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Abstract. Metastatic melanoma is an aggressive and deadly 
form of skin cancer, known for its rapid ability to spread to 
other organs. Melanoma metastasis involves several steps: 
Local invasion, lymphovascular invasion and proliferation to 
new sites. This process is facilitated by genetic alterations, 
interactions with the tumor microenvironment and evasion 
of the immune system. Despite advances in therapies, the 
5‑year survival rate remains low at ~22.5%. Notably, current 
research is focused on identifying patients who may benefit 
from specific treatments, considering factors such as muta‑
tional load and programmed death ligand 1 expression. BRAF 
inhibitors and immune checkpoint inhibitors have improved 
survival, although numerous patients do not respond or develop 
resistance, underscoring the need for novel biomarkers to opti‑
mize treatment and monitoring of the disease. In summary, 
the purpose of the present article is to review the different 
serological, histological, microRNA and circulating tumor cell 
biomarkers that have proven useful in the diagnosis, follow‑up 
and prognosis of metastatic melanoma. These biomarkers 
represent a promising area for research and clinical applica‑
tion, with the aim of offering more precise and personalized 
treatments.
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1. Introduction

Metastatic melanoma represents one of the most aggressive 
and deadly forms of skin cancer, characterized by its ability 
to metastasize rapidly to other organs and tissues. Despite 
significant advances in the understanding and treatment 
of melanoma, metastatic disease remains a major clinical 
challenge with a rather limited prognosis. This article aims 
to explore advances in the identification and use of sero‑
logical, histological, microRNA, and circulating tumor cell 
(CTC) biomarkers in the treatment of metastatic melanoma, 
providing a comprehensive view of the current situation and 
future prospects.

In terms of the epidemiology of stage IV melanoma, 
it stands out as being responsible for the majority of skin 
cancer‑related deaths, despite constituting only a small 
percentage of all skin cancers. It should be noted that its 
incidence has increased significantly in recent decades, espe‑
cially in populations of Caucasian origin. It is estimated that 
approximately 100,000 new cases of invasive melanoma will 
be diagnosed in the United States in 2024, with a mortality 
rate of approximately 8,000 cases per year. The incidence 
varies geographically, being higher in regions with greater 
exposure to ultraviolet radiation, such as Australia and New 
Zealand (1,2).
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It should be noted that different risk factors include exposure 
to ultraviolet (UV) radiation, a family history of melanoma, 
the presence of dysplastic nevi, and the phenotype of fair skin. 
Intermittent and intense exposure to sunlight, which causes 
sunburn, is strongly associated with an increased risk of 
melanoma. In addition, the use of tanning beds has also been 
identified as a significant risk factor (2). On the other hand, 
genetic factors also play a crucial role in melanoma suscep‑
tibility. Mutations in genes such as CDKN2A and BRAF are 
associated with an increased risk of melanoma. In this sense, 
the CDKN2A gene, which encodes the proteins p16INK4A and 
p14ARF, is particularly relevant in familial melanoma, while 
BRAF mutations are common in sporadic melanomas (3,4).

The process of melanoma metastasis involves multiple 
steps, including local invasion, lymphovascular invasion, and 
proliferation in the new microenvironment. The ability of mela‑
noma cells to perform these steps is mediated by a variety of 
molecular and cellular factors, including genetic and epigenetic 
alterations, interactions with the tumor microenvironment, 
and the ability to evade the immune system. All of this leads 
to histological aggressiveness that is quite prominent among 
all tumors. Despite this, survival from metastatic melanoma 
has improved in recent years thanks to advances in targeted 
therapies and immunotherapies. However, long‑term survival 
remains limited. According to recent data, the five‑year survival 
rate for metastatic melanoma is approximately 22.5%, although 
this figure varies depending on the location of the metastases 
and the tumor burden. Brain metastases, for example, are asso‑
ciated with a particularly poor prognosis (5,6).

In this sense, the identification of subgroups of patients 
who may benefit from specific treatments is an active area of 
research. Factors such as mutational load, PD‑L1 expression, 
and the presence of mutations in genes such as BRAF and 
NRAS are being studied to better understand the heteroge‑
neity of metastatic melanoma and develop more personalized 
therapies. Mutations in the BRAF gene, present in approxi‑
mately 50% of melanomas, have allowed the development of 
targeted inhibitors such as vemurafenib and dabrafenib, which 
have shown improvements in survival. In addition, immune 
checkpoint inhibitors such as ipilimumab, nivolumab, and 
pembrolizumab have revolutionized the treatment of advanced 
melanoma by stimulating the body's own immune response 
against tumor cells (7). Despite these advances, many patients 
with metastatic melanoma do not respond to current therapies 
or develop resistance, underscoring the need to identify new 
biomarkers that can predict response to treatment, monitor 
disease progression, and develop personalized therapies.

This is why biomarkers play a crucial role in precision 
medicine, as they allow for better stratification of patients 
and more effective monitoring of the disease. In the context 
of metastatic melanoma, serological, histological, microRNA, 
and circulating tumor cell biomarkers offer a promising area 
of research and clinical application with the goal of improving 
diagnostic accuracy, treatment follow‑up, and prognosis of 
patients with metastatic melanoma.

2. Serological markers

To date, LDH has been the only serological biomarker used 
to monitor tumor response to treatment, relating increasing 

values to disease progression. However, it has an important 
bias since an increase in these levels can also occur due to 
other causes (8‑10).

According to the study carried out by Mancuso et al (8), 
it was observed that several serological markers have been 
associated with a worse prognosis in melanoma, and it can 
be determined that, in terms of tumor activity, high levels 
of Th2 cytokines [interleukin‑4 (IL‑4), IL‑5 and IL‑13)] and 
decreased levels of Th1 cytokines [IL‑2 and interferon γ 
(IFN‑γ)‑interferon‑γ] will condition the suppression of 
antitumor immunity.

In other studies such as that of Paganelli et al (11), the 
behavior of IFN‑γ can be studied in depth, demonstrating that 
patients with an early stage in diagnosis (I‑II) had elevated 
levels of IFN‑γ in the blood, which progressively decreased 
with the metastatic development of the disease. Thus demon‑
strating the importance of IFN‑γ in the antitumor immune 
response.

It has also been observed (8,11) that the presence of both 
the proinflammatory cytokine IL‑17A and high levels of IL‑10 
(mainly immunosuppressive activity) and transforming growth 
factor beta (TGF‑β) are associated with a poor prognosis [find‑
ings that can also be observed in studies (12‑14)].

In this section, it is important to highlight the role of S100 
proteins, particularly S100B, which are of special interest for use 
as diagnostic markers in melanoma due to their higher expres‑
sion in tumor tissues compared to healthy tissues. Recently, 
elevated levels of S100B in the plasma of melanoma patients 
have been associated with a poorer prognosis, underscoring 
their relevance in assessing disease progression (15‑18).

On the other hand, it has been observed that increasing 
levels of granulocyte‑macrophage colony‑stimulating factor 
(GM‑CSF) can promote tumor cell migration in vitro and 
in vivo in multiple cancer types. Conversely, some studies 
have suggested that GM‑CSF has inhibitory effects on tumor 
progression (19). Despite the lack of consensus on the exact 
role this factor plays, it has a component in tumor progression, 
which supports its inclusion in biomarker studies. The role of 
serum dermcidin (an antimicrobial peptide that can stimulate 
keratinocytes for the production of cytokines through the G 
protein and the subsequent activation of protein kinase) as a 
marker of metastatic progression should be highlighted (8).

Other studies reviewed, such as that of Paganelli et al (11), 
have corroborated the information described above, iden‑
tifying the direct relationship between the levels of certain 
cytokines in the blood with the clinical course of the disease, 
and there may be a direct association with tumor progression.

Therefore, with the information provided by the different 
studies reviewed, we can conclude that the joint evaluation of 
elevated serum levels of IL‑4, as well as the decrease in levels 
of GM‑CSF, IFN‑γ and DCD would be associated with a worse 
prognosis of the disease. Despite this, to date there are still no 
validated serological markers for determining the prognosis of 
the disease, since the marker that shows the greatest sensitivity 
in tumor staging is still the Breslow index.

3. Histological markers

Histologic markers are crucial for diagnosing and clas‑
sifying melanoma, as well as for assessing its prognosis and 
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determining appropriate treatment. It is important to recog‑
nize that immunohistochemistry (IHC) should be interpreted 
in the context of clinical and histological findings and not in 
isolation. The following are some key histologic markers used 
in the study of melanoma, which are summarized in Table I.

Melanocytic lesions encompass a variety of skin tumors, 
from various benign nevi to malignant melanoma. IHC plays 
an important role in the treatment of cutaneous melanocytic 
tumors because the presence of melanin pigment indicates mela‑
nocytic differentiation, and in most cases, IHC is unnecessary. 
However, in difficult cases, IHC helps confirm the diagnosis. 
In some cases, pigment production may be minimal or absent, 
which can lead to a misdiagnosis such as carcinoma or poorly 
differentiated lymphoma. Immunohistochemical markers for 
melanocytic differentiation, such as Melan A, MART‑1 (mela‑
noma antigen recognized by T lymphocyte 1), HMB‑45 (black 
human melanoma 45) (all cytoplasmic), and S‑100 (nuclear), 
are frequently positive in melanocytic tumors but negative 
in epithelial or mesenchymal tumors (20,21). Among these 
markers, S‑100 is the most sensitive, showing almost universal 
positivity in melanocytic tumors (22). Melan A and HMB‑45 
are more specific for melanocytic differentiation but less sensi‑
tive. HMB‑45 can distinguish between benign and malignant 
melanocytic lesions; deeper parts of a nevus show reduced 
expression of HMB‑45, while melanoma exhibits uniform posi‑
tivity (23). It is important to note that some malignant melanoma 
variants, such as desmoplastic melanomas, are almost always 
negative for Melan A and HMB‑45, but show S‑100 expression. 
Therefore, the use of a combination of melanocytic markers is 
advisable in complicated diagnostic cases. SOX10, a member 
of the Sry HMG box (Sox) family of transcription factors, is a 
crucial transcription factor in the differentiation of neural crest 
cells. It is a newly described marker for melanocytic tumors, 
showing strong and diffuse nuclear positivity in these tumors. 
In reference to MITF, SOX10 directly regulates the expression 
of MITF, playing a crucial role in melanocyte development and 
melanoma progression. It is also useful for diagnosing desmo‑
plastic melanoma and differentiating it from other spindle cell 
and scar cell tumors (24,25). Like other melanocytic markers, 
SOX10 should be used in conjunction with other markers and 
not in isolation.

IHC is usually not required to differentiate between benign 
melanocytic nevi and melanoma. The presence of pigmented 
nevi cells at various stages of maturation is usually sufficient 
for diagnosis. However, in certain cases, such as nevoid 
melanomas, differentiation of nevi such as Spitz's nevus is 
necessary, which exhibits transepidermal migration and 
pagetoid dissemination. Proliferative markers may be particu‑
larly important in these situations, as melanomas exhibit a 
much higher proliferation rate compared to nevi. Although 
there is no universally accepted cut‑off point, the mean Ki‑67 
proliferation rate in Spitz's nevus is usually less than 2%, while 
in melanomas, the proliferation rate is 10% or more (26).

There are prognostic and predictive markers in melanoma 
that are crucial in selecting the most appropriate treatment 
for patients. Melanoma is often characterized by activa‑
tion of the RAS‑RAF‑MAP kinase signaling pathway. The 
BRAF mutation is considered a key initial event in 50‑60% 
of melanoma cases. Detection of the BRAF mutation is of 
great clinical importance because BRAF inhibitors are used 

to treat advanced melanoma. The most commonly seen BRAF 
mutation in melanoma is BRAF V600E. Genetic sequencing is 
the gold standard for detecting BRAF mutations. However, a 
commercially available antibody (VE1 clone) can now detect 
this specific mutation with high sensitivity and specificity (27). 
Tumor‑infiltrating lymphocytes (TILs) are important for 
tumor immunosurveillance, as they can inhibit tumor growth. 
The TIL response in melanoma can be classified into three 
types: absent, non‑intense, and intense. Programmed death 
ligand 1 (PD‑L1) expressed by tumor cells can interact with 
PD receptors on T cells, leading to their inactivation. PD‑1 
inhibitors, such as pembrolizumab, have been introduced 
as a treatment for metastatic melanoma as part of immuno‑
therapy. The use of this drug requires prior detection of PD‑L1 
expression by tumor cells and TILs, as it predicts response to 
treatment (28,29). IHC is essential for detecting PD‑L1 expres‑
sion, although staining patterns and diagnostic criteria vary 
across clones (30).

Therefore, proper application and interpretation of histo‑
logic and immunohistochemical markers, combined with 
clinical and histologic findings, are vital for accurate diag‑
nosis, prognosis, and treatment selection in the treatment of 
melanoma. The continued evolution and integration of these 
markers into clinical practice promises significant improve‑
ments in the outcomes of melanoma patients (30).

Table I presents a summary of the main histologic biomarkers 
used in the diagnosis, surveillance, and prognosis of metastatic 
melanoma. It includes details on the type, usefulness and refer‑
ences of each biomarker, providing a comprehensive overview 
of clinical and research applications (30).

4. Genetic markers

It should be noted that there is a relationship between 
genetic, epigenetic, and environmental factors that justify 
the increase in the incidence of cutaneous melanoma since 
the 1960s (31,32). Currently, phenotypic characteristics, such 
as fair skin, freckles and red hair (phototypes I and II) are 
identified as risk factors for the development of this neoplasm. 
Likewise, ultraviolet radiation (UVR) represents a direct risk 
factor for direct DNA damage as it induces several mutations 
in the different molecular pathways, thus conditioning the 
development of one of the types of melanoma. These processes 
are factors that facilitate the appearance of malignant mela‑
noma and, therefore, currently represent a public health 
problem (31,33).

Exposure of the skin to ultraviolet radiation has posi‑
tive and negative effects. Among the effects of exposure to 
ultraviolet radiation are the regulation between the local 
neuroimmunoendocrine system and central homeostasis. 
Among the mechanisms proposed to reinforce this conception 
is what is stated in Slominski et al (34), where it is proposed 
that ultraviolet radiation, both UVA and UVB, produce physi‑
cochemical changes (at the level of pH, ions, reactive oxygen 
species and reactive nitrogen species) and that these changes 
could induce the activation or alter the functioning of sensory 
nerve endings, resulting in the transmission of signals to the 
brain or stimulation of the sympathetic nervous system (SNS) 
or autonomic nervous system (ANS), resulting in reflex‑based 
responses.

https://www.spandidos-publications.com/10.3892/ol.2024.14824
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If ultraviolet exposure is not controlled, as Cole et al (35) 
commented, these physicochemical changes will accumulate 
in skin cells and trigger cascades of signaling pathways that 
cause alterations in collagen homeostasis, being the link with 
skin aging, thus leading to immunosuppression (35‑38).

A result of ultraviolet radiation is that, when absorbed by 
DNA, it will carry out the production of pyrimidine cis‑syn 
cyclobutane (CPD) dimers (39) as well as the photoproduct 
6‑4PPs (40), leading to oxidative stress (37). The accumula‑
tion of DNA damage can lead to mutations in key genes to 
maintain homeostasis, such as the p53 gene, which acts as a 
tumor suppressor (41).

Dysregulated melanogenesis, together with the depletion 
of essential cellular antioxidants and the production of reac‑
tive oxygen species (ROS), as well as the direct influence of 
quinone and semiquinone intermediates on RNA, DNA, and 
regulatory proteins, will result in an environment conducive to 
mutations that favors melanomagenesis (42,43).

To understand melanogenesis, it is essential to consider 
melanin as a pigment whose production is regulated by 
exposure to ultraviolet radiation, hormones, and cyto‑
kines (42). As a result, it should be noted that in addition 
to its protective role against UVR, melanin may play a role 
in the malignant transformation of melanocytes (44,45). 
There are two main types of melanin: eumelanin and 
pheomelanin (46,47). While eumelanin offers radiation 
protection and photoprotection by acting as an antioxidant 
and an efficient sunscreen, pheomelanin, due to its lower 
stability in the face of light, can create an environment 
prone to mutations after exposure to shortwave ultraviolet 
radiation (44,48,49).

According to the 2018 WHO classification, we can find 
three types of melanoma: those associated with cumulative 

sun damage (CSD), those not associated with cumulative sun 
damage, and nodular melanoma (50). Melanoma pathways 
associated with CSD include superficially disseminated, 
lentigo maligna, and desmoplastic melanomas, with a subdivi‑
sion between high sun damage and low sun damage based on 
histopathological findings (38PO). Melanomas not associated 
with CSD are subclassified into spitzzoid, acral, mucus, and 
uveal melanomas and melanomas arising in congenital and 
blue nevi. This new classification describes in more detail the 
mutagenic changes found in the formation of melanoma.

Each subtype of melanoma is the result of the evolution of 
a precursor pathway (e.g., mutations in BRAF and NRAS are 
not accepted as features of the ultraviolet light‑induced muta‑
tion (32,50). Each precursor has a variable risk of progression. 
It should be noted that nodular melanoma is classified in isola‑
tion in the new WHO classification because it can originate 
from any precursor pathway (51).

The role of fibroblasts in the evolution of melanoma has 
been reviewed, noting that the removal of reactive oxygen 
species interferes with the accumulation of HIF‑1 in fibro‑
blasts associated with hypoxia and reduces the expression 
of IL‑6, VEGF‑A and SDF‑1. This phenomenon suggests 
that hypoxia‑driven oxidative stress plays a crucial role in 
regulating the angiogenic and inflammatory response during 
melanoma progression (52).

Therefore, molecular and genetic markers have been postu‑
lated as a great tool for the diagnosis and targeted treatment of 
melanoma, facilitating the development of new lines of treat‑
ment (53). All these biomarkers are summarized in Table II.

Genetics of metastatic spread. In the melanoma progression 
model, we can find somatic alterations, such as activation of the 
mitogen‑activated protein kinase (MAPK) pathway, activation 

Table I. Histologic biomarkers in metastatic melanoma.

First author/s, year Biomarker Marker type Diagnostic or prognostic utility (Refs.)

Davey et al, 2000 S‑100 Histological Neural crest origin tumor marker (including melanoma) (15)
Davey et al, 2000;  Melan A,  Histological Melanosomal proteins and differentiation markers in (15,16)
Petersson et al, 2009 MART‑1  melanocytic lesions
Oberholzer et al, 2008 HMB‑45 Histological Melanosomal proteins and differentiation markers in (17)
   melanocytic lesions
Hong, 2016;  SOX10 Histological SOX10 directly regulates the expression of MITF,  (19,20)
Viray et al, 2013   serving a crucial role in melanocyte development and 
   melanoma progression
Weinstein et al, 2014 Ki‑67 Histological It indicates the rate of proliferation; higher in (21)
   melanomas than in nevi
Dorizzi et al, 2005 BRAF V600E Histological Mutation detection for targeted therapy with BRAF (22)
   inhibitors
Rothberg et al, 2008;  PD‑L1 Histological Predicts response to PD‑1 inhibitors in (23,24)
Ramos‑Herberth et al,    immunotherapy
2010   

The table summarizes the key histologic biomarkers used in the diagnosis, follow‑up and prognosis of metastatic melanoma. The type, utility 
and reference for each biomarker are included to provide a comprehensive overview of clinical and research applications. MART‑1, melanoma 
antigen recognized by T lymphocyte 1; MITF, microphthalmia‑associated transcription factor; PD‑1, programmed cell death protein 1; PD‑L1, 
programmed death ligand 1.
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of the PI3K pathway, upregulation of telomerase activity, loss 
of control of the G1/S checkpoint, modulation of chromotine, 
and alteration of the p53 pathway (51,53).

The importance of the mitogen‑activated protein kinase 
(MAPK) pathway is that it encodes the regulation of cell growth, 
proliferation, differentiation, and apoptosis (54). Mutations 
along this pathway result in an overamplification of signaling, 
leading to cell cycle dysregulation and uninhibited cell growth.

According to the pattern of the most prevalent mutations that 
activate the MAPK pathway, a genomic classification has been 
established into four major subtypes: mutated BRAF, mutated 
NRAS, mutated NF1 and the triple wild type. It should be noted 
that in all these subtypes, with the exception of the triple wild type, 
markers of sun damage due to ultraviolet radiation are found (51).

For the correct study of the different genetic markers 
present in melanoma and their clinical usefulness, they will be 
grouped according to the latter.

Prognostic or diagnostic markers
GNAQ/GNA11. They produce an overamplification of 
signaling through the MAPK and PI3K pathways by blocking 
GTPase activity (31). These mutations are mutually exclusive 
and will be found at a rate of 80‑90% in uveal melanoma (55). 
In the case of cutaneous melanomas, these are very rare muta‑
tions (56).

According to the review by Yang et al (31), it was deter‑
mined that the presence of mutations in GNAQ or GNA11 are 
not a priori related to metastatic progression.

CDKN2A. This marker is the most common in cases 
of hereditary melanoma, being present in up to 20% of 
subjects with a family history (51,57). Thus, individuals 
with the CDKN2A mutation develop multiple melanomas 
and significantly more dysplastic nevi, including dysplastic 
nevus syndrome (58). In the study by Yang et al (31), a corre‑
lation was observed between the mutation of this gene and 
the damage caused by UVA radiation. On the other hand, 
in the study by Helgadottir et al (59), it was observed that 
patients with melanoma and the CDKN2A mutation had an 
earlier age of onset and worse survival than those without 
the mutation.

BAP1. BAP1 is a tumor suppressor gene with a poorly 
understood mechanism in the development of melanoma. 
Mutations in BAP1 are associated with monosomy 3, which 
is associated with metastatic uveal melanoma (31). Notably, 
germline mutations of BAP1 have been identified, suggesting 
an inherited form of uveal melanoma. In fact, BAP1 is the 
most common mutation found in familial uveal melanoma, 
with an estimated frequency of 8 to 50% (60). In the study by 
Newton‑Bishop et al (32), the relationship between this muta‑
tion and lung cancer or meningioma is also identified.

Table II. Genetic biomarkers in metastatic melanoma.

First author/s, year Biomarker Marker type Diagnostic or prognostic utility (Refs.)

Chatterjee and BRAF Genetic Most common mutation in cutaneous melanoma;  (30)
Bhattacharjee, 2018   target for BRAF inhibitors
Chatterjee and NRAS Genetic It is associated with nodular melanoma and chronic (30)
Bhattacharjee, 2018   sun‑damaged skin; limited targeted therapy options
Schneider et al, 2017 CDKN2A Genetic Common in hereditary melanoma; associated with (36)
   multiple melanomas and dysplastic nevi
Bobos, 2021; Chatterjee and TERT Genetic Activation is associated with a poor prognosis,  (27,30)
Bhattacharjee, 2018   particularly in sun‑damaged melanoma
Vollmer, 2004 GNAQ/ Genetic Common in uveal melanoma; it is not usually (26)
 GNA11  associated with metastatic progression of cutaneous 
   melanoma
Zorina et al, 2022 BAP1 Genetic Tumor suppressor gene; associated with uveal (37)
   melanoma and other cancer types
Vollmer, 2004 SF3B1,  Genetic Mutations in these genes lead to an improved (26)
 EIF1AX  prognosis in uveal melanoma
Vollmer, 2004; Chatterjee and VDR Genetic Inverse association between VDR and tumor (26,30)
Bhattacharjee, 2018   progression, as well as overall survival and 
   disease‑free survival
Naylor et al, 2011 MC1R Genetic Increases risk of melanoma in individuals with (38)
   CDKN2A mutations
Kripke et al, 1992 MITF Genetic It is associated with nodular and fast‑growing (39)
   melanoma; diagnostic marker of metastatic melanoma
Vollmer, 2004 HAPLN1 Genetic Expression levels associated with aging and (26)
   melanoma progression

The table summarizes the main genetic biomarkers used in the diagnosis, follow‑up and prognosis of metastatic melanoma. The type, utility 
and reference for each biomarker are included to provide a comprehensive overview of clinical and research applications.

https://www.spandidos-publications.com/10.3892/ol.2024.14824
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SF3B1 and EIF1AX. In the review by Yang et al (31), it is 
shown that the mutation of both genes (independently) results 
in a better prognosis in the case of uveal melanoma.

VDR. This is the vitamin D receptor, which has been 
shown to be a protective factor against melanoma by inhibiting 
proliferation, regulating growth factor activity, and promoting 
apoptosis. That is why a low expression of this receptor leads 
to a worse prognosis in melanoma (31,51,61), with a lower 
survival rate (62). This opens up promising horizons in the 
treatment of melanoma, with several clinical trials in coun‑
tries such as Belgium or Australia, included in the study by 
Yang et al (31) that try to evaluate treatment with high doses 
of vitamin D in patients after surgical resection of melanoma.

MC1R. Melanocortin receptor 1 (MC1R) has been iden‑
tified as an important gene in the development of sporadic 
melanoma, as MC1R variants increase the penetrance of 
CDKN2A mutations, significantly increasing the risk of 
melanoma development (63).

MITF. MITF is a regulatory gene for the development and 
differentiation of melanocytes, therefore, it is also associated 
with the development and progression of melanoma. This 
variant has been associated with a fast‑growing, nodular mela‑
noma variant, implying a worse prognosis (51). In turn, MITF 
is useful as a sensitive (88‑100%) and specific marker for the 
diagnosis of metastatic melanoma of histologically similar 
non‑melanocytic tumors (64).

It is interesting to note that this marker plays a key role 
in determining the behavior of melanoma cells based on 
their activity levels. When MITF is expressed at high levels, 
the cells respond by proliferating or differentiating, while at 
low levels, they acquire stem cell‑like characteristics, leading 
to increased invasive capacity (65,66). On the other hand, 
prolonged suppression of MITF induces cellular senescence 
(melanoma regression) (66,67).

These f luctuations in MITF activity are driven by 
microenvironmental signals and epigenetic modifications, 
with direct genetic alterations having less influence on its 
activity (66,68). MITF is not an easy target for direct drug 
treatment, so therapeutic approaches focus on modulating the 
signaling pathways that regulate it (66). The inhibition of the 
MAPK pathway combined with histone deacetylase inhibi‑
tors (HDACi) has been shown to prevent MITF‑mediated 
drug resistance in melanoma cells (69). For all these reasons, 
we can conclude that MITF is a genetic marker of great 
interest, and we will likely see new applications for it in the 
future (66).

HAPLN1. This molecule is directly related to aging, as 
fibroblasts secrete fewer components of the ECM with hyal‑
uronan and proteoglycan binding protein 1 (HAPLN1) (31,70). 
Age‑related changes degrade the extracellular matrix (ECM) 
in the skin and thus promote melanoma growth and migra‑
tion (71), so determining HAPLN1 expression levels may be 
particularly useful in elderly patients (31).

Additionally, this marker is particularly interesting given 
that aged fibroblasts activate a signaling cascade in melanoma 
cells that decreases the levels of β‑catenin and (MITF). This 
process contributes to the increased resistance of melanoma 
cells to targeted therapy with vemurafenib (71).

TERT. Activation of the telomerase pathway is a common 
event in the melanoma progression model, regardless of 

subtype (with or without sun damage). TERT‑promoting 
mutations have been associated with a worse prognosis in 
melanoma, primarily in sun damage‑related melanomas, 
while TERT amplification has been associated with a worse 
prognosis in acral melanoma (32,51,72).

Therapeutic targets
BRAF. BRAF is a kinase that is involved in signaling the MAPK 
pathway. The expression of BRAF‑V600E acts synergistically 
with the loss of tumor suppressors (PTEN or p16INK4A), 
thereby leading to melanoma with metastatic potential (73). In 
fact, the different mutations that we will find in this pathway 
constitute the most common genetic alteration in cutaneous 
melanoma, representing between 40 and 60% of the total 
mutations present in this subtype of melanoma (31). Some of 
the BRAF mutations are V600E, V600K and V600R, with 
V600E being the most common of them, reaching 80% (74). 
It should be noted that mutations in BRAF are directly related 
to exposure to UV rays, thus conditioning different mutations 
depending, in part, on the presence or absence of chronic sun 
damage. For example, V600E expression is not associated with 
chronic sun damage, so it occurs in younger patients. On the 
contrary, the V600K mutations do have a direct relationship 
with chronic sun damage, taking place in areas of the body 
with sustained sun exposure (for example, the head) and, there‑
fore, in elderly patients (75).

This route is of great importance as it also conditions 
therapeutic options. For example, drugs such as vemurafenib, 
dabrafenib, and encorafenib are inhibitors of BRAF V600 
mutations (currently approved by the FDA). However, the 
combination of BRAF and MEK inhibitors (trametinib and 
cobimetinib) has now been shown to be more effective due 
to the joint inhibition of both pathways, thus reducing the 
resistance that develops to the use of BRAF inhibitors in 
monotherapy (31). Therefore, recent studies have shown that 
patients with mutated BRAF have a better prognosis than 
patients with native BRAF due to the difference in thera‑
peutic options (51). Therefore, due to the success of targeted 
therapies, it is critical to identify melanoma patients with 
BRAF mutations.

NRAS. NRAS is critical in the transduction of extracel‑
lular growth signals through the MAPK and PI3K/AKT 
pathways. Melanomas with NRAS mutations correlate with 
the nodular subtype and are found in patients who have under‑
gone CSD (76). As with BRAF mutations, we found direct sun 
damage (51). The prognostic value of NRAS mutation identifi‑
cation is unclear; this is because therapeutic options targeting 
this mutation remain scarce (31). However, in some studies, 
such as that of Jakob et al (77), the role of the NRAS mutation 
is described as an independent marker of poor prognosis, with 
decreased survival in patients diagnosed with metastatic mela‑
noma. Speaking of mutations in BRAF and NRAS, it is worth 
highlighting the development of circulating DNA tests for use 
as possible prognostic factors. Thus, according to the study 
by Tímár and Ladányi (53), the detection of BRAF and NRAS 
mutations in peripheral blood would constitute markers of 
poor prognosis, which would imply the presence of molecular 
residual disease.

C‑KIT. Unlike the BRAF mutation, this mutation implies a 
worse prognosis compared to wild‑type melanomas. C‑KIT is 
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a receptor tyrosine kinase that constitutes the first signal of the 
MAPK and PI3K pathways. This mutation is found in mucosal 
and acral melanomas and in those derived from chronic sun 
damage (31,78). Drugs such as imatinib and nilotinib are 
currently available for the treatment of melanomas with this 
mutation (78).

Immune checkpoint (CTLA‑4, PD‑1, PD‑L1). This 
immune checkpoint is of great importance, as its inhibition 
causes increased activity and proliferation of T cells in periph‑
eral tissue (31). The interaction between PD‑L1 on tumor cells 
and PD‑1 on T lymphocytes is crucial for tumor immune 
evasion. This binding activates a signal that deactivates the 
T cell receptor (TCR) response, thus inhibiting the secretion 
of growth factors and promoting tumor survival by blocking 
the immune response (79,80). Therefore, both the use of drugs 
such as ipilimumab (CTLA‑4 antibodies) or Pembrolizumab 
or Nivolumab (anti‑PD‑1) will be very useful to improve the 
response to the tumor. Because of that, identifying PD‑L1 
expression in melanoma is the first effective step in treatment 
planning, as it is a first‑line treatment in positively expressed 
tumors. In the case of tumors with negative expression, it will 
constitute a supportive treatment (31). Some studies, such as 
that of Pistillo et al (81), have shown that serum CTLA‑4 levels 
could predict a favorable clinical outcome in patients treated 
with antibodies against CTLA‑4 such as ipilimumab. The 
early identification of these markers, for all of the above, will 
directly condition both the treatment and the prognosis of the 
patient.

Therefore, to conclude, we can determine that higher‑risk 
genes, particularly CDKN2A, have been identified. Familial 
melanoma genes are associated with an increased number 
of melanocytic nevi. At the somatic level, the most common 
driver mutation is BRAF and the second most common is 
NRAS, thus identifying a growing number of additional muta‑
tions that are less common, such as in TP53, but that may be 
very useful in the future (32).

Knowledge of the molecular pathology of melanoma 
represents a significant advance towards early diagnosis (diag‑
nostic aid if histology is not decisive) and the optimization of 
treatment. The identification of common mutations (BRAF 
or NRAS) is of great help in directing therapy, and these 
pathways are still under study with possible promising results 
in the coming years, especially for the development of new 
therapies. Expanding knowledge about vitamin D is still an 
area under study, but interesting results are expected.

As mentioned in one study (82), vitamin D3 exerts various 
impacts, such as anti‑melanoma activities and protective 
or restorative functions against oxidative stress and DNA 
damage caused by ultraviolet radiation. In addition, there 
is increasing evidence that vitamin D deficiency, defined as 
≤20 ng/ml (50 nmol/l) of 25(OH)D3, and alterations in vitamin 
D signaling, involving VDR and CYP27B1 in the canonical 
pathway, influence the risk of developing melanoma and the 
evolution of the disease, affecting OST, DFST, and response 
to treatment.

5. Circulating tumor cells

Circulating tumor cells (CTCs) are cancer cells that break off 
from a primary tumor and travel through the bloodstream or 

lymphatic stream. They are markers of cancer spread and can 
be detected in peripheral blood. Studies of CTCs in melanoma 
in recent years have made it possible to assess tumor progres‑
sion, disease recurrence, and response to treatment without the 
need for tumor biopsies (83).

Cell surface‑specific melanoma‑associated antigens 
(MAAs) are very limited, with limited availability of 
antibodies specific to these antigens. Analysis of MAA 
biomarkers by RT‑PCR suggests that many CTCs are present 
in the peripheral blood of melanoma patients. The different 
levels of expression between MAA biomarkers during 
follow‑up demonstrate the heterogeneity of CTCs. The utility 
of MAA multi‑marker RT‑PCR provides clinical information 
that correlates with disease outcomes in treated and untreated 
patients. From a clinical point of view, the enrichment of 
CTCs is crucial to increase the concentration of these cells 
in peripheral blood samples, facilitating their detection and 
analysis. Advances in enrichment methods have allowed for 
standardized and reproducible evaluations of multiple genetic 
alteration profiles of DNA, mRNA, and MAA. For example, 
the CELLSEARCH® system has been approved by the FDA 
to analyze CTCs in metastatic cancers such as breast, colon, 
and prostate, using ferrofluids with CD146 antibodies to enrich 
CTCs and a specific antibody against MAA for detection in 
melanoma (84).

One study (85) evaluated the detection of CTCs in patients 
with metastatic melanoma using techniques such as immunocy‑
tochemistry, RT‑PCR, and digital droplet PCR to analyze both 
the presence of CTCs and circulating tumor DNA (ctDNA). 
High heterogeneity was identified among melanoma CTCs, 
with multiple distinct subpopulations. Detection of CTC in 
this study was associated with shorter, progression‑free overall 
survival. In addition, correlations were observed between CTC 
scores and plasma ctDNA concentrations, suggesting that 
these biomarkers may have prognostic utility.

Assessment of tumor response in patients with advanced 
melanoma treated with checkpoint inhibitors (CIIs) or combi‑
nation therapies is a challenge without real‑time biomarkers, 
considering the possibility of objectifying pseudoprogressions 
in radiological imaging evaluations. A prospective study eval‑
uated whether the molecular profiling of CTCs in blood can 
facilitate the follow‑up of patients with metastatic melanoma 
during their treatment with CII (86). Panels of mRNA/DNA 
biomarkers were used in patients with melanoma during treat‑
ment, including LDH, CTC‑mRNA, and tumor BRAF. These 
panels allow patients to be stratified into two groups: low‑risk 
and high‑risk. High‑risk patients had lower disease‑free survival 
and shorter overall survival. Patients who overexpressed beta 
catenin 1 on RNA sequencing had an increased risk of disease 
progression in contrast to patients who responded completely 
to treatment. On the other hand, CTC sequencing allowed the 
identification of subclinical disease in patients who developed 
progressive disease during treatment and follow‑up.

In a study conducted in China (87), it was investigated whether 
there was a correlation between the number of CTCs before and 
after treatment with immunotherapy and BRAF‑targeted therapy 
in patients with melanoma, including 49% in stages III‑IV. It was 
found that an elevated baseline CTC count was associated with 
deep local invasion, nodal metastases, and distant metastases, as 
well as poorer overall survival, progression‑free survival, and 

https://www.spandidos-publications.com/10.3892/ol.2024.14824
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disease‑free survival. These findings suggest that baseline CTC 
count may be an important prognostic and predictive factor in 
patients with advanced melanoma.

Hoon et al (88) demonstrated the usefulness of CTCs in 
patients with stage I‑IV cutaneous melanoma, positively corre‑
lating MAA markers detected by RT‑PCR with stage, disease 
progression, and survival. They highlight the transcription 
factor associated with microphthalmia (MITF), crucial in the 
development of melanocytes and the growth of melanoma. 
The detection of MITF increases with tumor stage and its 
presence after treatment is associated with lower disease‑free 
and overall survival (89).

Studies such as that of Koyanagi et al (90) have explored 
the usefulness of CTC screening as a predictor of response to 
treatment in metastatic melanoma. They evaluated the expres‑
sion of MAAs mRNA biomarkers (B4GALNT1, MAGEA3, 
MITF, MLANA, and PAX3) by RT‑PCR in a prospective 
multicenter phase II clinical trial. They observed a decrease 
in the number of MAA‑positive CTCs during treatment, 
which was associated with improved response and increased 
survival. Surgical treatment has also been shown to signifi‑
cantly reduce the number of CTCs at all stages of melanoma 
(I‑IV) compared to healthy patients (91).

The analysis of CTCs is constantly expanding thanks to 
the development of new technologies for their enrichment 
and detection. Recent advances in molecular profiling have 
the potential to enrich the information derived from CTCs, 
thereby increasing their clinical utility for patients with 
advanced melanoma.

6. MicroRNA

MicroRNAs (miRNAs) were first discovered in 1993 as a group 
of non‑coding RNAs with a length of 21 to 23 nucleotides (92). 
Since their discovery, miRNAs have become an exciting area 
of research. In recent years, the value of miRNAs in mela‑
noma according to their tumor inhibitory properties has been 
studied, classifying them as oncogenes or tumor suppressor 
genes (93). Importantly, miRNA expression levels have been 
clinically related to the response rate, efficacy, and side effects 
of treatments (94). Some key aspects of the involvement of 
miRNAs in melanoma are described below.

Fibroblasts play a suppressive role in the early develop‑
ment of melanoma. However, with tumor growth, fibroblasts 
are reprogrammed into cancer‑associated fibroblasts (CAFs) 
to promote tumor progression. Before the invasion of mela‑
noma cells, melanoma cells release some melanocytes into 
the dermis. These melanoma‑derived exosomes contain a 
large amount of non‑coding RNAs that are biologically active. 
The absorption of these miRNAs by fibroblasts can lead to 
the formation of CAFs, which are especially important in the 
formation of the metastatic niche (95).

Therefore, miRNAs can act as oncogenes or tumor 
suppressors. In this sense, miR‑21 is frequently overexpressed 
in melanoma, which favors cell proliferation and resistance to 
apoptosis (96), while miR‑34a acts as a tumor suppressor (97). 
On the other hand, some miRNAs, such as miR‑10b and 
miR‑182, are associated with the promotion of invasion and 
metastasis in melanoma cells, facilitating tumor progression 
to more aggressive stages (98).

It should also be noted that miRNAs are also implicated in 
resistance to conventional and targeted therapies. For example, 
miR‑200c (99) has been linked to resistance to BRAF inhibi‑
tors, limiting the first‑line therapeutic arsenal in these patients.

In addition, miRNA expressions in blood or biopsies in 
melanoma patients have been shown to be closely related 
to response to immunotherapy treatments, suggesting that 
miRNAs could serve as practical biomarkers to predict the 
response rate or survival time of patients treated with immu‑
notherapy (100,101).

miRNAs can modulate the activity of different immune 
cells. For example, miR‑155 is crucial for the function of 
T cells and macrophages, as it influences the immune response 
against melanoma. In this context, it has been observed that 
a high level of miR‑155 expression after receiving anti‑PD‑1 
treatment correlates with prolonged overall survival in 
patients with melanoma (102,103). In addition to miR‑155, an 
elevated level of other miRNAs has been shown to indicate 
a positive response to PD‑1 inhibitors. The expression of 
miR‑100‑5p and miR‑125‑5p has been shown to be positively 
correlated with the overall survival of melanoma patients 
treated with PD‑1 inhibitors (104). Therefore, the interaction 
of miRNAs with immune checkpoint inhibitors, such as PD‑1 
and CTLA‑4 inhibitors, is an area of great interest. miRNAs 
can affect the efficacy of these therapies and also be involved 
in the appearance of adverse effects related to the immune 
system.

In summary, miRNAs are crucial components in mela‑
noma biology and have the potential to revolutionize both the 
diagnosis and treatment of this aggressive disease.

7. Neuroendocrine markers

In other sense recent research, including studies by 
Scheau et al (105), has significantly expanded our 
understanding of the neuroendocrine factors involved in 
melanoma pathogenesis, highlighting their roles in directly 
inf luencing tumor cell proliferation and metastasis or 
indirectly through modulating immune and inflammatory 
processes that impact disease progression. This emerging 
evidence suggests that neuroendocrine factors, including 
neurotransmitters like catecholamines and neuropeptides 
such as alpha‑MSH, may offer novel serological markers for 
melanoma (105,106).

The intricate interactions of melanoma cells with the 
neuroendocrine system, as described in Scheau's comprehen‑
sive review, underscore a complex network where melanoma 
cells not only respond to neuroendocrine signals but also 
produce these factors to modulate their microenvironment. 
For instance, the production of CRH and ACTH by mela‑
noma cells can lead to systemic effects, potentially altering 
the HPA axis and influencing systemic immune responses. 
This phenomenon could explain the elevated levels of certain 
hormones and neurotransmitters in patients with advanced 
melanoma, which might serve as potential biomarkers for 
disease status and progression (105,106).

Moreover, the ability of melanoma to drive systemic 
changes through neuroendocrine manipulation suggests that 
these markers could be pivotal for understanding the tumor's 
influence on systemic disease mechanisms.
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However, in line with previous references to serological 
biomarkers, the study of serological and neuroendocrine 
biomarkers opens up a wide horizon. The reviewed studies 
observed that cross‑evaluating the levels of serological markers 
alongside the Breslow index offers greater prognostic value 
in staging metastatic melanoma. Integrating these insights 
not only aids in the detection and monitoring of melanoma 
but also enhances our understanding of its systemic impact. 
This holistic approach is crucial for developing more precise 
and effective management strategies for patients with this 
aggressive cancer.

8. Conclusions

Treatment of metastatic melanoma remains a significant chal‑
lenge due to its aggressive nature and ability to spread rapidly 
to other organs. Although advances in targeted therapies and 
immunotherapies have improved the outlook, the long‑term 
survival rate remains low. However, the identification and use 
of various biomarkers offer a promising avenue to improve the 
diagnosis, follow‑up and personalized treatment of this disease.

Serological biomarkers, such as LDH and certain cyto‑
kines, have been shown to be useful in providing information 
about tumor progression and response to treatment. However, 
more research is needed to validate its clinical application 
routinely. On the other hand, histological biomarkers, such as 
Melan‑A, HMB‑45, and S‑100, are critical in the diagnosis and 
classification of melanoma, as they help distinguish between 
benign and malignant lesions and identify specific subtypes.

Similarly, microRNAs and circulating tumor cells (CTCs) 
have shown great potential to improve the treatment of meta‑
static melanoma. MicroRNAs can act as oncogenes or tumor 
suppressors, influencing disease progression and response to 
treatment. While CTCs allow tumor progression and response 
to treatment to be evaluated without the need for invasive biop‑
sies, representing a less invasive tool for continuous patient 
monitoring.

In summary, advances in the identification and utilization 
of serological, histological, microRNA, and CTC biomarkers 
represent a very promising area of research and clinical 
application. These biomarkers are essential for improving the 
diagnosis, follow‑up, and prognosis of metastatic melanoma, 
and have the potential to offer more precise and personalized 
treatments, significantly improving the approach to patients 
with metastatic disease.
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