GOTERM_BP post-embryonic development 5 2.7 0.009600 1.0000

Cluster 2

GOTERM_CC extracellular exosome 49 26.1 0.0000005 0.0000920

UP_KEYWORDS Phosphoprotein 47 25 0.0000780 0.0150000

UP_KEYWORDS Glycoprotein 25 13.3 0.0006300 0.0610000

KEGG_PATHWAY Lysosome 8 4.3 0.0008300 0.1700000

GOTERM_CC early endosome 7 3.7 0.0041000 0.3900000

UP_KEYWORDS Lysosome 6 3.2 0.0043000 0.2100000

GOTERM_CC membrane raft 6 3.2 0.0068000 0.4300000

KEGG_PATHWAY Glycolysis / Gluconeogenesis 5 2.7 0.0071000 0.5100000

UP_KEYWORDS Disulfide bond 28 14.9 0.0080000 0.3100000

Cluster 3

GOTERM_CC extracellular exosome 25 22.3 0.0056 0.6900

The annotation terms were estimated with the Functional Annotation Chart of the DAVID software. GOTERM:

Gene Ontology term. CC: cellular component. BP: biological process. MF: molecular function. UP_KEYWORDS:

UniProtKB keywords.

https://doi.org/10.1371/journal.pone.0252096.t001
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Next, we show the results of each prediction, and the corresponding accuracy according to

the hypotheses, using the expression from the following genes to construct each model:

• 1535 DEG: the accuracy of the predictions was 70% for samples from both datasets, which

was not significant (p = 0.17). Therefore, these genes do not have a comparable expression

pattern between IVP and short MOET embryos or between MOET and DKK1-treated

embryos.

• 490 overlapping DEG and DMG: for GSE75750 samples, all the short conceptuses and four

out of five long conceptuses were predicted as IVP and MOET conceptuses, respectively, giv-

ing an accuracy of 90% (p = 0.01). For GSE126680, four out of five of the DKK1-treated and

non-treated embryos were predicted as MOET and IVP embryos, respectively, with an accu-

racy of 80% (p = 0.054).

• Genes in Cluster 1: The accuracy of the prediction was 100% for samples from

GSE75750, since all the short and long conceptuses were classified as being derived from

IVP and MOET, respectively (p = 0.005). For samples from GSE126680, all the

DKK1-treated embryos and four out of five control embryos were predicted as MOET

and IVP conceptuses, respectively, with an accuracy of 90% (p = 0.01). Predictions with

the other two clusters did not reach such a high accuracy (GSE75750: Cluster 2: 66%,

p = 0.37; Cluster 3: 70%, p = 0.17. GSE126680: Cluster 2: 70%, p = 0.17; Cluster 3: 50%,

p = 0.62).

Fig 4. Differences in expression (line charts) and methylation (bar charts) levels in embryos produced in vitro or in vivo, from blastocyst to elongation. The

expression levels are shown for blastocyst, day 13 and day 16 stages. The methylation levels are depicted for the blastocyst and the trophectoderm (TE) of day 17

embryos. Analysed genes are those involved in the "focal adhesion" KEGG pathway, which were part of the Cluster 1, determined as illustrated in Fig 2. BCAR1: Cas

family scaffolding protein; BRAF: B-Raf proto-oncogene, serine/threonine kinase; CAPN2: calpain 2, (m/II) large subunit; COL1A2: collagen type I alpha 2 chain;

COL4A1: collagen type IV alpha 1 chain; FLNA: filamin A; FLNB: filamin B; ITGA5: integrin subunit alpha 5; LAMA1: laminin subunit alpha 1; LAMB1: laminin

subunit beta 1;MYL12A: myosin, light chain 12A, regulatory, non-sarcomeric; THBS4: thrombospondin 4; TLN1: talin 1. Blue lines or bars correspond to embryos

produced in vivo (after ovarian superovulation; MOET). Red lines or bars represent embryos produced in vitro (IVP).

https://doi.org/10.1371/journal.pone.0252096.g004
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Discussion

Embryo transfer technology has been used in cattle more intensively than in any other live-

stock species [4]. The number of bovine embryos that are transferred worldwide is constantly

increasing [55], and thus, for the past few years the number of IVP embryos transferred has

surpassed the number produced by MOET. Indeed, data collated by the International Embryo

Technology Society illustrate this divergent trend regarding the type of production: a decrease

(-17.5%) in the number of in vivo-derived embryos whereas the production of IVP embryos

reached a plateau (+0.2%), being 71% of the reported transferred embryos worldwide in 2019

[4]. Nevertheless, the lower performance of IVP embryos compared to MOET embryos to sus-

tain pregnancy is critical for the industry and remains a hot topic of debate; despite much

research, a complete understanding of the underlying issues involved in the suboptimal com-

petency of IVP embryo is still lacking.

The current meta-analysis of available transcriptomic and epigenomic data from IVP and

MOET embryos at different key stages of development will advance the field. However, this

study presents challenges as embryos were produced in distinct environments, using, for

example, different parental genetic combinations, culture conditions and superovulatory treat-

ments. Furthermore, the combination of different datasets precludes the application of meth-

ods that requires the omics techniques to be measured in the same individual, and so, our

approach consisted of single-omics analysis and posterior correlation. Nevertheless, and pre-

cisely because of the heterogeneity of the data, the results reported here can be interpreted as

those occurring consistently because of the in vitro procedure, or more probably, the lack of

oviductal environment during the first days, which impacts the subsequent embryonic devel-

opment of the TE [56].

In the present study, results obtained from the re-analysis of the transcriptomic data were

compared to the epigenomic data, to identify genes for which expression and DNA methyla-

tion patterns from blastocyst to elongated conceptus changed differentially between IVP and

MOET embryos, which could impact the TE function. This embryonic region was chosen

because differential DNA methylation was found to be prominent at intragenic sequences

within the TE of IVP and MOET day 17 conceptuses, but not in the embryonic disc [35]. In

addition, the smaller size observed in IVP embryos at day 13 [9], compared to MOET counter-

parts, may reflect a defect in elongation, potentially caused by errors in the TE.

Comparison of DEG and DMG resulted in the identification of 490 genes that were classified

in three clusters according to their expression in day 13 and day 16 conceptuses (Fig 2A and

2B). To discern the variation more clearly in expression in the embryos undergoing elongation,

samples from blastocysts were not considered for the hierarchical clustering. However, the plots

of the expression levels for each cluster depict the pattern at the 3 time points, i. e., day 7, day 13

and day 16 of embryonic age (Fig 2C). The first cluster, Cluster 1, was constituted by genes that

showed a remarkable difference in expression at day 13 between the IVP and MOET groups.

Specifically, these genes, on average, decreased in expression in the IVP conceptuses at day 13,

and increased again at day 16. In contrast, genes in Cluster 2 exhibited a similar expression at

day 13 between groups but then strongly increased in expression in day 16 MOET-derived con-

ceptuses. Lastly, genes in Cluster 3 were more highly expressed in IVP conceptuses than MOET

conceptuses at both days 13 and 16. Notoriously, the comparable expression profiles of genes in

the three clusters between MOET conceptuses and conceptuses produced after AI in an inde-

pendent experiment (Fig 3), validate the pipeline followed to identify these genes and the repro-

ducibility of the results reported here. In addition, they suggest that these genes could behave in

a similar fashion in embryos produced in vivo but not in vitro, and they are weakly influenced
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by other factors such as the parental genetic combination. However, it is worth noting that the

endometrium is sensitive to the embryo characteristics, since for example, both the origin [14]

and length of the embryos [7] modify the endometrial transcriptome. Therefore, the maternal

environment could influence the embryonic transcriptome as well.

The functional annotation analysis for genes in each of the identified clusters revealed that

genes in Cluster 1 significantly enriched for the "focal adhesion" pathway (FDR<0.05). In addi-

tion, the cellular component "extracellular exosome" was enriched by genes in both Clusters 1

and 2 (FDR<0.05) and involved 23% and 26 of the genes in the Clusters 1 and 2, respectively.

The expression pattern of genes encoding for adhesion proteins is critical to establish the bio-

logical shape and structure of the embryos since they maintain the polarity of cell associations

with their neighbours and the surrounding extracellular matrix (ECM) [57]. Furthermore,

remodelling of the actin cytoskeleton, a key component of eukaryotic cells, is achieved through

actin-binding proteins [58], which was another term significantly enriched in Cluster 1

(FDR<0.1). Therefore, focal adhesion is essential for cytoskeletal organization, differentiation,

proliferation, and survival of the embryo [59, 60]. A closer evaluation of the expression and

methylation profiles of the 13 genes from Cluster 1 involved in the "focal adhesion" pathway

(Fig 4) showed that for almost all the genes (except forMYL12A) the methylation pattern dif-

fered at the blastocyst stage. Interestingly, previous work reported that culture conditions of

IVP embryos de-regulated the focal adhesion pathway at the blastocyst stage [61]. Furthermore,

supplementation of the culture media with epidermal growth factor (EGF) and hyaluronic acid

(HA) during or after embryonic genome activation altered the expression and DNA methyla-

tion patterns of genes involved in this pathway [62]. Stimulation of growth factors, such as EGF,

and adhesion to the ECM is required for normal cell growth [63], and HA is one of the main

components of ECM, that can improve the blastocyst rate of IVP bovine embryos [64]. Thus,

the deregulation of genes involved in the focal adhesion pathway impacts embryonic develop-

mental competence and quality.

In the present study, all genes from Cluster 1 involved in this pathway (except for COL1A2,

MYL12A and LAMA1) showed a similar DNA methylation pattern: it increased or decreased

from the blastocyst stage to the day 17 conceptus for IVP or MOET embryos, respectively. For

COL1A2 andMYL12A, DNA methylation pattern increased with embryo age in both groups,

while for LAMA1, it decreased or increased from blastocyst to day 17 conceptus for IVP or

MOET embryos, respectively. DNA methylation in gene bodies is surprisingly abundant and

has been demonstrated to be positively correlated with gene expression [65]. However, gene

expression levels are better inversely correlated with the methylation of the first exon than

with that of the promoter [31]. Therefore, intragenic DNA methylation is involved in the regu-

lation of gene expression, and its inhibition or suppression depends on the genomic region

[66]. Here, the exact relationship between DNA methylation and gene expression cannot be

directly estimated since changes in DNA methylation were calculated from the blastocyst to

day 17 conceptus, while gene expression was assessed from blastocyst to day 13 and day 16

conceptus. Thus, it is not possible to dissect the dynamics of DNA methylation between the

blastocyst and day 17 conceptus. One possibility is that the increasing methylation toward day

17 for genes in the focal adhesion pathway in IVP embryos was related with the "normaliza-

tion" in the expression toward day 16, since, at day 13, the difference in expression between

IVP and MOET embryos was remarkable but not at day 16. For COL1A2 andMYL12A, the

DNA methylation pattern seemed to be inversely correlated with gene expression; while for

LAMA1, the hypomethylation at day 17 of IVP embryos compared to MOET embryos was

probably related with a higher expression at day 16.

In addition to focal adhesion, the other term significantly enriched in both Cluster 1 and

Cluster 2 (FDR<0.05), with around a quarter of the genes in those clusters, was "extracellular
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exosome". This term was enriched in Cluster 3 as well, but with an FDR = 0.6. For Cluster 1,

seven out of the 13 genes involved in focal adhesion (CAPN2, COL1A2, FLNA, FLNB, LAMB1,

TLN1 and THBS4) were part of this cellular component. Exosomes are vesicles released into

the extracellular region by fusion of the limiting endosomal membrane of a multivesicular

body with the plasma membrane [67]. These vesicles can be secreted by oviductal and endo-

metrial cells [68], and also by IVP and in vivo derived embryos [69, 70]. They can play essential

roles in maternal-embryo communication [71]. Extracellular vesicles derived from trophoblast

cells from the conceptus at day 15 and 17 have been shown to contain interferon-tau, in addi-

tion to bioactive molecules that modulate the adhesion pathway [70, 72]. Therefore, these vesi-

cles participate in embryo–maternal interactions during early embryonic development and the

maternal recognition of pregnancy, although the temporal expression of the gene encoding for

interferon-tau did not differ between IVP and MOET embryos in this study (S3 Fig). Interest-

ingly, genes that encoded for extracellular vesicles were related to (p<0.05): ECM receptor

interaction, collagen, and epidermal growth factor in Cluster 1 (genes downregulated at day 13

in IVP embryos); glycoprotein and glycolysis/gluconeogenesis in Cluster 2 (genes more

expressed at day 16 in MOET conceptuses) and protein acetylation in Cluster 3 (genes more

expressed at day 13 and day 16 in IVP conceptuses).

The final step in this study was to underpin our results through the application of machine

learning methods, to make predictions in data from day 15 IVP and MOET conceptuses under

different conditions. The hypothesis tested with these predictions was that short (i.e., poten-

tially developmentally compromised) MOET conceptuses and IVP embryos treated with

DKK1 (i.e., developmentally superior) would be predicted as IVP and MOET embryos, respec-

tively, according to the expression of at least some genes. The accuracy of the predictions

improved when using the expression of the overlapping genes between DEG and DMG, com-

pared to using only the DEG, highlighting the value of combining two "omics" technologies

rather than a single one, to explore biological events. Furthermore, using the expression of the

188 genes in Cluster 1, in the day 13 and day 16 IVP and MOET conceptuses to train the

model, the accuracies of the predictions were higher than 90% (p<0.05). That is, all short and

long embryos were predicted as IVP and MOET, respectively, while all DKK1-treated embryos

and four out five control embryos were predicted as MOET and IVP, respectively. This high

accuracy could not be achieved with the genes in the other clusters, probably because the

expression at day 16 has more relevance to stratify IVP and MOET embryos, and the models

were tested with day 15 conceptuses.

These results are not suggesting that IVP embryos are always shorter or that DKK1-treated

embryos would resemble MOET embryos. Rather, these findings support the notion that

genes in Cluster 1, which show a strong deviation in their expression at day 13 between the

groups, are important for conceptus elongation. In other words, IVP embryos could exhibit

de-regulation of genes involved with development in the TE, while the early treatment with

DKK1 would normalize the expression of those genes. In the study by Barnwell et al., [48],

from which the data about short and long conceptuses were obtained, the authors found DEG

in the long versus the short conceptuses were related to actin filaments of the cytoskeleton,

consistent with genes in Cluster 1. Thus, inadequate elongation of IVP conceptuses could be a

major contributing factor to early embryonic death seen during the peri-implantation period

[73]. Predictions performed in the dataset obtained from the study of Tribulo et al. [49] indi-

cate that treatment of IVP embryos with DKK1 between days 5 and 7.5, just before embryo

transfer, could induce epigenomics modifications during the morula to blastocyst transition to

regulate subsequent trophoblast elongation. Treatment with DKK1 significantly increased the

length of filamentous conceptuses from 43.9 mm to 117.4 mm and the intrauterine content of

interferon tau from 4.9 μg/ml to 16.6 μg/ml. In the present study, conceptuses of similar length
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derived from the transfer of embryos treated or not with DKK1 were selected. Therefore, the

action of DKK1 probably involved the induction of the expression of genes related to focal

adhesion as well, which in part can explain the increase in blastocyst development and preg-

nancy retention in DKK1-treated IVP embryos [74].

Conclusion

This study applied a multi-omics data integration approach to identify genes that are both dif-

ferentially expressed and methylated from the blastocyst to elongated conceptus stage, between

IVP- and MOET-derived embryos. The integrated transcriptomic and epigenetics datasets were

analysed using a set of bioinformatics methods and we evaluated the predictive ability of key

genes using additional external data through machine learning methods. The results revealed a

group of genes (Cluster 1) with a strong deviation in their expression between IVP and MOET

embryos at day 13, when the elongation process is initiated. Several of these genes were signifi-

cantly related to the focal adhesion pathway. Furthermore, their expression predicted less devel-

oped (short) day 15 MOET conceptuses as being IVP embryos and, conversely, day 15 IVP

embryos treated with the progestomedin DKK1 as being MOET embryos. Therefore, the IVP

process induces epigenomic and therefore transcriptomic changes in the early embryo that have

consequences for subsequent conceptus elongation and focal adhesion, essential processes for

survival. Results reported here can help in the understanding of some of the factors involved in

the post-transfer pregnancy failures, that occur in cattle following the transfer of IVP embryos.

Supporting information

S1 Fig. Overlap of differentially expressed genes (DEG) and differentially methylated

(DM) regions. The Venn diagram shows the overlap between DEG and DM exons, promoters

and introns. The DM exons overlapping with the DEG were also methylated in the promoter

and/or the intron (red oval), presumably corresponding to extensively methylated regions.

(TIF)

S2 Fig. Main results from the epigenetic analysis. A) Volcano plot of showing the significant

hypermethylated probes in each comparison (dark blue dots). B) and C) Absolute proportions

of hypermethylated elements within significant probes, split by distance to the CpG islands (B)

or gene region (C). The dotted line represents the baseline of this ratio when all selected probes

are considered. TE: trophectoderm of day-17 embryos. BL: blastocyst. MOET: embryos pro-

duced in vivo (ovarian superovulation followed by embryo collection and transfer). IVP:

embryos produced in vitro.

(TIF)

S3 Fig. Temporal expression of the gene encoding for interferon-tau (IFN-tau). The plot

shows similar expression trajectories for this gene at 7, 13 and 16 days of embryo age, in IVP

(red lines) or MOET (blue lines) groups.

(TIF)

S1 Table. List of genes in Clusters 1, 2, and 3. Clusters were determined as illustrated in Fig

2. Gene official symbol and gene names are shown, together with the fold change (FC) for the

following contrasts: FC Diff D13: (day 13 IVP–day 7 IVP embryos)—(day 13 MOET–day 7

MOET embryos). FC Diff D16: (day 16 IVP–day 13 IVP embryos)—(day 16 MOET–day 13

MOET embryos). MOET: embryos produced in vivo (ovarian superovulation followed by

embryo collection and transfer). IVP: embryos produced in vitro.

(XLSX)
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