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A B S T R A C T

The extent and spatial location of white matter hyperintensities (WMH) on brain MRI may be relevant to the devel-
opment of cognitive decline in older persons. Here, we introduce a new method, known as the Multi-atlas based
Detection and Localization (MADL), to evaluate WMH on fluid-attenuated inversion recovery (FLAIR) data. This
method simultaneously parcellates the whole brain into 143 structures and labels hyperintense areas within each WM
structure. First, a multi-atlas library was established with FLAIR data of normal elderly brains; and then a multi-atlas
fusion algorithm was developed by which voxels with locally abnormal intensities were detected as WMH. At the same
time, brain segmentation maps were generated from the multi-atlas fusion process to determine the anatomical location
of WMH. Areas identified using the MADL method agreed well with manual delineation, with an interclass correlation
of 0.97 and similarity index (SI) between 0.55 and 0.72, depending on the total WMH load. Performance was compared
to other state-of-the-art WMH detection methods, such as BIANCA and LST. MADL-based analyses of WMH in an older
population revealed a significant association between age and WMH load in deep WM but not subcortical WM. The
findings also suggested increased WMH load in selective brain regions in subjects with mild cognitive impairment
compared to controls, including the inferior deep WM and occipital subcortical WM. The proposed MADL approach
may facilitate location-dependent characterization of WMH in older individuals with memory impairment.

1. Introduction

White matter hyperintensities (WMH) that appear on T2-weighted
or fluid attenuated inversion recovery (FLAIR) magnetic resonance
imaging (MRI) are a common radiological feature. WMH are primarily
thought to reflect the degree and distribution of small vessel disease
(Wardlaw et al., 2013), and they are increasingly common with ad-
vancing age (Debette and Markus, 2010; Gorelick et al., 2011; Prins and
Scheltens, 2015). Recent findings suggest they may also be one of the
core features of Alzheimer's disease (AD) (Brickman, 2013; Lee et al.,
2016), in addition to gray matter atrophy (Vemuri and Jack, 2010).

Several studies have suggested that it might be important to consider the
spatial distribution of WMH when evaluating individuals with memory
impairment. For example, periventricular WMH (PVWMH) are more
strongly associated with cognitive performance than deep WMH (DWMH)

(de Groot et al., 2002; DeCarli et al., 2005), and posterior WMH was shown
to play an important role in the development of AD (Lee et al., 2016;
Yoshita et al., 2006). Hypothesis-driven investigation ofWMH in other brain
regions were also reported (Biesbroek et al., 2013; Brickman et al., 2012;
Brickman et al., 2015; Murray et al., 2010; Wu et al., 2006). These findings
suggest the importance of developing tools that not only measure the total
WMH load but also systematically evaluate the WMH distribution, e.g.,
WMH load in different lobular divisions and various subcortical structures.

Fully automated WMH detection algorithms have been developed
over the past decade, including various forms of intensity-based thresh-
olding methods (Admiraal-Behloul et al., 2005; Jack et al., 2001; Ji et al.,
2013; Ong et al., 2012; Simoes et al., 2013; Yoo et al., 2014), clustering
approaches (Ithapu et al., 2014; Lao et al., 2008; Seghier et al., 2008),
outlier analysis methods (Maldjian et al., 2013; Ong et al., 2012; Van
Leemput et al., 2001; Yang et al., 2010), morphological operations
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(Beare et al., 2009; Shi et al., 2013), Bayesian approaches (Herskovits
et al., 2008; Ithapu et al., 2014), and more recently, deep learning
methods (Ghafoorian et al., 2016; Ghafoorian et al., 2017; Jin et al.,
2018; Moeskops et al., 2018; Roa-Barco et al., 2018). Some of these
methods use single FLAIR contrast, while others employ multiple mod-
alities including T1, T2, proton density, and even diffusion tensor ima-
ging data. The detection accuracies of these methods depend not only on
the algorithms itself but also the data under investigation, e.g., small
lesions are typically more difficult to detect compared to large lesions
(Caligiuri et al., 2015). The aforementioned methods typically generate a
measure of whole-brain WMH load, but few automatically provide re-
gion-specific measures for systematic evaluation of WMH distribution.

In this paper, we describe a new computational framework that si-
multaneously parcellates the brain and identifies WMH in individual
parcels. The new method, known as Multi-atlas based Detection and
Localization (MADL), uses a multi-atlas likelihood fusion approach to
achieve brain segmentation and WMH detection, based on a FLAIR
multi-atlas library. We first tested algorithm performance by comparing
the detection results with manually defined WMH labels. We then in-
vestigated if location-specific WMH quantification would provide useful
biological or clinical information by examining (i) the association be-
tween age and WMH load in different WM structures, and (ii) location-
dependent WMH load in normal elderly subjects and individuals with
mild cognitive impairment (MCI).

2. Methods and materials

2.1. Dataset

The participants are members of a cohort of older individuals who
had been well characterized clinically and cognitively, as part of an
ongoing project, known as the BIOCARD study (Albert et al., 2014;
Soldan et al., 2016). The current analyses are cross-sectional, based on
FLAIR data from 135 subjects scanned between 2015 and 2016. Image
acquisition in this cohort is ongoing. All subjects provided informed
consent in accordance with the requirements of the Johns Hopkins
Medicine Institutional Review Board.

As part of the ongoing study, each participant receives a consensus
clinical diagnosis for the visit at which the MRI is obtained, based on the
clinical and cognitive assessments at that visit, using standard procedures.
For the scans used in the current analyses, participants received a diag-
nosis of either cognitively normal (n=113) or MCI (n=22), based on the
National Institute on Aging/Alzheimer's Association (NIA/AA) research
diagnostic criteria (Albert et al., 2011). FLAIR data from 15 cognitively
normal individuals were used as atlases, and the other 120 were used for
algorithm evaluation and subsequent analyses. Basic demographic and
clinical characteristics of the participants are summarized in Table 1.

MRI scans were obtained at the Kirby Imaging Center at the Kennedy
Krieger Institute on a Philips Achieva 3.0 T scanner. FLAIR data were ac-
quired with a multi-slice fast spin-echo sequence with inversion recovery
pulses at inversion time (TI)/echo time (TE)/repetition time (TR)=2800/
100/11,000ms, field-of-view (FOV)=256×256mm, in-plane

resolution=1×1mm, 69 slices with slice-thickness of 2mm. T1-weighted
images were acquired with a 3D magnetization-prepared rapid gradient-
echo (MPRAGE) sequence with TI/TE/TR=800/3/7ms, flip angle of 8°,
FOV of 256×256×204mm, and resolution of 1×1×1.2mm.

2.2. FLAIR multi-atlas generation

A FLAIR multi-atlas library was created with FLAIR data from cogni-
tively normal individuals who had minimal WMH (< 1.8ml based on
manual delineation). Seventeen images qualified for this criterion, but two
had slight image artifacts, and therefore 15 images were chosen as atlases.
The demographic and basic clinical information of the atlas data matched
with the test data (Table 1), and the 15 atlases represented a range of
anatomy from minimal to moderate degrees of brain atrophy (Fig. 1A).

The 15 FLAIR images were first registered to T1-weighted images of
the same brains in Montreal Neurological Institute (MNI) coordinates,
by maximizing the mutual information between the FLAIR and T1-
weighted images using the SPM package in Matlab (mathworks.com).
The T1-weighted images were then segmented into 283 regions of in-
terest (ROIs) (Wu et al., 2016) using a multi-atlas segmentation pipeline
established by the investigators (Tang et al., 2013)(Wu et al., 2016).
This way, the coregistered FLAIR data were segmented into the same
283 ROIs. For the purposes of this study, we manually edited the seg-
mentations on FLAIR images, and regrouped the finest level of ROIs
based on their ontological relationships. In the end, 143 ROIs were
defined in FLAIR atlases. Of these, there were 24 WM ROIs (Fig. 1B)
were used in the following analyses, and the rest were ROIs for gray
matter (GM), cerebrospinal fluid (CSF) and non-brain tissue. The WM
ROIs were included in the analyses below (see Fig. 2A).

2.3. MADL for WMH detection

To identify WMH, the MADL algorithm takes advantage of the fact
that WMH voxels have abnormal intensities that do not comply with the
local intensity profiles of the ROIs where they reside, resulting in low
posterior probabilities in the multi-atlas fusion process. The algorithm
flowchart is depicted in Fig. 2.

1) Global inhomogeneity correction on the target image (image to be
segmented) was performed using N4 bias correction (Tustison et al.,
2010), followed by histogram matching (Coltuc et al., 2006) be-
tween the target and atlas images. Atlas images were transformed to
the target image first through affine registration and then non-linear
transformation, using a method known as large deformation dif-
feomorphic metric mapping (LDDMM) (Christensen et al., 1996;
Grenander and Miller, 1998).

2) Atlas-weighting and fusion were performed based on a multi-atlas
likelihood fusion method, in which voxelwise posterior probabilities
were derived through.
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where p l x I( | , )T is the posterior probability of voxel x in target image
IT being assigned to label l (l ∈ [1,⋯L]); IAi (i ∈ [1,⋯N], N being the
number of atlases) are the warped atlas images; wi(l) is the atlas-
weighting term determined iteratively by the spatial matching between
the atlas label and the target label derived in the previous iteration; and
p(l|x, IAi) is the prior likelihood determined by the Gaussian probability
density of voxel intensity at location x of the target image with respect
to the intensity profile of label l in the atlas image IAi (Tang et al.,
2013). Voxels with abnormal intensities will give low prior likelihood
with respect to the corresponding label.

3) Anatomical labels are obtained using Bayes maximum a posteriori
(MAP) estimation:

Table 1
Demographic information of the BIOCARD participants used in this study, in-
cluding those used as atlases and those used as testing data.

Participant characteristics
at image acquisition

Data used as
atlases

Data used in algorithm evaluation and
diagnostic analysis

Number of participants
(N)

15 (all
Normal)

Normal MCI
98 22

Age in years
(mean ± SD)

70.1 ± 8.3 70.0 ± 8.5 69.9 ± 8.7

Gender (% female) 73% 64% 59%
MMSE (mean ± SD) 29.6 ± 0.8 29.5 ± 0.8 27.6 ± 2.0⁎

⁎ p < .001 difference in MMSE between normal and MCI groups.

D. Wu, et al. NeuroImage: Clinical 22 (2019) 101772

2

http://mathworks.com


=
…

L x p l x I( ) argmax ( | , )T
l L

T
[1, , ] (2)

where LT is the final label image. At the same time, the maximum
posterior probability (MPP)— p L x I( | , )T T is obtained at each voxel.

4) WMH voxels are identified as voxels with low MPP values below a
threshold. The threshold was empirically optimized based on com-
parison with manually delineated WMH labels. The effect of the
choice of threshold was evaluated.

Fig. 1. The FLAIR multi-atlas library. (A) Images of 6 of the 15 FLAIR atlases that represented a range of anatomy from to minimal to moderate degrees of brain
atrophy. (B) Major WM structures defined in the FLAIR atlases. Abbreviations: dWM—deep white matter; sWM—subcortical white matter; BCC—body of corpus
callosum; GCC—genu of corpus callosum; SCC—splenium of corpus callosum; ALIC—anterior limb of internal capsule; PLIC—posterior limb of internal capsule.

Fig. 2. Flowchart of the MADL pipeline. A multi-atlas library of FLAIR images is used to segment the brain and generate the posterior probability map based on a multi-
atlas likelihood fusion algorithm. WMH voxels are detected if the maximum posterior probabilities are below a threshold, within a WM mask. Normalized image
intensity was applied to exclude voxels with low intensities. Regional WMH load is obtained based on the simultaneously generated segmentation map and WMH label.
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5) Post-processing. Several steps are taken to reduce the false positive
detection.

i) A WM mask is generated using a simplified parcellation map (WM,
GM, CSF, lateral ventricle, etc.) (Ma et al., 2015), using the same
multi-atlas segmentation framework. Voxels outside the WM mask
are removed.

ii) Because the MADL algorithm detects local intensity abnormalities,
voxels with abnormally low intensities are also detected, e.g., CSF
voxels (dark on FLAIR) that are encapsulated in cortical ROIs.
Therefore, we applied an intensity threshold to exclude dark voxels
lower than 1.5 standard deviations below the mean ROI intensity.

iii) After the above two steps, WMH clusters with volume below
50mm3 are removed.

2.4. Algorithm evaluation

1) WMH detection accuracy was evaluated based on manually deli-
neated WMH labels by a board certified neurosurgeon (Y.T.), who is
experienced in brain MRI analysis. The delineation was performed
in ROIEditor (mristudio.org) using manually selected seeds, fol-
lowed by region growing and manual editing. The following eva-
luation metrics were used.

i) The Dice similarity index (DSI,
+ +

TP
TP FP FN

2
2

), false-positive rate (FPR,

+
FP

TP FP
), and false-negative rate (FNR,

+
FN

TP FN
) (Griffanti et al., 2016)

were calculated between the WMH labels detected with MADL and
the manual labels in each subject. The DSI, FPR, and FNR were
evaluated in three groups of individuals with low (< 5ml, n=75),
median (5–10ml, n=34), and high (> 10ml, n=15) WMH load
in the entire brain. Representative WMH maps of low, median, and
high load brains are shown in Fig. 3C.

ii) WMH volume correspondence between the MADL and manual re-
sults was evaluated using interclass correlation (ICC) with the
consistency agreement definition (McGraw and Wong, 1996).

iii) Receiver-operating characteristic (ROC) curves were calculated
using voxelwise false-positive detection rate versus true-positive
rate, based on which the area under the ROC curve (AUC) was
calculated in each subject.

2) We compared the MADL outputs with two state-of-the-art WMH
detection algorithms: (a) the Brain Intensity Abnormality
Classification Algorithm (BIANCA) (Griffanti et al., 2016), which
employs user-provided training data to classify abnormal intensities
with a k-nearest neighbor algorithm and is implemented in FSL (fsl.
fmrib.ox.ac.uk/fsl/fslwiki/BIANCA), and (b) the Lesion Segmenta-
tion Toolbox (LST, version 2.0.15), as implemented in SPM12
(https://www.applied-statistics.de/lst.html). We used the lesion
prediction algorithm (LPA) (Schmidt, 2017) in LST, which was
trained by a logistic regression model with internal training data.

For BIANCA, WMH probability maps were generated in a leave-one-
out fashion (recursively, 119 of the 120 FLAIR data with manually
delineated WMH were used as training data for the remaining test
image). An empirical threshold of 0.9 and a cluster size of 10 was used
to obtain WMH labels from the probability maps, as suggested by
(Griffanti et al., 2016). For LST, WMH probability maps were generated
with its internal training data, and we used a recommended probability
threshold of 0.5 to obtain WMH labels. DSI, FPR, FNR, and ICC were
used to evaluate the BIANCA and LST results.

2.5. Application of algorithm to clinical data

To examine the utility of MADL based WMH identification, we in-
vestigated the relationship between local WMH load and (i) the

participant age and (ii) the clinical diagnosis. All statistical analyses
were performed in R (www.r-project.org). Significance was detected at
a 5% false discovery rate (FDR) after correcting for multiple compar-
isons (Benjamini and Hochberg, 1995). WMH ROIs used in this analysis
are listed in Table 3. Note that the left and right sides of the corpus
callosum (CC) were combined in the statistical analyses, resulting in
three ROIs for the CC—the genu, body, and splenium parts (GCC, BCC,
and SCC, respectively). In addition, the anterior and posterior limbs of
the internal capsule were not included in the analysis since they did not
show WMH in most subjects.

1) Relationships between age, WMH load, and WM volumes of in-
dividual ROIs were assessed with linear regressions, including (a)
regressions between age and local WMH load (log-transformed), and
(b) regressions between age and WM structural volumes. Regression
analyses were adjusted for clinical diagnosis and sex, and corrected
for multiple comparisons.

2) Group differences in local WMH load between the cognitively
normal and MCI participants were assessed by analysis of covariance
(ANCOVA), adjusted for age and sex and corrected for multiple
comparison. Due to the unbalanced sample size between normal and
MCI groups (n=98 versus n=22), we used type ANCOVA with
type II sum of squares (Langsrud, 2003).

3. Results

3.1. Performance of the MADL pipeline

3.1.1. Effect of thresholding
We evaluated the detection accuracy at different MPP thresholds,

and voxels with MPP below the threshold were detected as WMH. DSI
and ICC were calculated in the low (< 5ml), median (5–10ml), and
high (> 10ml) groups based on the total WMH load (Fig. 3C). The
effect of thresholding was relatively small in the range of 0.01–0.05
(Fig. 4A), except that the DSI of the low WMH group slightly decreased
as the threshold increased above 0.03. An MPP threshold of 0.02 was
used in the following analysis.

3.1.2. Comparison with manual detection
The whole-brain WMH load (in unit of ml) detected with the MADL

pipeline showed a high level of agreement with manual delineation,
with an ICC of 0.97 across 120 subjects (Fig. 3A). Majority of the par-
ticipants in this study demonstrated a low-to-median amount of WMH,
and the ICC was 0.89 in a sub-population with WMH< 20ml (dashed
area in Fig. 3A). ROC curve of the voxelwise detection accuracy is
shown in Fig. 3B, with an overall AUC of 0.89 ± 0.05. AUCs in the low,
median, and high WMH groups were 0.89 ± 0.05, 0.89 ± 0.03, and
0.85 ± 0.04, respectively. DSI, FPR, and FNR measurements in low,
median, and high WMH groups are reported in Table 2. DSI increased
and FPR/FNR decreased as the total WMH load increased. The overall
DSI, FPR, and FNR of the entire study population were 0.62 ± 0.09,
0.35 ± 0.14, and 0.37 ± 0.12, respectively, given that 88% of the
study population were in the low and median groups.

3.1.3. Comparison with other algorithms
We compared the performance of the MADL, BIANCA, and LST,

based on DSI, FPR, and FNR in the low, median, and high WMH groups
and ICC of the entire population. Table 2 shows that the highest ICC
was obtained using MADL, and the DSI were similar among the three
methods, using pairwise t-tests (all p > .05). BIANCA showed the
highest FPR and lowest FNR, and LST showed the lowest FPR and
highest FNR, among the three methods (p < .01 by paired t-tests be-
tween MADL and BIANCA and between MADL and LST).
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3.2. Relationship between location-dependent WMH and age

Whole-brain WMH load (log-scaled) was significantly correlated with
age (r=0.36, p < .01). The association between age and WMH load
was significant in most of the deep WM (dWM) ROIs, including the bi-
lateral posterior dWM, bilateral occipital dWM, left frontal dWM, and
SCC (r=0.24–0.43, p < .05), but not in the subcortical WM (sWM),
after FDR multiple comparison correction (Table 3 and Fig. 5A). The r
value maps in Fig. 5C depict a central-to-peripheral pattern for the ac-
cumulation of WMH with age.

WM volumes were negatively correlated with several regions, in-
cluding the bilateral parietal sWM, bilateral temporal sWM, right
frontal sWM, bilateral anterior dWM, left posterior dWM, and right
inferior dWM (p < .05 after FDR correction) (Table 2 and Fig. 5B).
Fig. 5D demonstrates that age-dependent volume loss was more pro-
minent in peripheral WM structures, which is opposite to the pattern of
age-WMH relationships observed in Fig. 5C.

3.3. Relationship between location-dependent WMH and diagnosis

We also compared local WMH load in participants who were cogni-
tively normal (n=98) versus participants who had a diagnosis of MCI
(n=22). Significant group differences were found in the right inferior
dWM, and left occipital sWM (p < .05), based on ANCOVA, adjusted for

age and sex and corrected for multiple comparisons (Fig. 6A). No sta-
tistical group difference was found in the whole-brain WMH loads
(p=.06). An example of the WMH distribution in an MCI subject is
shown in Fig. 6C. Visual inspection indicated that WMH (red arrows in
Fig. 6C) often crossed the inferior dWM and occipital sWM. Therefore,
we further combined these two ROIs, and found significant differences in
both left and right inferior-occipital WM regions between the normal and
MCI groups (p < .05). The WM volumetric analysis revealed significant
group differences in bilateral temporal sWM, after adjusting for age and
sex and correcting for multiple comparison (Fig. 6B).

4. Discussion

4.1. The MADL framework

The new MADL algorithm seamlessly integrates WMH detection and
image segmentation to quantify the WMH distribution. The method was
built on a multi-atlas fusion algorithm and FLAIR multi-atlas library. While
multi-atlas algorithms are traditionally used for segmenting images, we
utilized the multi-atlas fusion process for WMH detection purpose. The
MADL method can be considered as a special case of outlier detection.
While previous outlier detection methods (Maldjian et al., 2013; Ong et al.,
2012; Van Leemput et al., 2001; Yang et al., 2010) utilized the intensity
profiles within the patient images; whereas MADL identifies outliers based

Fig. 3. Evaluation of the MADL method. (A) Whole-brain WMH load detected by MADL correlated well with manually delineated results, with an interclass
correlation of 0.97. The dashed black box includes a subset of data that had total WMH load< 20ml and an ICC of 0.89. (B) Voxelwise ROC analysis was performed
for each subject, and the mean and standard deviation is presented. (C) Representative FLAIR images with low, median, and high amounts of WMH load from the
study population. Highlighted areas show the WMH labels detected by MADL.
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on local intensity mismatches between the hyperintense voxels and normal
appearing FLAIR images (atlases). Atlas-based approaches have also been
proposed for lesion detection, e.g., creation of WMH probability atlases from
patient groups and use it as a priori in the detection algorithms (Bricq et al.,
2008; Yoshita et al., 2006). Alternatively, Shiee et al. (2010) used a single
population-based atlas from normal subjects to identify intensity deviations
in patient images, which is similar to the MADL idea. Strength of MADL is
that it utilizes a multi-atlas fusion method that potentially offers a more
flexible platform in that it selects atlases matched for the anatomical feature
of the subject, such as the degree of atrophy. More importantly, if the atlases
contain predefined segmentation, the anatomical locations of WMH can be
automatically identified as done in the our method.

4.2. Algorithm performance

MADL algorithm showed a comparable detection accuracy compared

to the state-of-the-art methods, and its performance was robust with
respect to the choice of MPP thresholds. The accuracy of WMH detection
algorithms varied depending on the amount of WMH in the brain. Using
single-modality FLAIR contrast, DSI was between 0.51 and 0.71 in the
subjects with< 5ml WMH load, and overall accuracy was about 0.68 in
previous reported fully-automated methods (Gibson et al., 2010; Ji et al.,
2013; Khademi et al., 2012; Schmidt et al., 2012; Simoes et al., 2013;
Yoo et al., 2014). Higher detection accuracy can be achieved with semi-
automated methods (Iorio et al., 2013; Itti et al., 2001; Kawata et al.,
2010; Ramirez et al., 2011). When compared directly using the same
dataset, MADL, BIANCA, and LST showed similar DSI. Interestingly, the
FPR was the highest in BIANCA and lowest in LST, and the FNR was the
highest in LST and lowest in BIANCA, while MADL was intermediate
(Table 2). There are several reasons why the outcomes of these algo-
rithms may differ. BIANCA is a supervised learning method based on k-
nearest neighborhood clustering, with user-defined options for spatial
weighting, local intensity averaging, and choice of training points
(Griffanti et al., 2016). In addition, the empirically defined threshold on
the lesion probability map played an important role in balancing the FPR
and FNR. We used a suggested threshold of 0.9 and default values for
other parameters, which might not be optimal for our study population
with relatively low WMH load. By comparison, the LPA algorithm
(Schmidt, 2017) in LST was trained by a logistic regression model based
on internal training data from multiple sclerosis patients with severe
lesions. Given the intrinsic differences in lesion volume and pattern be-
tween the LPA training data and our testing data, it is possible that the
algorithm is not sensitive enough to capture the small and subtle lesions
in our data, leading to the high FNR.

Detection accuracy in the low load group was not ideal with all
three methods. Small lesions with subtle abnormalities are known to be
challenging for fully automated algorithms. Even human readers show
considerable disagreement and inconsistency on detection of small le-
sions (Boutet et al., 2016). It is, therefore, recommended that visual
inspection, parameter tuning, and manual correction are performed
after automated detection. Another source of detection error resides in
the ambiguity of WMH definition. WMH are commonly used to examine

Fig. 4. Effects of varying thresholds (Maximized Posterior Probability, MPP) from 0.01 to 0.05 on the detection accuracy. (A) Algorithm evaluations based on the
interclass correlation (ICC) and the Dice Similarity Index (DSI), in three groups (whole-brain WMH load of 0–5ml, 5–10ml, and > 10ml). (B) MADL results at MPP
threshold of 0.01, 0.03, and 0.05 in a brain at two transverse locations. Red arrows point to the increase of true-positive detection as the threshold increased; and
yellow arrows point to the increase of false-positive detection as the threshold increased.

Table 2
Performance of MADL, BIANCA, and LST in detecting WMH, using manually
delineated WMH as the gold standard.

Method Load DSI FPR FNR ICC

MADL 0–5ml 0.55 ± 0.09 0.42 ± 0.17 0.37 ± 0.16 0.97
5–10ml 0.64 ± 0.07 0.29 ± 0.11 0.33 ± 0.09
> 10ml 0.72 ± 0.05 0.19 ± 0.09 0.31 ± 0.08

BIANCA 0–5ml 0.55 ± 0.14 0.55 ± 0.18⁎ (↑) 0.22 ± 0.17⁎ (↓) 0.95
5–10ml 0.67 ± 0.12 0.39 ± 0.14⁎ (↑) 0.21 ± 0.15⁎(↓)
> 10ml 0.74 ± 0.05 0.26 ± 0.07⁎ (↑) 0.22 ± 0.08⁎(↓)

LST 0–5ml 0.53 ± 0.19 0.27 ± 0.21⁎ (↓) 0.52 ± 0.24⁎ (↑) 0.94
5–10ml 0.66 ± 0.12 0.22 ± 0.17⁎ (↓) 0.41 ± 0.21⁎ (↑)
> 10ml 0.73 ± 0.09 0.17 ± 0.09 0.32 ± 0.13

The dice similarity index (DSI), false positive rate (FPR), and false negative rate
(FNR), were evaluated in low, median, and high WMH groups. Intra-class
correlation (ICC) was calculated based on the detected and the manual deli-
neated total WMH load in all subjects (n=120), using the three methods.

⁎ p < .01 by paired Student t-test between MADL and BIANCA and between
MADL and LST.

D. Wu, et al. NeuroImage: Clinical 22 (2019) 101772

6



Table 3
Correlation coefficients (r) between age and log-scale WMH load and those between age and WM volumes in major WM structures, as well as the total WMH load (in
the unit of ml) in normal elderly and MCI patients in these structures.

White matter structure r between age and WMH load r between age and volumes WMH (ml) in normal elderly WMH (ml) in MCI patients

Anterior dWM (left) 0.26⁎ −0.37⁎⁎ 0.28 ± 0.41 0.35 ± 0.47
Anterior dWM (right) 0.09 −0.37⁎⁎ 0.20 ± 0.29 0.28 ± 0.40
Posterior dWM (left) 0.34⁎⁎ −0.28⁎ 0.06 ± 0.14 0.10 ± 0.27
Posterior dWM (right) 0.43⁎⁎ 0.15 0.04 ± 0.09 0.12 ± 0.28
Inferior dWM (left) 0.39⁎⁎ −0.17 0.14 ± 0.23 0.24 ± 0.37
Inferior dWM (right) 0.24⁎ −0.23⁎ 0.10 ± 0.16 0.25 ± 0.40
Frontal sWM (left) 0.15 −0.14 0.02 ± 0.03 0.01 ± 0.02
Frontal sWM (right) 0.06 −0.19⁎ 0.03 ± 0.08 0.01 ± 0.03
Parietal sWM (left) 0.06 −0.32⁎⁎ 0.03 ± 0.05 0.03 ± 0.07
Parietal sWM (right) 0.26 −0.43⁎⁎ 0.02 ± 0.04 0.02 ± 0.05
Temporal sWM (left) 0.01 −0.28⁎⁎ 0.00 ± 0.01 0.00 ± 0.00
Temporal sWM (right) 0.09 −0.25⁎ 0.01 ± 0.03 0.02 ± 0.04
Occipital sWM (left) 0.19 −0.13 0.08 ± 0.09 0.15 ± 0.20
Occipital sWM (right) 0.11 −0.16 0.08 ± 0.10 0.13 ± 0.19
Genu of CC 0.02 −0.12 0.08 ± 0.05 0.09 ± 0.06
Body of CC 0.17 0.17 0.14 ± 0.09 0.18 ± 0.12
Splenium of CC 0.28⁎⁎ 0.01 0.14 ± 0.19 0.21 ± 0.22

⁎p < .05 and ⁎⁎p < .01 after adjustment for gender and diagnosis and correction for multiple comparison. Abbreviations: dWM—deep white matter,
sWM—subcortical white matter, CC—corpus callosum.

Fig. 5. Relations between WMH load, structural volume, and age. Linear regressions in structures that had significant correlations between their WMH and age (A)
and between their volumes and age (B) are shown. Three-dimensional maps of the Pearson's correlation coefficients (r) between local WMH load and age (C), and
between WM volumes and age (D) are also shown. Abbreviations: dWM, deep white matter; GCC, genu of the corpus callosum; BCC, body of the corpus callosum;
SCC, splenium of the corpus callosum.; sWM, subcortical white matter.
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brain changes associated with small vessel disease, where most hyper-
intense voxels reside in WM, but lesions can also appear in GM
(Wardlaw et al., 2013). The GM lesions could also be important but
whether or not they should be detected by algorithms designed for
WMH is controversial. In MADL, we only characterized lesions within a
WM mask. However, our manual WMH delineation included lesions in
both GM and WM. If we only use manual delineation within the WM
mask as the gold standard, agreement between the MADL and manual
results were higher, e.g., DSI can be improved to 0.59 ± 0.08,
0.66 ± 0.08, and 0.71 ± 0.04 in the low, median, and high load
groups.

It should be noted that in the current MADL pipeline, we selected 15
FLAIR data for the multi-atlas library, which were from cognitively
normal subjects with normal-appearing images and minimal WMH.
Previous studies have reported that performance of T1-weighted multi-
atlas segmentation improved with the number of atlases, but segmen-
tation accuracy became relatively stable between 15 and 25 atlases,
depending on the structures of interest (Aljabar et al., 2009). We ex-
amined the effect of atlas number by expanding the original 15 atlases
to 20 atlases with brains that had WMH < 2ml. We compared algo-
rithm performance in a randomly selected subset of subjects (n=22).
The detection accuracy was not affected by atlas number: DSI was
0.65 ± 0.08 using 20 atlases, and 0.66 ± 0.08 using 15 atlases
(p > .05 by paired t-test).

4.3. Significance of location-dependent WMH analysis

To examine the clinical use of the location-dependent WMH analysis
by MADL, we first investigated WMH accumulation with advancing
age. The location-dependent WMH analysis demonstrated that local
WMH was significantly correlated with age in the dWM regions, while
age-volume correlations were more prominent in the sWM. We also
examined the location dependency of WMH distribution in normal el-
derly subjects compared to those with MCI. The association between

WMH and AD has been reported in a number of studies (Barber et al.,
1999; Burns et al., 2005; Prins et al., 2004; Vermeer et al., 2003), and
MCI subjects tend to have an intermediate WMH burden (Yoshita et al.,
2006). In our study, whole-brain WMH load was marginally different
between cognitively normal and MCI participants, but we were able to
identify significant local WMH increases in the inferior dWM and oc-
cipital sWM in MCI subjects, which is congruent with previous reports
(Brickman et al., 2012; Yoshita et al., 2006). It remains to be demon-
strated whether WMH load and WM atrophy can be used synergistically
in identification of MCI. Although the WMH remains an incremental
and non-specific feature in many neurodegenerative diseases (Wardlaw
et al., 2013), our results suggested the value of examining the locations
of WMH in subjects with memory impairment. The current study did
not investigate associations between WMH and cognitive performances
or other clinical factors, which will be an interesting clinical research
topic to explore but outside the scope of the current study.

4.4. Limitations and future directions

The present study represents the initial phase of WMH lesion-de-
tection techniques based on multi-atlas approaches; many interesting
challenges remain. For example, ROI definitions in the FLAIR atlases
were inherited from T1-weighted anatomical definitions, which could
be optimized according to the characteristics of WMH distribution, e.g.,
by merging some of the ROIs, to facilitate clinical interpretation. In the
current pipeline, histogram matching between subjects and atlases was
performed based on the whole brain intensity profiles, which might be
affected by the abnormal intensities in WMH regions. While this was
not a particular concern for our study population who had low-to-
median WMH load, for patients with extensive WMH, such as vascular
dementia patients, it might be necessary to first exclude the WMH re-
gions in histogram matching to ensure the accuracy of image registra-
tion, which would, in turn, improve the segmentation and detection of
large WMH.

Fig. 6. (A) WM regions that show significantly increased WMH load in the mild cognitive impairment (MCI) subjects compared to normal controls (p < .05 after
FDR correction). (B) WM regions that show significantly reduced volumes (normalized to intracranial volume) in the MCI subjects compared to the normal controls
(p < .05 after FDR correction). (C) A representative FLAIR image of a MCI subject that shows WMH in the inferior deep WM and occipital subcortical WM (red
arrows).
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A few more strategies may also be attempted to further improve the
performance of MADL. For example, one may explicitly use WMH
probability information obtained from existing subjects as a prior to
refine the MADL detection results, similar to (Bricq et al., 2008; Yoshita
et al., 2006). Another natural extension of the technology is to combine
multiple MR contrasts (e.g., T1-weighted images), into a multi-contrast
multi-atlas approach to further improve detection and segmentation
accuracy. Within the FLIAR image contrast, additional features beyond
the intensity may be utilized, including the first and second order fea-
tures from texture analysis (Haralick et al., 1973), Haar-like features
that enhance edge and shape information (Lienhart and Maydt, 2002),
context information (Torralba et al., 2003), or even features learned
from radiomics (Gillies et al., 2016) or machine-learning. These high-
order image features may assist the detection of small lesions with
subtle intensity abnormalities. Also, the boundaries of hyperintense
regions, which were subject to partial volume effects, may be better
captured by incorporating graph-cut (Shi and Malik, 1997) or level-set
(Chan and Vese, 2001) algorithms.

In addition, recent advances in deep learning have opened a new
avenue for medical image analysis, including WMH detection
(Ghafoorian et al., 2016; Ghafoorian et al., 2017; Jin et al., 2018;
Moeskops et al., 2018; Roa-Barco et al., 2018). For example, using a
fully-connected convolutional neural network (CNN) with multiple
branches, Moeskops et al. showed that WMH can be segmented jointed
with GM/WM/CSF with DSI around 0.54 using three image contrasts
and DSI of 0.51 using only FLAIR (Moeskops et al., 2018). Rachmadi
and colleagues reported that the segmentation accuracy of CNN also
depended on the WMH load, e.g., for small-to-median size WMH
(1.5–13ml), DSI was between 0.46 and 0.55, and it was increased to
0.72 for very large WMH (> 24ml). In the 2017 MICCAI Challenge of
WMH Segmentation (http://wmh.isi.uu.nl/), deep learning based
methods were among the top performers, which achieved DSI over 0.7
using T1-weighted and FLAIR images in patients with presumed vas-
cular disease. Potential integration of deep learning and traditional
image processing algorithms may strengthen the advantages of both
and fundamentally improve the performance of image segmentation
and lesion detection.

5. Conclusion

The multi-atlas based method provided a one-stop-shop solution for
simultaneous detection and localization of WMH on FLAIR data. This
method demonstrated good detection accuracy compared with manual
delineation and other existing methods. The location-dependent WMH
analysis suggested a higher association between deep WMH and age
compared to subcortical WMH. Our findings also suggested that WMH
may differentially accumulate in the inferior and occipital WM during
the MCI phase of AD.
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